HDL Particle Size and Functional Heterogeneity

Sergio Fazio, Nathalie Pamir

Classic clinical and epidemiological studies have long ago established the presence of an inverse relationship between high-density lipoprotein cholesterol (HDLC) levels and cardiovascular disease (CVD) risk, and thus, it was assumed that measures that increase HDLC levels would afford protection against atherosclerosis-based CVD.1,2 However, trials of drugs, such as cholesterol ester transfer protein inhibitors and niacin, have failed to provide evidence of cardiovascular benefit in patients on statin therapy, indicating that HDLC increases from 30% to 120% are not able to modify risk when low-density lipoprotein is kept very low. Moreover, genetic polymorphisms that associate with increased HDLC do not always reflect the functional efficiency of HDL in reverse cholesterol transport in vivo.1,2 In addition, the methodology has not converged yet toward standardization, and the different macrophage lines used (rat J774, murine RAW264, and human THP-1) likely explain the inconsistent results between research groups given that sterol efflux is regulated by multiple cell-specific factors, such as activation of transcription factors (ie, SREBP and LXR), synthesis and secretion of apoE, and expression of other membrane lipid transporters. Even with all these caveats, the sterol efflux method is driving the progress in the field, whereas the anti-inflammatory and antioxidant functions are yet to be tested and validated in clinical studies for CVD risk prediction.

The plasma concentration of HDL particles and their size distribution can be reliably measured using different approaches to identify subspecies with unique functional and compositional profiles.13 Currently, there is no consensus on the relative value of the different methods and the number, concentration, functional status, and predictive power of the different HDL subparticles. Further, the classic linear view of HDL evolution from discoidal, lipid-poor nascent particles to spherical, cholesterol- and phospholipid-rich particles packed with a combination of over 100 different proteins has been recently challenged by the finding that HDL is secreted directly from hepatocytes in 4 distinct sizes, with little interchange between them, and representing all of the plasma HDL subparticle pools.14 Efforts to identify the proteomic, lipidomic, and functional fingerprints of these subspecies are of critical importance and may open paths to novel pharmacological targets.

However, ongoing attempts to link size and function and to identify the HDL subspecies with the best cardioprotective qualities have yet to provide credible leads. Evidence for a functional specialization of HDL subspecies is not solid because smaller particles seem to be most efficient at sterol efflux in one study7 but not in others.12,15

The elaborate and elegant study by Didichenko et al in the current issue of the Journal describes for the first time a divergence in specific HDL functions according to HDL particle size.16 The study was performed to understand how infusion of CSL112, a discoidal particle made of human apoAI and phospholipids, which is being developed as treatment for acute coronary syndromes, increases both the plasma concentration of small HDL particles and the sterol efflux capacity of plasma. Using plasma samples of healthy
subjects enrolled in a phase I clinical trial of CSL112 infusion, the authors demonstrate the spontaneous fusion of CSL112 with native HDL to generate particles of 3 sizes (lipid poor, small, and large) and with size-specific functions. Lipid-poor and small HDL displayed both high capacity for ABCA1-mediated cholesterol efflux and strong anti-inflammatory action, whereas the larger particles showed stronger antioxidant function. This study provides a novel perspective because it suggests that subspecies of HDL may be involved in different functions, and thus, the right mix of multiple HDL particle sizes may be most desirable to maximize cardioprotective benefits. Most importantly, the study offers an approach to generate these particles in vivo. One can envision that a possible next step in the development of HDL therapeutics would aim at enriching a specific HDL pool to correct a specific dysfunction, such as reduced sterol efflux or reduced anti-inflammatory capacity, a rather complex task because of the compositional diversity of HDL particles.

The HDL mass is equally distributed between lipid and protein cargo. The HDL lipidome is composed mainly of phospholipids, cholesteryl esters, triglycerides, and free cholesterol, for a total of over 200 individual lipid species in normolipidemic subjects. Some lipid components, such as phospholipids, sphingomyelin, and free cholesterol, have already been investigated as modulators of HDL functions, such as sterol efflux, vasodilation, and control of oxidation and inflammation. Although phospholipids are linked to SR-B1-mediated sterol efflux, less is known about the lipids that modulate ABCA1-mediated sterol efflux. Likely, the protein cargo also associates with HDL function, and its composition is affected by factors such as diet, drug treatment, and inflammatory activation. Experimentally, both a high-fat diet and induction of acute inflammation by subcutaneous injection of silver nitrate lead to enrichment of HDL particles in acute-phase proteins, such as PON1, SAA1, and SAA2, with subsequent reduction in ABCA1-mediated sterol efflux capacity.12,18 HDL isolated from statin-treated patients with CVD contains increased levels of apoE,19 and fenofibrate treatment enriches the HDL proteome of diabetic subjects in apoC proteins and PON1.20 Altogether, evidence suggests that the HDL proteome is dynamic and responds to metabolic changes, lipid-modulating therapy, and disease development.

To define the intricate relationship between HDL protein and lipid cargo, function, and particle size, the compositional signatures of HDL subparticle pools need to be defined. Studies examining the proteomic and lipid remodeling of HDL subspecies in response to drug treatment, diet, and disease are needed to identify the cardioprotective HDL subparticles hiding among the vast population of HDL particles.
with no role or even possibly a negative role in cardiovascular health. Bringing this concept back to the subject of this editorial, identification of the proteomic signatures of the HDL subspecies produced by fusion with CSL112 will provide clues on the complex architecture of the HDL compartment and the structural underpinning of novel metrics, such as function, particle concentration, lipidome, and proteome.

Plasma lipids and lipoproteins are complex but highly heritable traits. The traditional metric of plasma HDL-C levels has a heritability estimate between 40% and 60%. The hereditary basis of novel HDL metrics, such as function, particle distribution, and protein or lipid cargo, is unknown. Evidence from 5 inbred mouse strains suggests that sterol efflux function and proteome are genetically regulated and that the HDL proteome is inheritable and predicts the genetic lineage. Further efforts are needed to identify the heritability of novel HDL metrics independent of HDLC in humans. Because HDLC levels are not strongly associated with measures of HDL function, we predict that the genes controlling HDL function will be different from those regulating plasma HDL-C levels. Therefore, efforts to map quantitative trait loci for novel HDL metrics are extremely valuable to the field and likely to bring about the anticipated revolution of our diagnostic and management approach to patient with low HDL, the patient with severe combined dyslipidemia, the patient with unexplained family history of CVD, and the patient with early and progressive coronary ischemia.

The intriguing complexity and clarity of the results obtained with the infusion of CSL112, a tiny recombinant HDL, opens the path to a better understanding of the structure–function correlates of HDL subparticles and encourages the further use of new-generation HDL metrics as fertile ground to identify additional diagnostic and therapeutic checkpoints in the HDL pathway. The Figure summarizes the known and suspected interactions between traditional and novel HDL metrics and highlights potential therapeutic targets. The relationship between genetic regulation of HDL protein, HDL biogenesis, and plasma HDL-C levels is well described. For example, mutations in ABCA1, a gene involved in HDL biogenesis, reduce cholesterol efflux from cells and nearly abolish plasma HDL to cause the inherited condition called Tangier disease. The metabolic clearance of HDL occurs primarily by SR-B1-mediated hepatic uptake, the end step of reverse cholesterol transport. On the contrary, the molecular pathways linking HDL biogenesis to function, particle size, and cargo signature are not well defined, and their genetic control is unknown.

It is possible that inheritance controls the production of HDL particles of a certain size and protein and lipid composition and with different sterol efflux capacities. Acquired factors may then rearrange the distribution of these particles and either increase or decrease genetically determined functionalities. We lack a model for the assembly of HDL protein and lipid cargo and know little about its genetic regulation. Characterization of the genetic pathways regulating HDL function, composition, and particle sizes will bring us closer to the next breakthrough in this troubled but still promising field.

Sources of Funding
The authors were partially supported by National Institutes of Health (NHLBI) R01 Grant HL057986 (to S. Fazio) and American Heart Association Scientist Development Grant 13SDG16940064 (to N. Pamir).

Disclosures
None.

References
14. Rosinein GE, Hutchins PM, Isquith D, Vaisar T, Zhao Q, Heinecke JW. Nicacin therapy increases high-density lipoprotein particles and total cholesterol efflux capacity but not ABCA1-specific cholesterol efflux.

Key Words: Editorials ■ HDL cholesterol ■ HDL function ■ HDL particle size ■ reverse cholesterol transport ■ sterol efflux
HDL Particle Size and Functional Heterogeneity
Sergio Fazio and Nathalie Pamir

Circ Res. 2016;119:704-707
doi: 10.1161/CIRCRESAHA.116.309506
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/6/704

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/