Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With Coronary Artery Disease

Rationale: Peripheral arterial disease (PAD) is a clinical manifestation of extracoronary atherosclerosis. Despite sharing the same risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD. Decline in the number of bone marrow-derived circulating progenitor cells (PCs) is thought to contribute to the pathogenesis of atherosclerosis. Whether specific changes in PCs differentiate patients with both PAD and CAD from those with CAD alone is unknown.

Objective: Determine whether differences exist in PCs counts of CAD patients with and without known PAD.

Methods and Results: 1497 patients (mean age: 65 years; 62% men) with known CAD were identified in the Emory Cardiovascular Biobank. Presence of PAD (n=308) was determined by history, review of medical records, or imaging and was classified as carotid (53%), lower extremity (41%), upper extremity (3%), and aortic disease (33%). Circulating PCs were enumerated by flow cytometry. Patients with CAD and PAD had significantly lower PC counts compared with those with only CAD. In multivariable analysis, a 50% decrease in cluster of differentiation 34 (CD34+) or CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) counts was associated with a 31% (P=0.032) and 183% (P=0.002) increase in the odds of having PAD, respectively. CD34+ and CD34+/VEGFR2+ counts significantly improved risk prediction metrics for prevalent PAD. Low CD34+/VEGFR2+ counts were associated with a 1.40-fold (95% confidence interval, 1.03–1.91) and a 1.64-fold (95% confidence interval, 1.07–2.50) increases in the risk of mortality and PAD-related events, respectively.

Conclusions: PAD is associated with low CD34+ and CD34+/VEGFR2+ PC counts. Whether low PC counts are useful in screening for PAD needs to be investigated. (Circ Res. 2016;119:564-571. DOI: 10.1161/CIRCRESAHA.116.308802.)

Key Words: aortic aneurysm ■ atherosclerosis ■ coronary artery disease ■ peripheral arterial disease ■ stem cells

Peripheral arterial disease (PAD) is a clinical manifestation of atherosclerosis that leads to obstruction of blood flow by embolism, thrombosis, or narrowing of peripheral arteries. It may involve one or multiple vascular beds including the cerebrovascular, aorta, renal, or the upper and lower extremities.1

An accurate estimate of the incidence of PAD is difficult to ascertain because it is often asymptomatic, but it is thought to be present in 10% to 20% of the population aged >60 years.1-5 Clinical syndromes of PAD share common risk factors, such as older age, diabetes mellitus, smoking, hypertension, and hyperlipidemia.6 These factors, in addition to endothelial dysfunction and inflammation, only partially explain the pathogenesis of atherosclerosis. Moreover, despite sharing the same etiologic risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD.7-9 Why some patients are predisposed to CAD, others to PAD, and some to both, despite similar predisposing factors, remains unknown.

Editorial, see p 502
In This Issue, see p 501

Recently, a pivotal role for progenitor cells (PCs) in vascular repair and regeneration was uncovered.10,11 Circulating PCs are mononuclear, originate primarily but not exclusively from the bone marrow, and have been described as having the potential to differentiate into hematopoietic, endothelial, and other lineages and contribute to vascular repair and regeneration through both direct angiogenic and local paracrine mechanisms.11,12,13 A relatively rare population of bone...
marrow–derived mononuclear cells expressing cluster of differentiation 34 (CD34) are enriched for PCs that can differentiate into hematopoietic, endothelial, and other lineages. CD34-expressing mononuclear cells include hematopoietic, endothelial, and nonhematopoietic (mesenchymal, lacking CD45 expression) PCs. CD133 is a 5-transmembrane antigen of primitive stem cells that is lost during maturation, and dual expression of these markers (CD34+/CD133+) identifies a PC-enriched subpopulation, whereas coexpression of vascular endothelial growth factor receptor-2 (VEGFR2) seems to identify a rarer subpopulation of PCs further enriched for endothelial progenitors. Finally, coexpression of chemokine (C-X-C motif) receptor 4 (CXCR4), which promotes homing of PC to stromal derived factor–rich hypoxic environments, may further characterize CD34+ PC with capacity for tissue repair.

Lower circulating PC counts and impaired PC activity, measured by colony-forming and migration assays, have been reported in subjects with cardiovascular risk factors or CAD in some but not all studies. We and others have also shown that lower circulating PC levels in patients with CAD is associated with an increased risk of adverse CAD events. Previous studies investigating the role of PCs in diabetics with PAD found significantly decreased CD34+/VEGFR2+ cell counts and proliferation compared with healthy or diabetic subjects without PAD. It remains unclear whether the observed impairment in PC counts is specific for PAD or whether it occurs in all individuals with atherosclerosis including those with CAD. To address this, we investigated whether circulating PC counts in patients with both CAD and PAD differed from those with only CAD but no known PAD. We hypothesized that abnormalities in endogenous regenerative capacity, enumerated as differences in circulating PC numbers, would contribute to the development of extensive atherosclerosis and be lower in patients with more extensive disease (PAD plus CAD) compared with patients with CAD and no known PAD.

Methods

Study Design and Subjects

We compared PC counts in patients with CAD and no known PAD with counts in those with both CAD and PAD in at least one site (upper or lower extremity PAD, carotid stenosis, and thoracic or abdominal aortic aneurysms). We identified 1497 subjects with CAD who had PC counts measured and were enrolled in the Emory Cardiovascular Biobank, a prospective registry of adult patients undergoing cardiac catheterization at 3 Emory Healthcare sites in Atlanta, Georgia (Online Figure I; Table 1). Subjects presenting with acute myocardial infarction were excluded. PC counts were measured at the time of enrollment from blood samples obtained at the time of catheterization. CAD was defined by the presence of atherosclerotic plaque on the coronary angiogram and obstructive CAD as the presence of ≥50% stenosis in at least one major coronary artery. Demographic characteristics, medical history, medication use, and behavioral habits were documented as previously described. Patients were followed up for outcomes. The study was approved by the Institutional Review Board at Emory University (Atlanta, GA). All subjects provided written informed consent.

Defining Peripheral Arterial Disease

We extensively reviewed patients’ self-reported and physician-documented medical history and imaging reports to identify the presence of PAD. PAD was defined as a history of symptomatic or asymptomatic noncoronary atherosclerotic disease in at least one of the following arteries: carotid, thoracic, or abdominal aorta, and subclavian, brachial, iliac, femoral, or popliteal arteries. No routine testing was performed to screen for asymptomatic PAD as part of this study. PAD of the lower extremities was diagnosed when at least one of the following were present: documented ankle-brachial index <0.90; lower limb revascularization; atherosclerotic plaques or stenosis on imaging (computed tomography, ultrasound, or fluoroscopy) in the iliac, femoral, or popliteal arteries; and history of amputation for critical limb ischemia. PAD of the carotid artery was diagnosed if there was ≥20% stenosis in any carotid artery on imaging (ultrasound, computed tomography, or magnetic resonance angiography). Aortic disease was diagnosed when there was a history of abdominal or thoracic aneurysms (excluding subjects with aortic root aneurysm associated with bicuspid aortic valves) or evidence of atherosclerotic plaques of the aorta or renal arteries on computed tomography imaging.

Table 1. Characteristics of Patients With CAD With and Without Peripheral Vascular Disease

<table>
<thead>
<tr>
<th>Variables</th>
<th>Without Peripheral Vascular Disease (n=1189)</th>
<th>Peripheral Vascular Disease (n=308)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>65 (13)</td>
<td>71 (11)</td>
<td><0.001</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>725 (61%)</td>
<td>199 (65%)</td>
<td>0.264</td>
</tr>
<tr>
<td>Black, n (%)</td>
<td>254 (21%)</td>
<td>58 (19%)</td>
<td>0.346</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>30 (6)</td>
<td>28 (6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking history, n (%)</td>
<td>773 (65%)</td>
<td>225 (73%)</td>
<td>0.008</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>1063 (90%)</td>
<td>298 (97%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>489 (42%)</td>
<td>148 (50%)</td>
<td>0.026</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td>899 (76%)</td>
<td>245 (80%)</td>
<td>0.268</td>
</tr>
<tr>
<td>Statin use, n (%)</td>
<td>400 (34%)</td>
<td>138 (45%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Low-density lipoprotein, mg/dL</td>
<td>91 (39)</td>
<td>86 (35)</td>
<td>0.054</td>
</tr>
<tr>
<td>High-density lipoprotein, mg/dL</td>
<td>45 (15)</td>
<td>45 (13)</td>
<td>0.404</td>
</tr>
<tr>
<td>Heart failure, n (%)</td>
<td>270 (23%)</td>
<td>101 (33%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>53 (13)</td>
<td>51 (14)</td>
<td>0.017</td>
</tr>
<tr>
<td>Obstructive coronary artery disease, n (%)</td>
<td>722 (61%)</td>
<td>229 (74%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ACEI/ARB use, n (%)</td>
<td>323 (27%)</td>
<td>111 (36%)</td>
<td>0.003</td>
</tr>
<tr>
<td>Estimated glomerular filtration rate, mL/min/1.73 m²</td>
<td>70 (26)</td>
<td>60 (25)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Values are represented as mean (SD) or n (%). ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; and CAD, coronary artery disease.
PC Assays
Venous blood was collected in EDTA tubes and incubated with fluo-
rochrome-labeled monoclonal antihuman mouse antibodies within 4
hours. Cell populations enriched for circulating PCs were enumerated
using flow cytometry as CD45+/CD34+ cells coexpressing CD45+, CD133+,
VEGFR2+, or CXCR4+.33-36 We incubated 300 µL of peripheral blood
with 7 µL of fluorescein isothiocyanate–CD34 (BD Biosciences),
PerCP–CD133 (BD Biosciences), PE–VEGFR2 (R&D system), and 5
µL of APC–CD133 (Miltenyi), and 3 µL PE–Cy7–conjugated anti-CXCR4
(BD Biosciences, clone 12G5) in the dark for 15 minutes. Then, 1.5 mL
ammonium chloride lysing buffer was added to lyse red blood cells.
1.5 mL staining medium (PBS with 3% heat-inactivated serum and
0.1% sodium azide) was added to stop the lysing reaction. Before flow
cytometry, 100 µL of AccuCheck Counting Beads (Invitrogen, catalog
number: PCB100) were added to act as an internal standard for direct
estimation of the concentration of target cell subsets. At least 2.5 million
events were acquired from the cytometer. Flow data were analyzed with
Flowjo software (TreeStar, Inc; Online Figure II). Absolute mononuclear
cell count was estimated as the sum of lymphocytes and monocytes using
a Coulter ACT/Diff cell counter (Beckman Coulter). PC populations
were reported as cell counts/mL. In 20 samples that were repeatedly ana-
yzed on 2 occasions by the same technician, the coefficients of variation
of the cell types were CD34+, 2.9%; CD34+/CD133+, 4.8%; CD34+/
CXCR4+, 6.5%; CD34+/CD133+/CXCR4+, 7.5%; and CD34+/
VEGFR2+ cells, 21.6%. There were significant correlations between
the PC subtypes, with moderate-to-strong correlations between CD34+,
CD34+/CD133+, and CD34+/CXCR4+ (r range, 0.75–0.91; P<0.001)
and weak correlations (r range, 0.12–0.34; P<0.001) between CD34+/
VEGFR2+ subtypes and the aforementioned PCs (Online Table I).

Follow-Up and Outcomes
We conducted follow-up, as previously described to identify prespec-
ified incident adverse cardiovascular outcomes including death and
myocardial infarction.25 In brief, follow-up and adjudication were
conducted by personnel blinded to the PC data by phone, electronic
medical record review, and social security death index and state re-
cords. PAD-related events such as peripheral revascularization and
amputation were identified using standard current procedural termin-
ology codes for vascular procedures.37 We examined the association
between PC counts and death, PAD-related events, and a composite
outcome of death, myocardial infarction, and PAD-related events.

Statistical Analysis
Subject characteristics were reported as descriptive statistics with
means, medians, SDs, and ranges. Differences between groups were
assessed using t tests for continuous variables and χ2 or Fischer exact
tests for categorical variables where appropriate. For non-normally
distributed variables such as circulating PC counts, the Mann–Whitney
U test was used to compare groups in unadjusted analyses. For mul-
tivariable analyses, CD34+, CD133+, and CXCR4+ cell counts were
log-transformed (base 10) to a normal distribution, whereas CD34+/
VEGFR2+ cell counts were analyzed as a dichotomous variable using
the median as a cutoff, to a clinical model with the
incurred by the aforementioned variables including PAD. Sensitivity
analyses explored whether the association with outcomes differed
between patients with and without known PAD. Two-tailed P value
≤0.05 were considered statistically significant. Analyses were per-
formed using IBM SPSS Statistics version 22 (Armonk, NY).

Results
Characteristics of the 1189 subjects with CAD and 308 with both
CAD and PAD are shown in Table 1. Patients with both CAD and
PAD were more likely to be older, smokers, hypertensives,
diabetics, with heart failure, with lower body mass index, and with
higher incidence of obstructive CAD (Table 1). Among patients
with PAD, 53% had carotid disease, 41% had lower extremity
PAD, 3% had upper extremity PAD, and 33% had either abdomi-
nal or thoracic aortic disease. Most patients (74%) had only 1 site
of documented PAD, 69 (22%) had 2, and 10 (3%) had at least 3.
In multivariable analyses, age, lower body mass index, a history of
smoking, statin use, heart failure, and lower estimated glomerular
filtration rate were independently associated with PAD (Table 2).

Relationship Between PCs and PAD
In unadjusted analyses, cell populations enriched for hematopoietic
progenitors (CD34+, CD34+/CD133+, and CD34+/
CXCR4+ cells) and those enriched for endothelial progenitors
(VEGFR2+ cells) were lower in patients with PAD compared with those without PAD (Table 3). Notably, CD34+/
VEGFR2+ cells were close to 2-fold lower in number in those
with PAD compared with those without (Table 3). There were
no significant differences in PC counts among patients with PAD
according to the location of disease (Table 3). On multivariable
analyses adjusting for aforementioned clinical covariates and analy-
ning each PC subset separately, CD34+ and CD34+/
VEGFR2+ cell counts (models 2 and 5), but not CD34+/CD133+ (model 3)
or CD34+/CXCR4+ (model 4) counts, were independently asso-
associated with the presence of PAD (Table 2). Thus, a 50% decrease
CD34+ or CD34+/
VEGFR2+ cell counts was associated with a 31% (odds ratio [OR], 1.31; P=0.032) and 183% (OR, 2.83;
P=0.002) increase in the odds of having PAD, respectively.

Given the weak correlation between CD34+ and CD34+/
VEGFR2+ cell counts (<0.22; P<0.001), we examined their
association with PAD in the same multivariable model and
found them to be both associated with PAD independent of each other (OR 1.35 for CD34+ and 1.49 for CD34+/
VEGFR2+; Table 2; model 6). Moreover, patients with both low (median) CD34+ and CD34+/
VEGFR2+ had a higher prevalence of PAD (28% versus 15%; P<0.001) compared
with those with higher than median counts in both subsets
(Figure 1), as well as higher odds (1.65; P=0.002) of having PAD (model 7; Table 2). Subjects with low levels in only one
cell subset had intermediate prevalence of PAD (Figure 1).

Sensitivity Analyses
We performed sensitivity analyses to determine whether the association
between PCs and PAD differed according to con-
ventional PAD risk factors: age, sex, diabetes mellitus and
smoking status, and presence of obstructive CAD (Figure 2).
We found a significant interaction between CD34+ and smok-
ing status in the prediction of PAD (interaction P=0.019).
Patients with a history of smoking and low CD34+ (≤1652
cells did not (OR, 0.90; P=0.68). There were otherwise no
interactions between the remainder of the characteristics and
CD34+ or CD34+/VEGFR2+ cell counts.

Prediction Performance

To determine the potential of PCs as biomarkers of PAD, we
compared the likelihood, c-statistic, net reclassification improve-
ment, and integrated discrimination improvement between
the model with traditional risk factors only (model 1) and 3 models
incorporating PC counts (models 2, 3, and 4) in addition to
demographics and risk factors (Table 4). Addition of either CD34+
counts (model 2) or CD34+/VEGFR2+ counts (model 3) to the
risk factor model was associated with a significant improvement
in the likelihood ratio, net reclassification improvement, and
integrated discrimination improvement (Table 4). The largest
improvement was noted when both CD34+ and CD34+/VEGFR2+
cell counts were added to the clinical model together (model 4),
with a net reclassification improvement of 0.390 (95% confidence
interval, 0.234–0.543) and an integrated discrimination improvement of 0.027 (95% confidence interval, 0.017–0.036).
The improvement in c-statistic with addition of both cell counts
to the clinical model was not statistically significant (estimated change=0.010; 95% confidence interval, −0.001 to 0.020).

PC Counts and Outcomes

Lastly, we examined the association between CD34+ and CD34+/VEGFR2+ cell counts and incident adverse cardiovascular out-
comes (Table 5). There were 217 deaths (14%), 67 myocardial
infarctions (4%), and 142 PAD-related events (9%) during a me-
dian follow-up period of 2 years (1.2–2.9). Patients with PAD
were more likely to die (21% versus 12%; P<0.001), have a
myocardial infarction (8% versus 3%; P<0.001), or undergo a
vascular procedure (27% versus 4%; P<0.001) compared with
those without known PAD at enrollment. When dichotomized by
median, patients with low CD34+ counts (≤1652 cells/mL, log-
rank P=0.012) or low CD34+/VEGFR2+ counts (≤33 cells/mL, log-
rank P=0.002) had greater mortality compared with those
with higher counts. Only subjects with low CD34+/VEGFR2+ cell
counts experienced a higher rate of PAD-related events (log-rank
P<0.001). In Cox regression analyses adjusting for the aforemen-
tioned covariates and PAD history, a low CD34+/VEGFR2+ cell
count was associated with a 1.43-fold increase in risk of death, a
1.64-fold increased risk of PAD-related events, and a 1.65-fold
increased risk of the composite event rate of death, myocardial
infarction, and PAD events (Table 5). There was no interaction
with PAD status, suggesting that this cell type was predictive of

Table 3. Circulating Progenitor Cell Counts Stratified by Peripheral Vascular Disease

<table>
<thead>
<tr>
<th>Variables, cells/mL</th>
<th>Without Peripheral Vascular Disease (n=1189)</th>
<th>Peripheral Vascular Disease (n=308)</th>
<th>P Value*</th>
<th>Carotid Disease (n=162)</th>
<th>Lower Extremity Disease (n=127)</th>
<th>Aortic Disease (n=100)</th>
<th>P Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34+</td>
<td>1696 (1080, 2622)</td>
<td>1456 (867, 2253)</td>
<td><0.001</td>
<td>1495 (850, 2194)</td>
<td>1417 (889, 2286)</td>
<td>1260 (843, 2202)</td>
<td>0.795</td>
</tr>
<tr>
<td>CD34+/CD133+</td>
<td>786 (474, 1251)</td>
<td>671 (398, 1138)</td>
<td>0.004</td>
<td>682 (392, 1070)</td>
<td>665 (383, 1109)</td>
<td>649 (384, 1191)</td>
<td>0.928</td>
</tr>
<tr>
<td>CD34+/CXCR4+</td>
<td>829 (501, 1370)</td>
<td>725 (417, 1231)</td>
<td>0.005</td>
<td>697 (394, 0829)</td>
<td>726 (450, 1268)</td>
<td>713 (400, 1117)</td>
<td>0.105</td>
</tr>
<tr>
<td>CD34+/VEGFR2+</td>
<td>39 (11, 125)</td>
<td>22 (8, 85)</td>
<td><0.001</td>
<td>23 (8, 77)</td>
<td>33 (8, 121)</td>
<td>25 (7, 86)</td>
<td>0.601</td>
</tr>
</tbody>
</table>

Progenitor cell counts are reported as median (25th, 75th percentiles). CD34 indicates cluster of differentiation 34; and VEGFR2, vascular endothelial growth factor receptor-2.

*P value for comparison between patients with and without peripheral vascular disease.
†P value for ANOVA comparing progenitor cell counts among patients with various types of peripheral vascular disease. Of note, patient overlap exists between carotid, lower extremity, and aortic disease columns.
events in both subjects with and without PAD. We did not find an association between CD34+ cell counts, dichotomized by median value, and future PAD-related events.

Discussion

In the large study in patients with known CAD to date, we have identified an association between low CD34+ and CD34+/VEGFR2+ PC counts and the presence of PAD. Subjects with both CAD and PAD had a 2-fold lower CD34+/VEGFR2+ cell count compared with subjects with only CAD and no known PAD. After adjusting for known risk factors for PAD, low CD34+ (≤1652 cells/mL) and CD34+/VEGFR2+ (≤33 cells/mL) cell counts were associated with a 41% and 55% increase in the odds of having PAD, respectively. Moreover, subjects with both low CD34+ and low CD34+/VEGFR2+ cell counts had a 65% increase in the odds of PAD and improved risk discrimination metrics when added to a model with traditional risk factors. Most importantly, low CD34+/VEGFR2+ cell counts were associated with increased mortality and risk of incident PAD-related events. These findings build on the growing body of evidence indicating an important role for circulating PCs in the pathogenesis of atherosclerosis and may explain why, despite similar risk factors, certain patients develop isolated CAD while others have more widespread atherosclerosis of the peripheral circulation.

There was no evidence suggesting an association between CD34+ cells expressing the CD133 or CXCR4 epitopes and the co-occurrence of PAD and CAD in this population. We and others have previously shown these cells to be predictive of outcomes in patients with CAD.27,29 Although peripheral blood CD34+ cells are heterogeneous, they are enriched for cells with endothelial lineage potential, express endothelial marker genes, and form endothelial structures in vitro and in vivo.11,12 In our study, CD34+ cells of interest were predominantly (>95%) CD45dim and thus largely represent cells of the hematopoietic lineage. Although the additional expression of VEGFR2 receptor on CD34+ cells is often considered to define a subset enriched for endothelial PCs, this remains a subject of controversy.17,22,40–42 Our findings are consistent with previous smaller studies showing similarly lower levels of circulating CD34+/VEGFR2+ cells in patients with PAD.30–32,43 Shaffer et al43 and Bitterli et al30 noted similar findings when comparing patients with PAD to healthy subjects, whereas Fadini et al32 reported decreased counts in diabetic subjects with lower extremity PAD or carotid stenosis compared with diabetics without PAD. These studies were limited by small sample size and most importantly the inability to account for the presence or absence of CAD. Our study examined the association between PCs and PAD in a much larger cohort of patients with CAD, with and without diabetes mellitus or obstructive CAD. Moreover, we demonstrated that the association between lower CD34+/VEGFR2+ PC counts extends to forms of PAD beyond diabetic vasculopathy, lower extremity PAD, and carotid stenosis.

![Figure 1](image1.png)

Figure 1. Prevalence of peripheral arterial disease stratified by cluster of differentiation 34 (CD34+) and CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) cell counts. Three-dimensional bar plot depicting the prevalence of peripheral vascular disease (y axis) stratified by the median counts of CD34+ and CD34+/VEGFR2+ cells.

![Figure 2](image2.png)

Figure 2. Sensitivity analyses. Forest plot of interaction with traditional risk factors and median cluster of differentiation 34 (CD34+) cell counts (A) and median CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) cell counts (B) for predicting the presence of peripheral arterial disease. There was a significant interaction between smoking and CD34+ cell counts (highlighted in box, A). BMI indicates body mass index; CAD, coronary artery disease; and CI, confidence interval.
because 33% of our subjects with PAD had aortic disease. Although the association between PC counts and risk of death and myocardial infarction has been previously described, our findings that low CD34+/VEGFR2+ PC counts are predictive of incident PAD-related events are novel. Experimental studies have shown that disruption of the bone marrow is a major contributor to the pathogenesis of atherosclerosis. In humans with critical limb ischemia, examination of the bone marrow demonstrated profound changes including microvascular disruption and reduced CD34+ cells, indicating that changes in peripheral blood we described are likely associated with similar disruption of PCs in the bone marrow in PAD.

Strengths of our study include (1) a large cohort study design to limit heterogeneity, (2) use of commonly used high-throughput technology (flow cytometry) for quantification of PCs by the same technical team, (3) exploration of several CD34+ cell subpopulations enriched for both hematopoietic and endothelial

Table 4. Risk Prediction Metrics

<table>
<thead>
<tr>
<th>Model</th>
<th>Likelihood Ratio Test (P VALUE)</th>
<th>C-statistic (95% CI)</th>
<th>∆C-statistic (95% CI)</th>
<th>Continuous NRI (95% CI)</th>
<th>IDI (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: RF only</td>
<td>…</td>
<td>0.717 (0.685 to 0.749)</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>Model 2: RF and CD34+ cells</td>
<td><0.001</td>
<td>0.721 (0.689 to 0.753)</td>
<td>0.004 (–0.004 to 0.011)</td>
<td>0.256 (0.129 to 0.382)</td>
<td>0.005 (0.001 to 0.009)</td>
</tr>
<tr>
<td>Model 3: RF and CD34+/VEGFR2+ cells</td>
<td><0.001</td>
<td>0.722 (0.691 to 0.754)</td>
<td>0.006 (–0.003 to 0.014)</td>
<td>0.255 (0.128 to 0.382)</td>
<td>0.005 (0.001 to 0.010)</td>
</tr>
<tr>
<td>Model 4: RF and CD34+ and CD34+/VEGFR2+ cells</td>
<td><0.001</td>
<td>0.727 (0.695 to 0.758)</td>
<td>0.010 (–0.001 to 0.020)</td>
<td>0.390 (0.234 to 0.546)</td>
<td>0.027 (0.017 to 0.036)</td>
</tr>
</tbody>
</table>

Model 1 includes age, sex, race, body mass index, smoking history, hypertension, diabetes, hyperlipidemia, history of heart failure, statin use, angiotensin pathway antagonist use, estimated glomerular filtration rate at enrollment, and obstructive CAD. Model 2 include aforementioned risk factors in model 1 in addition to CD34+ cell counts. Model 3 includes RF and CD34+/VEGFR2+ cell counts. Lastly, model 4 includes RF, CD34+, and CD34+/VEGFR2+ cells. CAD indicates coronary artery disease; CD34, cluster of differentiation 34; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification index; RF, risk factor; and VEGFR2, vascular endothelial growth factor receptor-2.

Table 5. Progenitor Cells and Incident Adverse Cardiovascular Outcomes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Death, PAD-Related Events</th>
<th>Death, Myocardial Infarction, and PAD-Related Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR, P value</td>
<td>95% CI</td>
<td>HR, P value</td>
</tr>
<tr>
<td>Model 1: Risk factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, per 10 y</td>
<td>1.14, 0.036</td>
<td>1.01–1.29</td>
</tr>
<tr>
<td>Men</td>
<td>0.92, 0.589</td>
<td>0.69–1.24</td>
</tr>
<tr>
<td>Black race</td>
<td>0.97, 0.867</td>
<td>0.67–1.40</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>0.96, 0.003</td>
<td>0.93–0.99</td>
</tr>
<tr>
<td>Smoking history</td>
<td>1.36, 0.061</td>
<td>0.99–1.88</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.02, 0.936</td>
<td>0.58–1.80</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.18, 0.270</td>
<td>0.88–1.60</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1.01, 0.961</td>
<td>0.71–1.44</td>
</tr>
<tr>
<td>Statin use</td>
<td>0.73, 0.044</td>
<td>0.53–0.99</td>
</tr>
<tr>
<td>Heart failure</td>
<td>1.78, <0.001</td>
<td>1.33–2.38</td>
</tr>
<tr>
<td>Obstructive coronary artery disease</td>
<td>0.47, 0.043</td>
<td>0.23–0.98</td>
</tr>
<tr>
<td>ACEi/ARB use</td>
<td>0.72, 0.029</td>
<td>0.54–0.97</td>
</tr>
<tr>
<td>eGFR, per mL/min/1.73 m²</td>
<td>0.99, 0.001</td>
<td>0.99–1.00</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>1.59, 0.004</td>
<td>1.16–2.19</td>
</tr>
</tbody>
</table>

Model 2: risk factors+individual PC subtypes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Death, PAD-Related Events</th>
<th>Death, Myocardial Infarction, and PAD-Related Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR, P value</td>
<td>95% CI</td>
<td>HR, P value</td>
</tr>
<tr>
<td>CD34+, ≤1652 cells/mL</td>
<td>1.22, 0.171</td>
<td>0.92–1.64</td>
</tr>
<tr>
<td>CD34+/VEGFR2+≤33 cells/mL</td>
<td>1.43, 0.022</td>
<td>1.05–1.94</td>
</tr>
</tbody>
</table>

Sensitivity analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Death, PAD-Related Events</th>
<th>Death, Myocardial Infarction, and PAD-Related Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR, P value</td>
<td>95% CI</td>
<td>HR, P value</td>
</tr>
<tr>
<td>Peripheral vascular disease×CD34+/VEGFR2+</td>
<td>0.580</td>
<td></td>
</tr>
<tr>
<td>Peripheral vascular disease×CD34+/VEGFR2+</td>
<td>0.191</td>
<td></td>
</tr>
</tbody>
</table>

PC subtypes were each entered into separate models incorporating demographics and risk factors. The odds ratio and CI reported for the demographics and clinical characteristics are derived from the model not incorporating any PC. ACEi indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CD34, cluster of differentiation 34; CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio; PC, progenitor cell; and VEGFR2, vascular endothelial growth factor receptor-2.
PCs, and (4) the association with incident cardiac and vascular events. Limitations include the lack of systematic screening for PAD. Thus, it is possible that some patients with undiagnosed or asymptomatic PAD are unaccounted for and may be included with the group of CAD-only patients. Nevertheless, our findings suggest that PC counts could help identify a subset of patients with CAD at high risk for underlying PAD. Although our findings imply that depletion of circulating PC pool may be associated with more extensive atherosclerosis, and in particular, PAD, the cohort design prevents us from establishing causation.

Clinical Implications

Measuring PC counts may be useful as a screening test in subjects without known PAD. Several measures have been found to increase mobilization of PCs, such as lifestyle modification, intensifying statin therapy, cilostazol, and exercise.25,26,31,49 Thus, identifying subjects at risk for PAD may allow for earlier interventions and potentially abrogation of that risk. A low CD34+/VEGFR2+ PC cell count is indicative of worse long-term prognosis, especially from vascular events. Given the significant impact of PAD on morbidity and mortality, whether a sustained decrease in PC counts precedes development of PAD is worthy of further study.

Acknowledgments

We would like to thank all members of the Emory Atlanta Clinical and Translational Science Institute for their support in performing this study. We are grateful to Ernestine Maher, Hilary Rosenthal, and Wayne Harris for their assistance with flow cytometry.

Sources of Funding

A.A. Quyyumi is supported by SP01HL101398-02, 1P20HL113451-01, 1R56HL126558-01, 1RF1AG051633-01, R01 NS064162-01, R01 HL89650-01, HL095479-01, U10HL11302-01, 1DP3DK094346-01, and 2P01HL087673-06A1. S.S. Hayek is supported by the Abraham J. & Phyllis Katz Foundation (Atlanta, GA).

Disclosures

None.

References

4. Norgren L, Hiatt WR, Harris KA, Jaунке M, Hulbert C, Ma H, Kearney M, Zak Y, Asahara T, Losordo DW. CD34+ positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–2169. doi: 10.1161/01.CIR.0000137877.89445.8A.

Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With Coronary Artery Disease

Circ Res. 2016;119:564-571; originally published online June 6, 2016; doi: 10.1161/CIRCRESAHA.116.308802

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/4/564

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2016/06/06/CIRCRESAHA.116.308802.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Supplemental Material

Title: Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients with Coronary Artery Disease

Contents

Supplementary Methods and Figure Legends ... 2
Online Table I: .. 3
Online Figure I: ... 4
Online Figure II: ... 5
Supplementary Methods

Progenitor Cell Quantification by Flow Cytometry

We incubated 300µl of peripheral blood with 7µl of the same fluorochrome-labeled monoclonal anti-human mouse antibodies but with the addition of 3µl PE-Cy7-conjugated anti-CXCR4 (EBioscience, clone 12G5). Prior to flow cytometry, 100µl of AccuCheck Counting Beads (Invitrogen, Cat#: PCB100) were added to act as an internal standard for direct estimation of the concentration of target cell subsets. At least 2.5 million events were acquired from the Cytometer. Flow data were analyzed with Flowjo software (Treestar, Inc.). Absolute mononuclear cell count was estimated as the sum of lymphocytes and monocytes using a Coulter ACT/Diff cell counter (Beckman Coulter). CD45med cells, also referred to as CD45dim cells exclude CD45bright and CD45-(negative) cells. By excluding CD45- we exclude non-hematopoietic progenitors. By excluding the rare CD45bright cells we exclude lymphoblasts.

Figure Legends

Online Figure I. Flow diagram describing subject selection for analysis.

Online Figure II. Flow cytometric analysis of human peripheral blood. Panel A: forward scatter and side scatter gates following lyse-no wash of blood and the addition of fluorescent counting beads (left upper corner in plot). Panel B: gating of CD34+, low side scatter cells from blood leukocytes shown in panel A. Panel C: histograms of CD45 expression in the CD34+ low side scatter cells (red histogram) shown in panel B. Panel C: the pattern of co-expression of CD34 and CD45dim on blood progenitors gated. Panel D: the co-expression of CD133 and VEGFR2 on CD34+CD45dim blood progenitors.
Online Table I. Correlations between Progenitor Cell Subtypes

<table>
<thead>
<tr>
<th></th>
<th>CD34+</th>
<th>CD34+/CD133+</th>
<th>CD34+/CXCR4+</th>
<th>CD34+/VEGFR2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34+</td>
<td></td>
<td>0.908</td>
<td>0.848</td>
<td>0.217</td>
</tr>
<tr>
<td>CD34+/CD133+</td>
<td>0.908</td>
<td></td>
<td>0.745</td>
<td>0.124</td>
</tr>
<tr>
<td>CD34+/CXCR4+</td>
<td>0.848</td>
<td>0.745</td>
<td></td>
<td>0.341</td>
</tr>
<tr>
<td>CD34+/VEGFR2+</td>
<td>0.217</td>
<td>0.124</td>
<td>0.341</td>
<td></td>
</tr>
</tbody>
</table>

All correlations were statistically significant at P<0.001
Online Figure I. Flow Diagram

- Subjects undergoing left heart catheterization enrolled in the Emory Cardiovascular Biobank (n=6464)
 - Consecutive subjects with FACS-measured progenitor cell counts (n=2202)
 - Subjects without FACS measurements (n=4262)
 - Patients without known coronary artery disease or evidence on angiogram (n=705)
 - Subjects with coronary artery disease with and without peripheral vascular disease (n=1497)
Online Figure II. Flow Cytometry Analysis Of Blood Progenitor Cells