Response by Zhou et al to Letter Regarding Article, “Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy”

In response:

We thank Drs Karlstaedt and Taegtmeyer for their favorable comments on our recent report demonstrating mitotic catastrophe as a key mechanism of fatal dilated cardiomyopathy in glycogen synthase kinase 3 (GSK-3)–deficient hearts (conditional GSK-3αβ double knockout [DKO]). Considering the complex biology of GSK-3 in regulating numerous biological processes and cellular functions, we completely agree with Drs Karlstaedt and Taegtmeyer that there may be additional layer(s) of complexity to be elucidated for the complete understanding of the molecular basis of the observed phenotype. Indeed, our focus on cell cycle regulation and mitotic catastrophe was guided by unbiased microarray analysis.

It is well established that GSK-3 is a central regulator of nutrient and energy homeostasis. In response to the comments of Karlstaedt et al regarding metabolism, now we have examined the metabolic consequences of the complete loss of GSK-3 in adult hearts. As expected, an increased Periodic acid–Schiff–diastase positivity demonstrated enhanced glycogen deposition in the DKO hearts (Online Figure IA). The Glycogen deposition in the DKO hearts was further confirmed by transmission electron microscopy (Online Figure IB). These findings are in complete agreement with our previous reports demonstrating isoform-specific loss of GSK-3α and GSK-3β leads to upregulation of glycogen synthase activity. Hence, increased glycogen deposition in DKO hearts was essentially expected.

Karlstaedt et al pointed out a study by one of our long-term collaborators and coauthor on the original article, Dr Woodgett, which revealed the tissue-specific role of GSK-3β in glucose metabolism. Patel et al reported that the liver-specific GSK-3β knockout mice displays no metabolic phenotype. However, mice lacking GSK-3β in skeletal muscle showed improved glucose tolerance and glycogen deposition. In complete agreement with the concept of tissue-specific role of GSK-3 isoforms in glucose metabolism, our unpublished data with cardiomyocyte (CM)-specific GSK-3β conditional knockout mice indicate that CM-GSK-3β regulates systemic glucose metabolism. With that said, the oral glucose tolerance was comparable between DKO and littermate controls at 2- and 3-week on tamoxifen timeline (data not shown). Moreover, we have consistently reported the isoform- and tissue-specific role of GSK-3 in diverse biological processes. Taken together, the role of GSK-3 in the pathogenesis of glucose tolerance and metabolism is diverse. Although, the contribution of elevated glycogen deposition in the DKO phenotype is an area of future investigation, we do not think it is the primary cause of the observed phenotype. Nevertheless, metabolism was not a primary focus of the study, because the unbiased microarray analysis revealed a maximum dysregulation in the cell cycle regulators and fibrosis-related genes.

Furthermore, chronological analysis of trichrome-stained heart sections at various time point of tamoxifen timeline and experiments with isolated adult cardiac fibroblasts clearly ruled out fibrosis as the primary cause of observed phenotype.

In response to comments of Karlstaedt et al on mitochondrial destabilization and apoptosis, now we have extensively investigated the DKO mitochondrial biology, which includes analysis of mitochondrial membrane potential (Δψm), oxygen consumption rate, and mitochondrial number (Online Figure II). Herein, we are limited by space to include all the data; however, in summary, mitochondria from DKO hearts demonstrated significantly increased oxygen consumption rate and mitochondrial membrane potential compared with that in the littermate controls. However, the numbers of mitochondria were comparable between DKO and littermate control hearts. These observations are consistent with many previous reports suggesting beneficial effects of GSK-3 inhibition by directly modulating the mitochondrial permeability transition pore complex. Indeed, GSK-3–mediated regulation of mitochondrial function is an interesting area and currently a subject of investigation in numerous laboratories. Thus, loss of GSK-3 indeed causes broad metabolic alterations; however, based on our systematic phenotyping, unbiased array analysis, and mechanistic studies, we still think cell cycle (mitotic catastrophe), instead of metabolism, is the primary cause leading to lethal cardiomyopathy.

We think that clinical implications of our DKO findings are substantial. GSK-3 is reported to be a potential drug target for the treatment of several pathological conditions, including progressive central nervous system disorders, cancer, metabolic disorders, and cardiovascular diseases including ischemic heart disease. To the best of our knowledge, we are the first to report the lethal consequences of targeting both isoforms of GSK-3. Indeed, all currently available GSK-3 inhibitors are not isoform specific. Our studies with DKO indicate that systemic, prolonged, clinical use of nonselective inhibitors might put patients at risk of cardiomyopathy and fibrotic cardiac remodeling. We think that the greatest promise for drug development may lie in better understanding of the isoform-specific GSK-3 biology and the development of isoform-selective, small-molecule GSK-3 inhibitors.

Sources of Funding
This work was supported by grants from the National Heart, Lung, and Blood Institute to T. Force (HL061688, HL091799, and HL119234) and the American Heart Association Scientist Development Grant (13SDG16930103) to H. Lal.

Disclosures
None.

Jibin Zhou, MD, PhD*
Cardiovascular Research Center
Temple University School of Medicine
Philadelphia, PA

*These authors contributed equally to this article.

The online-only Data Supplement is available with this article at http://circres.ahajournals.org/lookup/suppl/doi:10.1161/CIRCRESAHA.116.309093/-/DC1.

(Circ Res. 2016;119:e29-e30. DOI: 10.1161/CIRCRESAHA.116.309093.)

© 2016 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.116.309093

Downloaded from http://circres.ahajournals.org/ by guest on December 30, 2017
Firdos Ahmad, PhD*
Hind Lal, PhD
Thomas Force, MD
Division of Cardiovascular Medicine
Vanderbilt University Medical Center
Nashville, TN

References
Response by Zhou et al to Letter Regarding Article, "Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy"

Jibin Zhou, Firdos Ahmad, Hind Lal and Thomas Force

_Circ Res._ 2016;119:e29-e30
doi: 10.1161/CIRCRESAHA.116.309093

_Circulation Research_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/2/e29

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2016/09/23/CIRCRESAHA.116.309093.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/
Supplemental Figure I. DKO induced glycogen deposit in the cardiac myocyte

A, Representative Schiff’s PAS stained heart sections show the deposition of glycogen at d35 of Tam-timeline. The PAS-positive areas were seen in the DKO section, but not in control. However, such positive areas were not seen in the α-amylase-digested DKO section, demonstrating glycogen specific staining. B, Representative TEM images show glycogen granules (arrows) were observed in the DKO cardiac myocyte at d21 of TAM-timeline, but not in control, consistent with Schiff’s PAS staining above. Normally, glycogen granules can be seen in hepatocytes but not in cardiac myocytes. Therefore, the glycogen granules indicate excessive glycogen accumulates in the DKO cardiac myocyte. Magnifications as indicated.
Supplemental Figure II. Effect of DKO on Oxygen consumption rates (OCR) of cardiac myocytes

A, OCR (left), and quantification of basal OCR before stimulation, i.e. basal (middle), and maximal OCR after FCCP (right) in isolated cardiomyocytes from DKO and controls (n = 6 biological replicates per group) at d20 of TAM-timeline. The results indicate OCRs are significantly increased in DKO versus controls. B, Representative mitochondrial membrane potential (Δψm) (left) and quantification of basal Δψm (right) in freshly isolated, permeabilized cardiomyocytes from DKO and control (n = 3 animals per group) at d20 of Tam-timeline. The result indicates mitochondrial membrane potential is significantly increased in DKO versus control.