Does Elevated Glucose Promote Atherosclerosis?

Pros and Cons

Karin E. Bornfeldt

Dripping water hollows out stone, not through force but through persistence.

Ovid

The quote above, by the Roman poet Publius Ovidius Naso (43 BC to 17 AD), has been an inspiration to me since childhood. It reminds me that accumulating pieces of evidence to tackle difficult questions will in time make an impact. Of course, some discoveries happen suddenly and unexpectedly, whereas others take lifetimes. A question my laboratory has long examined is whether elevated glucose promotes atherosclerosis by acting directly on vascular cells in lesions of atherosclerosis in the setting of diabetes mellitus. This problem seems to belong to the category Ovid might have had in mind when he coined the quote above. The reason we keep tackling this question from different angles and by different methods is of course the increased risk of cardiovascular complications associated with type 1 diabetes mellitus and type 2 diabetes mellitus (T2DM). There is still no consensus on how diabetes mellitus promotes atherosclerosis and resulting cardiovascular events and whether glucose has a direct proatherosclerotic effect. Considerable time and resources have been devoted to studies of effects of glucose in isolated cultured vascular cells. In my opinion, for reasons described below, we now need to tackle the role of elevated glucose, hyperglycemia, and glucose fluctuations by using animal models and studies in humans.

Studies in isolated vascular cells and animal models have begun to reveal that inhibition of glucose uptake and utilization in cells involved in atherosclerosis can prevent proatherosclerotic events in the absence of diabetes mellitus. This is not surprising because cellular activation often is associated with metabolic reprogramming. Thus, reducing expression of the glucose transporter GLUT1 in macrophages or hematopoietic cells limits inflammatory activation of macrophages, expansion of hematopoietic cells, and atherosclerosis in mice. Other studies demonstrate that disruption of glycolytic flux is detrimental to cells and leads to inflammasome activation and pyroptosis in macrophages.

The question of whether increased levels of blood glucose provide a proatherosclerotic effect is a different issue. In this Viewpoint article, pros and cons regarding a direct vascular proatherosclerotic effect of elevated glucose are discussed and summarized in a Table with the hope of inspiring the reader to think about this topic with an open mind, to make her/his own conclusions, and to devise new approaches to address this issue in vivo.

Evidence From Human Studies

There is no question that improved glycemic control results in reduced retinopathy, nephropathy, and neuropathy in subjects with type 1 diabetes mellitus or T2DM, but what are the pros and cons for a proatherosclerotic effect of elevated glucose in humans? The strongest evidence supporting a proatherosclerotic effect comes from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study, in which young subjects with type 1 diabetes mellitus were divided into 2 groups, 1 treated with conventional insulin therapy and 1 treated with a more intensive insulin regimen, resulting in improved blood glucose control (Table). After the DCCT treatment arm of the study, most of the subjects were followed in the EDIC observational arm. During follow-up, blood glucose control returned to similar levels in the 2 groups, but cardiovascular events were significantly reduced years later in the group that had received intense insulin therapy. Interestingly, recent studies have revealed that although many conventional cardiovascular disease risk factors apply in type 1 diabetes mellitus, hyperglycemia measured as glycohemoglobin is an important cardiovascular risk factor second only to age. Of course, these studies do not necessarily prove causality, nor do they provide information on mechanism(s) whereby elevated glucose might promote atherosclerosis.

Conversely, several studies in subjects with T2DM suggest that cardiovascular events are not reduced by improved blood glucose control. These studies suggest that if hyperglycemia is indeed directly responsible for exacerbating atherosclerosis in subjects with diabetes mellitus, its effects might be masked when other stronger risk factors are present, especially in subjects with T2DM. Other findings also line up on the converse side of the Table. For example, patients with inactivating glucokinase mutations have mild fasting hyperglycemia from birth, resulting in an elevated glycohemoglobin level. These patients do not demonstrate increased cardiovascular risk. Furthermore, the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG) Outcome Trial on the effect of a sodium-glucose cotransporter 2 (SGLT2) inhibitor (empagliflozin) in subjects with T2DM has recently provided evidence that the reduced...
mortality resulting from the use of this SGLT2 inhibitor may not be because of reduced atherosclerotic events, but rather because of altered hemodynamics, causing an impressive protection against heart failure, although it cannot be ruled out that empagliflozin acts in part by stabilizing atherosclerotic lesions. SGLT2 inhibitors act by inhibiting glucose reabsorption in the kidney with an increased glucose excretion and blood glucose–lowering effect as a result. We are now awaiting confirmation of these findings by other SGLT2 inhibitors.

Evidence From Animal Studies

Studies of animal models of diabetes mellitus often conclude that proatherosclerotic effects of the diabetic state are mediated by hyperglycemia or fluctuating glucose levels. There are a few studies that support this concept. Thus, transgenic low-density lipoprotein receptor–deficient (Ldlr−/−) mice expressing human levels of the enzyme aldose reductase (mice normally express lower levels of this enzyme, which catalyzes generation of sorbitol from glucose, than do humans) exhibit increased atherosclerosis when the mice are also diabetic. These results support a role of glucose flux through the sorbitol pathway as a proatherosclerotic pathway, although it cannot be completely ruled out that aldose reductase acts on other aldehydes (Table).

Furthermore, recent studies have taken advantage of the SGLT2 inhibitors that have now been approved for blood glucose lowering in patients with T2DM. Because insulin not only promotes glucose uptake into insulin target tissues but also exerts important effects on, for example, lipids and gene expression, the SGLT2 inhibitor approach can be informative regarding effects of elevated glucose levels independent of changes in insulin. A recent study convincingly demonstrated that SGLT2 inhibitors lowered blood glucose levels in diabetic mice and concomitantly prevented the stimulatory effects of diabetes mellitus on myelopoiesis, inflammatory activation of lesional macrophages, and the inhibitory effects of diabetes mellitus on atherosclerotic lesion regression. These effects of the SGLT2 inhibitors were likely mediated by glucose lowering. Alternatively, it is possible that the effects could have been mediated by indirect mechanisms, for example, by hemodynamic changes, rather than by prevention of direct effects of glucose on bone marrow cells or lesional cells.

Although the studies discussed above support a role for hyperglycemia in promoting atherosclerosis associated with diabetes mellitus, several convincing studies have shown that hyperglycemia is not sufficient to promote atherosclerosis and does not always exert proatherogenic effects. Early studies performed in alloxan-diabetic rabbits demonstrated no atherogenic effect of hyperglycemia, but rather an inhibitory effect. It was later postulated that this inhibitory effect of diabetes mellitus was because of generation of lipoprotein particles too large to enter the artery wall. Regardless of the mechanism, these results clearly show that hyperglycemia is not necessarily proatherogenic. A similar lack of hyperglycemia in promoting atherosclerosis have been shown in diabetic Ldlr−/− mice fed a high-fat diet and in diabetic hypercholesterolemic minipigs. Thus, hyperglycemia is not sufficient to promote atherosclerosis. This might be because of the fact that dyslipidemia is a much stronger driver of atherosclerosis than is diabetes mellitus per se and that in hypercholesterolemic models, the effects of diabetes mellitus are masked, as has been demonstrated in diabetic hyperlipidemic mice. In addition, forcing myeloid cells to

Table. Does Elevated Glucose Promote Atherosclerosis?

<table>
<thead>
<tr>
<th>Human studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
</tr>
<tr>
<td>The DCCT/EDIC studies identified HbA1c as a strong risk factor for cardiovascular events in subjects with T1DM second only to age.</td>
</tr>
<tr>
<td>A strong correlation between improved HbA1c and reduced risk of cardiovascular events does not necessarily imply causality or direct effects of glucose on the arterial wall.</td>
</tr>
<tr>
<td>Subjects with inactivating mutations in glucokinase have elevated HbA1c but no increased risk of cardiovascular disease.</td>
</tr>
<tr>
<td>Effects of diabetes mellitus on myelopoiesis and atherosclerosis regression can be prevented by SGLT2 inhibitors in mice.</td>
</tr>
<tr>
<td>Expression of aldose reductase at human levels results in exacerbated atherosclerosis in diabetic mice.</td>
</tr>
<tr>
<td>SGLT2 inhibitors might act by altering hemodynamics, resulting in indirect effects on cells involved in atherosclerosis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
</tr>
<tr>
<td>A large number of studies convincingly show detrimental effects consistent with proatherosclerotic actions of elevated glucose in endothelial cells, SMCs, and immune cells.</td>
</tr>
<tr>
<td>Several cell culture studies show no effect of elevated glucose.</td>
</tr>
<tr>
<td>Glucose transporters have been shown to be downregulated in the presence of elevated glucose in some cell types.</td>
</tr>
</tbody>
</table>

DCCT/EDIC indicates Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications; HbA1c, glycohemoglobin; SGLT2, sodium-glucose cotransporter 2; SMC, smooth muscle cell; T1DM, type 1 diabetes mellitus; and T2DM, type 2 diabetes mellitus.
increase glucose uptake and glycolysis through overexpression of GLUT1 did not result in increased atherosclerosis or mimic the effect of diabetes mellitus on myeloid cells in Ldlr−/− mice. It is possible that other cell types in lesions of atherosclerosis are more responsive to the effects of increased glucose.

Evidence From Isolated Cells Relevant to Atherosclerosis
A large number of studies on effects of elevated glucose levels in cultured cells relevant to atherosclerosis, such as endothelial cells, macrophages, and arterial smooth muscle cells, have been published and continue to be published. These studies are far too numerous to cite here. Suffice it to say that such studies have convincingly demonstrated that elevated glucose (often supplied at concentrations of ≤25 mmol/L), as compared with normal glucose (5–6 mmol/L) exerts effects that could be consistent with a proatherogenic effect. For instance, elevated glucose has been shown to increase expression of adhesion molecules in endothelial cells through increased oxidative stress. These findings are consistent with the effect of diabetes mellitus on increased endothelial cell adhesion molecule expression and monocyte recruitment to the lesion. Elevated glucose has also been shown to lead to increased cytokine and chemokine release from macrophages, mimicking the proinflammatory effects of diabetes mellitus. Smooth muscle cell proliferation and migration have been shown by a plethora of studies to be enhanced by elevated glucose. Such effects could potentially explain increased formation of fibrotic lesions in diabetes mellitus.

Whereas there is no reason to doubt these results, caution must be applied when interpreting cell culture studies because culture conditions are different from in vivo conditions. A few issues we have considered are as follows: First, cultured cells can exhibit changes in metabolism that do not reflect their metabolism in vivo. Cells in culture are often highly proliferative, which is frequently associated with metabolic reprogramming resulting in increased aerobic glycolysis. Second, to what extent are the cell cultures in question consuming glucose? It is not unusual for cells to consume a significant portion of glucose provided in the medium during the course of an experiment. As an example, human arterial smooth muscle cells consumed sufficient glucose to reduce glucose concentration from 5.6 to 2.7 mmol/L in 24 hours and to completely deplete the medium of glucose during a 48-hour period. To perform these types of experiments, media should be changed frequently or glucose should be replenished by other methods. Third, relevant osmotic controls need to be carefully considered. 1-Glucose and mannitol are often used as osmotic controls. Whereas these types of controls are important, they are not physiological and could therefore exert unwanted effects. Forth, what other energy sources are present in the medium, and are levels of these substrates in the physiological range? Culture media often contain superphysiological concentrations of, for example, pyruvate and amino acids, which can be used by cells instead of or in addition to glucose. Fifth, there are sometimes significant differences between media batches, which could alter the biological responses of cells. For example, different levels of endotoxin could result in different extent of macrophage activation. Endotoxin could also be inadvertently introduced by spiking in glucose contaminated by endotoxin. Sixth, under conditions in which glucose has a significant biological effect, can increased glucose utilization or glucose flux be verified? Cells have mechanisms to protect themselves against excess glucose exposure. One of these mechanisms results in downregulation of the glucose transporter GLUT1 in some cell types exposed to high glucose levels. Furthermore, how does increased glucose flux affect other substrates and metabolic pathways in the cell, including fatty acids and amino acids? Cells involved in atherosclerosis are, similar to many other cells in the body, metabolically flexible, meaning that they can and do readily shift the relative use of one energy source for another depending on availability and activation state of the cell. One well-known example of this phenomenon is the increased glycolysis observed during classical activation of macrophages by lipopolysaccharide (a component of the cell wall of Gram-negative bacteria) or other pathogens, which helps the macrophages fight bacterial infection.

Together, cell culture studies on the effects of elevated glucose levels can be valuable when carefully monitored and performed in combination with in vivo animal studies or human studies.

Clinical Implications and Future Directions
Despite many years of study, it is still unclear whether elevated glucose can exert direct proatherogenic effects on cell types present in lesions of atherosclerosis in vivo. In this context, it should be emphasized that suboptimal blood glucose control is well known to contribute to microvascular complications of diabetes mellitus (including eye complications and renal complications) and that adhering to optimal glucose-lowering therapies is critical for all subjects with diabetes mellitus and prediabetes. Optimal glycemic control will also improve other aspects of diabetes mellitus. Thus, in a sense, it does not really matter for the daily maintenance of diabetes mellitus if elevated glucose has adverse effects on lesional cells. It does matter, however, for our ability to develop new strategies for prevention and treatment of macrovascular or cardiovascular complications of diabetes mellitus.

It is possible that elevated glucose acts primarily on other tissues (liver, adipose tissue, etc) and that effects on these tissues produce secondary effects on lesional cells that are more important than any direct effects of elevated glucose. It is also possible that elevated glucose acts primarily through extracellular mechanisms, for example, by causing glycation and glyco-oxidation of proteins that can act as ligands for the receptor for advanced glycation end products.

Cardiovascular disease associated with diabetes mellitus is a multifactorial disease, and diabetes mellitus is associated not only with hyperglycemia but with unphysiological glucose fluctuations, alterations in lipids, changes in hormones in addition to insulin, and often with a proinflammatory state. Dyslipidemia and other known cardiovascular risk factors are likely to have a greater impact than that of hyperglycemia in most patients.

Increased levels of inflammatory molecules in diabetes mellitus are likely to increase expression of the GLUT1 glucose transporter and the enzymes involved in glucose metabolism in lesional cells. Thus, elevated glucose uptake in these
cells might primarily be a result of increased inflammation rather than a direct effect of hyperglycemia. Metabolomic studies of lesional cells, combined with epigenetic analysis, proteomic analysis, and RNA sequencing, are emerging as new ways to increase our knowledge in large animal and human subject populations. These techniques and approaches will lead to deeper understanding of the effects of diabetes mellitus on metabolism in lesional cells.

Sources of Funding
My research is supported by the National Heart, Lung, and Blood Institute and the National Institute of Diabetes and Digestive and Kidney Diseases under award numbers R01HL062887, P01HL092969, R01HL126028, and DP3DK108209; by the Diabetes Research Center at the University of Washington (P30DK017047); by the American Heart Association (14GRNT20410033); and by the T1D Exchange, a program of Unitio supported by the Leona M. and Harry B. Helmsley Charitable Trust.

Disclosures
None.

References
Does Elevated Glucose Promote Atherosclerosis? Pros and Cons
Karin E. Bornfeldt

Circ Res. 2016;119:190-193
doi: 10.1161/CIRCRESAHA.116.308873

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/119/2/190

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/