Multimodal SHG-2PF Imaging of Microdomain Ca\(^{2+}\)-Contraction Coupling in Live Cardiac Myocytes

Samir Awasthi, Leighton T. Izu, Ziliang Mao, Zhong Jian, Trevor Landas, Aaron Lerner, Rafael Shimkunas, Rahwa Woldeyesus, Julie Bossuyt, Brent M. Wood, Yi-Je Chen, Dennis L. Matthews, Deborah K. Lieu, Nipavan Chiamvimonvat, Kit S. Lam, Ye Chen-Izu,* James W. Chan*

Rationale: Cardiac myocyte contraction is caused by Ca\(^{2+}\) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca\(^{2+}\) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca\(^{2+}\) release, such as Ca\(^{2+}\) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca\(^{2+}\)-contraction coupling in live cardiac myocytes.

Objective: To develop a method for imaging sarcomere level Ca\(^{2+}\)-contraction coupling in healthy and disease model cardiac myocytes.

Methods and Results: Freshly isolated cardiac myocytes were loaded with the Ca\(^{2+}\)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca\(^{2+}\) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca\(^{2+}\) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca\(^{2+}\) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca\(^{2+}\) waves and correlated local contraction in pressure-overload–induced cardiomyopathy.

Conclusions: Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca\(^{2+}\) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca\(^{2+}\) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca\(^{2+}\)-contraction coupling and mechanotransduction in both health and disease. (Circ Res. 2016;118:e19-e28. DOI: 10.1161/CIRCRESAHA.115.307919.)

Key Words: calcium signaling ■ cardiomyopathies ■ mechanotransduction, cellular ■ microscopy, fluorescence, multiphoton ■ multimodal imaging ■ myocardial contraction ■ sarcomeres

Excitation–contraction coupling in cardiac myocytes is mediated by Ca\(^{2+}\). During systole, an action potential opens voltage-gated Ca\(^{2+}\) channels in the sarcolemma to allow Ca\(^{2+}\) entry into the cell, which triggers a much larger release of Ca\(^{2+}\) from the sarcoplasmic reticulum through the ryanodine receptor (RyR); this process is termed Ca\(^{2+}\)-induced Ca\(^{2+}\) release. Synchronous Ca\(^{2+}\)-induced Ca\(^{2+}\) release throughout the cell increases the cytosolic Ca\(^{2+}\) concentration, and subsequent Ca\(^{2+}\) binding to troponin C causes conformational changes in contractile machinery that results in the cross-bridge power stroke and sarcomere contraction. During diastole, cytosolic Ca\(^{2+}\) is lowered to basal level by sequestration into the sarcoplasmic reticulum Ca\(^{2+}\) store and extrusion from the cell, resulting in sarcomere relaxation. The RyR cluster is the basic Ca\(^{2+}\) release unit in cardiac myocytes. RyR responds to local rises in Ca\(^{2+}\) and opens in a stochastic manner. It opens and closes in an all-or-none fashion to release a quantum amount of Ca\(^{2+}\), giving rise to

Keywords: calcium signaling, cardiomyopathies, mechanotransduction, cellular, microscopy, fluorescence, multiphoton, multimodal imaging, myocardial contraction, sarcomeres

e19
Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PF</td>
<td>2-photon fluorescence</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transform</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>SHG</td>
<td>second harmonic generation</td>
</tr>
</tbody>
</table>

A Ca²⁺ spark. The distribution of Ca²⁺ release units in cardiac myocytes shows a lattice-like registered pattern in alignment with sarcomere structure.²,³ Synchronous opening of Ca²⁺ release units throughout the cell causes a uniform Ca²⁺ transient and coordinated whole-cell contraction. Asynchronous opening of RyRs, however, causes nonuniform rises of Ca²⁺ in local microdomains, manifesting as Ca²⁺ sparks and waves.⁴,⁶ Although healthy cardiac myocytes are largely quiescent and relaxed at rest, studies have shown that various pathological conditions can increase the occurrence of Ca²⁺ sparks and waves during diastole in cardiac myocytes.⁷–¹¹

It is plausible that Ca²⁺ sparks and waves cause Ca²⁺ binding to troponin C and myofilament contraction in local sarcomeres, potentially increasing mechanical strain and stress within the cardiac myocyte. Mechanical stress is linked to cardiac dysfunction and arrhythmias in conditions such as hypertension, myocardial infarction, atrial fibrillation and ventricular tachycardia/fibrillation.¹² Such links are well established at the whole heart level in clinical medicine, but the underlying cellular and molecular mechanisms remain unclear. We speculate that local nonuniform contraction may contribute to disease development via mechanochemotransduction pathways and by affecting cardiac myocyte contractility. Therefore, it is important to investigate local Ca²⁺ release and the mechanical response at the sarcomere level, constituting the basic unit of contraction.

Previously, several techniques have been used to measure sarcomere shortening during cardiac myocyte contraction, including cell-edge detection, sarcomere pattern analysis (using fast Fourier transform [FFT] or autocorrelation-based algorithms), T-tubule labeling with ANEP dyes¹³ and quantum dots,¹⁴ and sarcomere structure labeling using genetic expression of fluorescent proteins.¹⁵ However, each of those methods falls short of providing a practical and reliable method for measuring sarcomere contraction in subcellular microdomains. The video-based edge detection method measures cell contraction as the sum of all sarcomere contractions; local contraction cannot be isolated. Sarcomere pattern analysis measures an averaged sarcomere length from the FFT of many symmetric crystals,²² but has since been demonstrated in biological second harmonic signal. SHG was first demonstrated in noncentrosymmetric macroscopic second harmonic (wavelength λ/2) as it passes through a noncentrosymmetric medium. The process is coherent, so the medium must have a long-range order and orientation that allows constructive interference of the second harmonic signal. SHG is a process in which light of wavelength λ, produces its second harmonic (wavelength λ/2) as it passes through a noncentrosymmetric medium. The process is coherent, so the medium must have a long-range order and orientation that allows constructive interference of the second harmonic signal. SHG was first demonstrated in noncentrosymmetric crystals,²² but has since been demonstrated in biological macromolecules, including collagen, tubulin arrays, and sarcomeric myosin.²⁵–²⁷ SHG occurs strongly when these macromolecules are highly ordered, as they are in tendons, axons, and striated muscle. Because the properties that enable SHG are intrinsic to the macromolecules themselves, exciting and detecting SHG in muscle does not require the use of exogenous or genetic labels; furthermore, SHG is a nonabsorptive process, and thus is not prone to photobleaching. Several groups have studied SHG in sarcomeric myosin in depth—together, they have shown both the myosin rod and head domains of the subcellular microdomains in both healthy and diseased cells. Specifically, a Ca²⁺ spark can cause sarcomere contraction (termed myo-pinches), and a Ca²⁺ wave can cause sequential contraction of adjacent sarcomeres. We also apply the SHG-2PF method to image aberrant Ca²⁺ and contractions in paced cardiac myocytes under mechanical load. The data reveal a phenomenon of spontaneous Ca²⁺ waves and local contraction occurring between paced transients in pressure-overload–induced cardiomyopathy. Our observations, enabled by SHG-2PF imaging, raise the possibility that Ca²⁺ sparks and waves increase internal mechanical strain and stress in cardiac myocytes and may therefore contribute to alterations in cellular mechanochemotransduction signaling.

Methods

All laboratory procedures in this study conform to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health, the Guide for the Care and Use of Laboratory Animals laid out by Animal Care Committee of the University of California. The animal use was approved by the University of California Davis Institutional Animal Care and Use Committee. Cell isolation, dye loading, and antibody labeling protocols are available in the Online Data Supplement.

SHG-2PF Imaging

SHG is a process in which light of wavelength λ, produces its second harmonic (wavelength λ/2) as it passes through a noncentrosymmetric medium. The process is coherent, so the medium must have a long-range order and orientation that allows constructive interference of the second harmonic signal. SHG was first demonstrated in noncentrosymmetric crystals,²² but has since been demonstrated in biological macromolecules, including collagen, tubulin arrays, and sarcomeric myosin.²⁵–²⁷ SHG occurs strongly when these macromolecules are highly ordered, as they are in tendons, axons, and striated muscle. Because the properties that enable SHG are intrinsic to the macromolecules themselves, exciting and detecting SHG in muscle does not require the use of exogenous or genetic labels; furthermore, SHG is a nonabsorptive process, and thus is not prone to photobleaching. Several groups have studied SHG in sarcomeric myosin in depth—together, they have shown both the myosin rod and head domains of the sarcomeres, potentially increasing mechanical strain and stress in cardiac myocytes under mechanical load. The data reveal a phenomenon of spontaneous Ca²⁺ waves and local contraction occurring between paced transients in pressure-overload–induced cardiomyopathy. Our observations, enabled by SHG-2PF imaging, raise the possibility that Ca²⁺ sparks and waves increase internal mechanical strain and stress in cardiac myocytes and may therefore contribute to alterations in cellular mechanochemotransduction signaling.
thick filaments contribute to the generated signal, whereas the actin thin filaments do not. The label-free nature of sarcomeric SHG has been used to study sarcomere microarchitecture in muscular dystrophy, myofibrillogenesis, and drug-induced myopathy. It has also been developed as a technique to study local actin-myosin cross-bridging and in vivo contractile dynamics in skeletal muscle. Boulesteix et al. have used it to measure sarcomere length with a reported accuracy of 20 nm in relaxed and tetanic frog cardiac myocytes. SHG can be readily integrated with 2PF microscopy. In 2PF, laser light of wavelength λ_{ex} is used to excite an electron transition at energy $\frac{1}{2} \lambda_{em}$. After the loss of vibrational energy, a Stokes-shifted photon is emitted at $\lambda_{em}=\frac{1}{2} \lambda_{ex}$. The shift allows the signal from fluorophores ($\lambda_{em}>\frac{1}{2} \lambda_{ex}$) and harmonophores ($\lambda_{em}=\frac{1}{2} \lambda_{ex}$) to be simultaneously excited, separated, and detected (Figure 1).

For our experiments, a Coherent Chameleon outputting 150 fs pulses at a repetition rate of 80 MHz and tuned to a wavelength of 976 nm was used as the excitation source; laser power at the sample was typically 12 mW. The laser was air-coupled to an Olympus Fluoview 300 (FV300) scanning unit with an IX-81 microscope. A 60×/1.2 N.A. water immersion objective was used as the excitation objective. Pulses at a repetition rate of 80 MHz and tuned to a wavelength of 976 nm were used to excite Ca$^{2+}$ indicator fluo-4. 2PF was collected in the epi-direction, separated from the excitation beam with a dichroic mirror, and isolated with a 550±40-nm bandpass filter. SHG was collected in the forward direction with a 50×/0.55 NA extra-long working distance objective and isolated with a 488±10-nm bandpass filter. Emission from SHG and 2PF was simultaneously collected through 2 separate photon multiplier tubes. The spatial and temporal resolutions of the SHG-2PF images are defined by the confocal microscope with maximal of $x, y=0.25 \, \mu m, z=0.8 \, \mu m, t=3 \, \mu s/pixel$. Two-dimensional (2D) raster and 1D line scan images were acquired using the Olympus Fluoview software. Postprocessing and data analysis were performed using Fiji and Matlab software and are described below.

Results

Localization of SHG to Known Contractile and Ca$^{2+}$-Handling Structures

Previous work has shown that SHG signals from cardiac myocytes originate from the myosin heads of the thick filament and therefore show the position of the A-bands in sarcomere. On the basis of known ultrastructure, we illustrated the localization of SHG signals in relation to the major structures governing Ca$^{2+}$-triggered contraction in the sarcomere in Figure 2A. We used SHG-2PF imaging to experimentally verify the localization of SHG signals as discussed. In 1 set of experiments, we immunolabeled RyRs using antibodies conjugated with Alexa Fluor 488 (AF-488) and subsequently performed multimodal SHG-2PF microscopy as described above. Figure 2B shows the dual SHG-2PF image so obtained, with punctate RyR staining appearing in sets of A-bands. An enlarged view of single sarcomere shows that the A-bands and RyR clusters in the SHG-2PF image indeed correspond to the known ultrastructure of cardiac myocytes.

To visualize the localization of SHG signal with respect to the T-tubules, we used Di8-ANEPPS (Di8) to label sarcolemma and T-tubules in live cardiac myocytes. Using a 2D fast scan, we visualized the entire cardiac myocyte and identified a single myofilament to interrogate further. We then used the confocal linescan mode to obtain fast 1-dimensional SHG-2PF linescans of the myofilament, which are required to capture fast dynamics in live cardiac myocytes. Figure 2C shows the linescan image acquired by scanning along a single myofilament repetitively. The SHG signal (green) shows the A-bands, whereas the 2PF signal (purple) shows the Di8-labeled T-tubules. In accordance with known ultrastructure and previous microscopy studies, 2 A-bands are seen within each sarcomere, flanked by a pair of T-tubules. The fluorescence intensity profiles (bottom panel) allow the quantifying of the position and distance between these SHG-2PF signals.

Simultaneous Imaging of the A-Band and Ca$^{2+}$ at High Spatial and Temporal Resolution

To image Ca$^{2+}$-contraction coupling, we loaded freshly isolated cardiac myocytes with the fluorescent Ca$^{2+}$ indicator fluo-4. Figure 3 shows a sample SHG-2PF linescan image acquired at a spatial resolution of 1024 pixels per line, and a temporal resolution of 9.3 ms per line (9.1 ps/pixel). A Ca$^{2+}$ transient is seen in the increase of fluo-4 fluorescence (Figure 3A, left), and the triggered sarcomere contraction is seen from the displacement of the SHG signals (Figure 3A, right). Subsequent linescans were obtained at faster speeds of 3.1 ms per line (≤3.1 ps/pixel).

To resolve sarcomere contraction from the SHG signals, we calculated the distance between adjacent A-bands. As illustrated in Figure 3B, we denote L_{A} as the distance between the 2 A-bands within the same sarcomere (seen between the T-tubules, traversing the M-line), and L_{Z} as the distance between the adjacent A-bands across the sarcomere (seen across the T-tubule, traversing the Z-line). L_{A} and L_{Z} each can be measured from the distance between the adjacent SHG-bright bands. During contraction, L_{Z} is shortened by increased overlap of the thick and thin filaments, whereas the L_{A} remains unchanged because the length of the thick filament within a sarcomere does not change. The sum of L_{A} and L_{Z} is equal to the sarcomere length, $L_{SL}=L_{A}+L_{Z}$ (e.g., the distance from Z-line to Z-line, or equivalently from M-line to M-line).

We used the above definitions to measure L_{A} and L_{Z} from the distance between the SHG-bright bands in Figure 3C. The
histogram of inter-A-band distances can be calculated using the kernel density method (Online Methods).\(^6\)\(^7\) During diastole (Figure 3A, green framed region), the histogram of distances between adjacent A-bands shows 2 distinct peaks (Figure 3C, green curves), corresponding to \(L_M=0.8\) μm and \(L_Z=1.0\) μm. During systole (Figure 3A, red framed region), the histogram also shows 2 peaks (Figure 3C, red curves), but corresponding to \(L_M=0.8\) μm and \(L_Z=0.9\) μm. Thus, in agreement with our analysis, \(L_M\) is constant and \(L_Z\) is shortened during contraction. The calculated sarcomere lengths \(L_S=\left(2L_M+L_Z\right)\) in these states are \(L_M=1.8\) μm at diastole (the slack length in an isolated cardiac myocyte) and \(L_M=1.6\) μm at systole. To verify the sarcomere length values calculated using the SHG image, we also directly measured the sarcomere length from the transmission image of the myocyte using an established method (Online Figure I). We obtained a sarcomere length of 1.8 μm at diastole and 1.6 μm at systole, in agreement with the values calculated from the SHG image.

Construction of Strain Maps of Sarcomere Contraction From SHG Image Analysis

We developed an automated image analysis method to extract local sarcomere contraction information from the SHG linescan images. Figure 4 depicts the analysis procedure. First, we reduced the noise in the raw SHG image data by applying a 2D Wiener filter (Figure 4B). The Wiener filter requires the neighborhood size of the relevant image features to be defined. In the SHG linescan image, the neighborhood in space is set to roughly one half of the width of the more narrow SHG dark bands (which corresponds to the M-line positions). The neighborhood in time is set according to the speed and magnitude of contractions that are present in the data (eg, if the contractions are rapid and involve significant translation, a small time neighborhood is chosen). Second, after noise reduction, a 2D FFT of the spatial SHG signal is performed line-by-line, and then each FFT is bandpass filtered (Figure 4C). The band that is retained corresponds to spatial periods of 300 nm to 2.5 μm and contains the key spatial frequencies and phases of the A-band signal. Each line is then inverse Fourier transformed to obtain a smooth, oscillating signal that is in phase with the SHG-bright bands (Figure 4D). Third, from this signal, the minima between SHG-bright bands are obtained (Figure 4E, red lines), which are used to set processing windows around the SHG-bright bands. Gaussian fitting is then used to estimate the center of each SHG-bright band at each point in time. The results of Gaussian fitting (Figure 4F, yellow lines), therefore, estimate the center of the A-bands. The distance between the center of the A-bands corresponds to the \(L_M\) and \(L_Z\) peaks as discussed previously. Histograms of the center-to-center distances during diastole and systole show that myocyte contraction shortens \(L_Z\), whereas \(L_M\) remains unchanged (Figure 3C).
Thus, our automated analysis is able to extract expected changes in the distances between adjacent A-bands. Next, we construct a strain map that displays sarcomere contraction and relaxation through time by using the centers of the SHG-bright bands. We first use a moving local linear regression to smooth the data through time (Online Figures III and IV). The strain over a given sarcomeric distance is then calculated as $E = (L_o - L) / L_o$, where L is the distance between a SHG-bright band and its next nearest neighbor, and L_o is that distance averaged over the first 25 pixels in time (when the cell is relaxed). Figure 5 (middle panels) shows sample strain maps computed from the SHG-2PF images obtained from cardiac myocytes at different contractile states.

Correlation Between Ca$^{2+}$ and Strain Maps in Cardiac Myocytes at Different Contractile States

To investigate local Ca$^{2+}$-contraction coupling, we plotted the strain map and Ca$^{2+}$ image side-by-side in Figure 5. Figure 5A shows a relaxed state with no development of strain (left and middle panels) at low resting Ca$^{2+}$ concentration (right panel). Figure 5B shows a development of strain across sarcomeres (left and middle panels) in response to a propagating Ca$^{2+}$ wave (right panel). Higher strain correlates to higher Ca$^{2+}$ in space, and a time lag between Ca$^{2+}$ rise and strain development can be observed. Figure 6A demonstrates that the normalized cross-correlation between the strain and the corresponding Ca$^{2+}$ signal ranges from 0.90 to 0.93 for the sarcomere lanes seen in Figure 5B (mean=0.92; $\sigma=0.01$); the time delay to the cross-correlation maximum ranges from 114.7 to 192.2 ms (mean=149.3 ms; $\sigma=30.3$ ms). These delays are in agreement with the observation at the whole-cell level that there is a lag between the Ca$^{2+}$ transient and the cardiac myocyte contraction.38

Thus, multimodal SHG-2PF microscopy is capable of capturing the sequential development of strain in individual sarcomeres in response to a propagating Ca$^{2+}$ wave.

The method also enables us to answer a previously unresolved question: Do Ca$^{2+}$ sparks cause local sarcomere contraction? To analyze the correlation between Ca$^{2+}$ sparks and the nearest neighbor A-bands, we computed the strain map from M-line to M-line (Figure 5C, middle panel). Figure 5C shows the development of microdomain strain (middle panel) in response to localized Ca$^{2+}$ sparks (right panel). A positive correlation between Ca$^{2+}$ sparks and local strain can be observed although the time delay for strain development is variable (addressed below). Thus, Ca$^{2+}$ sparks can indeed cause local sarcomere contractions (myo-pinches) that lead to nonuniform strain in subcellular microdomains.
In Figure 6C, events from Figure 5C with an apparent spark strain correlation (Figure 6B) are plotted separately. In these plots, history dependence can be observed: peak strain develops earlier for sparks that occur shortly after a previous spark-strain event (Figure 6C, plots 1, 2, 4, and 5: average time to peak strain = 176.2 ms) than for those with a longer strain-free history (Figure 6C, plots 3, 7, and 8: average time to peak strain = 75.4 ms). Some of the Ca2+ spark–induced myo-pinches are small in magnitude; we excluded those that are outside of our 85% confidence intervals on strain (Online Figure V). In addition, we examined the effect of our smoothing algorithm on Ca2+ spark–induced myo-pinches are small in magnitude; we excluded those that are outside of our 85% confidence intervals on strain (Online Figure V). In addition, we examined the effect of our smoothing algorithm on Ca2+ spark–induced myo-pinches and on simulated strain and confirmed that smoothing does not attenuate strain events that lasts for ≥60 ms (Online Figures VI and VII); myo-pinches events lasted >100 ms in our observations.

Ca2+-Contraction Coupling in a Murine Model of Pressure-Overload–Induced Cardiomyopathy

To demonstrate the utility of the SHG-2PF imaging modality in disease model animals, we used transverse aortic constriction surgery to generate pressure-overload mice that develop cardiac hypertrophy and heart failure39 (online Methods). Cardiac myocytes from transverse aortic constriction mice were studied under mechanical load using the cell-in-gel system as previously described,40 as well as under standard load-free conditions. When load-free, transverse aortic constriction cardiac myocytes responded to electrical pacing with regular contractions (Figure 7A). Under mechanical load, however, the cells displayed aberrant spontaneous Ca2+ waves at variable times during diastole, between paced systolic Ca2+ transients (Figure 7B). Figure 7C to 7E shows a strain map analysis of one such aberrant Ca2+ wave, among paced transients, in a transverse aortic constriction cardiac myocyte under mechanical load. Figure 7C shows the SHG data, D shows the strain map obtained from an analysis of 2 adjacent sarcomeres, and E shows the corresponding 2PF data. At the single sarcomere level (Figure 7F and 7G), the wave-triggered contractions were lower in amplitude than in the paced contractions. Consistently, the amplitude of the contractions correlated to the relative change in intrasarcomere calcium levels. These results demonstrate the applicability of the SHG-2PF technique to study of mechanical stress–induced heart disease.

Discussion

Imaging local Ca2+-contraction coupling at sarcomere resolution in cardiac myocytes is difficult with available techniques yet necessary for investigating the molecular mechanisms that link mechanical stress to heart diseases. In this project, we developed a multimodal SHG-2PF technique to image Ca2+-induced strain at the single sarcomere level. The technique used a single laser to excite SHG from the thick filaments of sarcomeres and 2PF from a fluorescent Ca2+ indicator, simultaneously. First, we developed the methods and algorithms for acquiring, processing, and interpreting the multimodal...
image data. Second, we verified the SHG analysis by comparing the SHG signal to the known ultrastructure of sarcomere and the Ca\(^{2+}\)-handling molecules (ie, A-band, T-tubule, and RyRs). Third, we tested the feasibility of using the SHG-2PF technique to simultaneously image Ca\(^{2+}\) and sarcomere contractions. We were able to make the novel observation in live cardiac myocytes that Ca\(^{2+}\) sparks can induce local mechanical strain at the sarcomere level, a phenomenon we named myo-pinch. Finally, we applied the technique to a murine model of mechanical stress–induced heart disease; when these cardiac myocytes were placed under mechanical load, we observed calcium waves and associated sarcomere strain occurring between paced transients.

Multimodal SHG-2PF imaging has distinct advantages over other available techniques. Recently, Shintani et al\(^{15}\) developed a method for measuring sarcomere shortening by labeling the Z-discs with AcGFP-tagged \(\alpha\)-actinin for imaging. However, the method uses vector-mediated transfection of cardiac myocytes that requires culturing the cells to express adequate amount of AcGFP-tagged \(\alpha\)-actinin. In culture, both neonatal and adult cardiac myocytes undergo changes in the Ca\(^{2+}\) handling and contractile characteristics\(^{41–43}\) and hence may introduce artifacts. Genetic labeling methods are also disadvantaged by potential interference between GFP and sarcomeric protein function.\(^{18}\) In contrast, we use SHG to accomplish label-free and noninvasive imaging of A-bands within the sarcomeres of live cardiac myocytes.

Another sarcomere-tracking technique uses labeled T-tubules. However, T-tubules in cardiac myocytes, even those from the healthy hearts, display a significant variance in the regularity, direction, diameter, and distance from Z discs.\(^{44}\) In some disease states such as hypertrophy and heart failure, T-tubule networks can become irregular and detubulated.\(^{45,46}\) In comparison, SHG is intrinsic to the thick filaments of sarcomere and is detectable as long as the sarcomeres remain intact. Therefore, SHG microscopy is ideally suited for studying sarcomere-level contraction in heart disease models.

Both genetic labeling and T-tubule labeling are further restrictive when used in conjunction with fluorescent Ca\(^{2+}\) indicators for dual imaging. The fluorophores must be carefully selected for each imaging modality in accordance with the kinetics of the indicator and to allow spectral separation. It may not be possible to minimize the cross talk between sarcomere markers such as GFP and fluorescent Ca\(^{2+}\) indicators such as fluo-4. The use of SHG circumvents this difficulty because SHG has a signal wavelength of \(\lambda_{ex}/2\); any fluorescent label used for 2PF will be Stokes-shifted and separable from the second harmonic signal. Therefore, SHG provides a superb add-on modality for simultaneously imaging sarcomere contraction with Ca\(^{2+}\) signals.

The multimodal method as presented enabled us to show that Ca\(^{2+}\) sparks can cause local sarcomere contractions. However, it can be further refined to increase the signal:noise (S/N) ratio and improve the quantification of small contraction events. One way to address this is to raise the laser power. In our preliminary experiments, however, higher laser powers than what were used caused some degree of laser-induced Ca\(^{2+}\) release and photon damage and therefore limited the achievable S/N ratio for SHG.

For future improvements, several approaches can increase the S/N ratio in multiphoton microscopes. For example, our original equipment manufacturer-installed fiber bundle that collects forward-directed light does not collect 100% of the photons; bypassing the fiber and collecting SHG photons directly using a photon multiplier tube would double the SHG signal.\(^{47,48}\) Compressing the femtosecond laser pulses used to excite SHG and 2PF by chirping can significantly improve S/N ratio in multiphoton processes because generated signals scale quadratically with the peak power of the pulse.\(^{49}\) These approaches can
be combined to improve the S/N ratio and therefore our ability to estimate the center of mass of the A-bands.

A potential limitation of the SHG-2PF method lies in measuring strain during global (e.g., electrically stimulated) contractions in load-free cardiac myocytes if the motion is too large to keep the same sarcomere within the focus of the confocal microscope. Because of the highly localized nature of the SHG-2PF technique, it is best used to track local sarcomere contraction in response to local Ca\(^{2+}\) releases. For the measurement of global contractions, however, there are many established methods (edge detection, sarcomere pattern measurement using FFT, etc.). The main advantage of the technique we developed here is that it allows one to zoom in and measure microdomain contraction—morphological changes in A-bands within individual sarcomeres—in response to local Ca\(^{2+}\) signals.

Super resolution microscopy is a rapidly evolving field and may impact SHG-2PF imaging in the future. A-bands are readily resolvable with our current technique, but any improvement in resolution will improve precision in the determination of A-band centers. Although no super resolution method currently exists for harmonic generation microscopy, several investigators are actively developing label-free super resolution methods. As a special consideration to Ca\(^{2+}\) imaging, the usefulness of super resolution methods is limited by the fact that Ca\(^{2+}\) diffuses rapidly, and small-molecule Ca\(^{2+}\) indicators also have limited on/off kinetics. A promising approach may be to express localized Ca\(^{2+}\) indicators in subcellular compartments to further quantify local Ca\(^{2+}\) levels in relation to sarcomere strain.

In summary, we have developed multimodal SHG-2PF imaging as a new, enabling tool for simultaneously imaging Ca\(^{2+}\) levels and sarcomere contraction in live cardiac myocytes with confocal resolution. Our method permits the investigation of the relationship between localized Ca\(^{2+}\) release events and mechanical strain in subcellular microdomains. Such knowledge is important for understanding the mechanochemical transduction within the cell that contributes to mechanical stress–induced heart diseases.

Acknowledgements

S. Awasthi thank the California Institute of Regenerative Medicine’s Stem Cell Training Program at UC Davis and the UC Davis Physician-Scientist Training Program for graduate student scholarships.

Sources of Funding

This work was supported by a UC Davis Academic Senate Faculty Research grant to J.W. Chan and Y. Chen-Izu, National Institutes of Health (NIH) R01HL90880 and R01HL105242 to L.T. Izu and Y. Chen-Izu, NIH R01HL123526 to Y. Chen-Izu, R03AG031944 to Y. Chen-Izu, R01HL105242 to L.T. Izu, R01HL85844 and HL85727 to N. Chiamvimonvat, National Science Foundation 1264776 to J.W. Chan and D.K. Lieu, and by the Center for Biophotonics, National Science Foundation Science and Technology Center that is managed by the University of California, Davis, under cooperative agreement No. PHY 0120999. This work is also supported, in part, by the University of California startup funds to Y. Chen-Izu.
Our data show that Ca\(^{2+}\) sparks can cause sarcomere contraction in localized Ca\(^{2+}\) release such as Ca\(^{2+}\) sparks often occur in diseased hearts, but whether the Ca\(^{2+}\) spark can cause local sarcomere contraction was unresolved because of a lack of suitable technique.

What New Information Does This Article Contribute?

- We developed a multimodal second harmonic generation and 2-photon fluorescence microscopy technique to simultaneously image the local Ca\(^{2+}\) signal and sarcomere contraction at high spatiotemporal resolution.
- Our data show that Ca\(^{2+}\) sparks can cause sarcomere contraction in subcellular microdomains (named myo-pinches), revealing a role for these events in generating subcellular strain during diastole.
- Local Ca\(^{2+}\)-contraction coupling is found altered in pressure-overload-induced heart failure, such changes in heart diseases can be studied by using the multimodal technique.

During the cardiac cycle, cardiac myocytes contract in systole to pump blood and relax in diastole to allow refilling. Systolic contraction is caused by a global release of Ca\(^{2+}\) from the sarcoplasmic reticulum to increase cytosolic Ca\(^{2+}\) concentration. Diastolic relaxation requires Ca\(^{2+}\) to be sequestered into the sarcoplasmic reticulum and the cytosolic Ca\(^{2+}\) concentration to be kept low. However, spontaneous Ca\(^{2+}\) release from the sarcoplasmic reticulum can occur during diastole, especially in diseased hearts. Whether localized Ca\(^{2+}\) release, in the form of Ca\(^{2+}\) sparks, can cause local sarcomere contraction has been an important but unresolved issue. Here, we develop a multimodal second harmonic generation and 2-photon fluorescence imaging method that uses second harmonic generation to monitor the contraction of individual sarcomere of subcellular microdomains, which suggests that they increase mechanical stress within the cell during diastole. We also find that micromdomain Ca\(^{2+}\)-contraction coupling is altered in pressure-overload-induced heart failure. Thus, the second harmonic generation and 2-photon fluorescence imaging technique enables the deciphering of disease-related changes in Ca\(^{2+}\)-contraction coupling at the single sarcomere level.
Multimodal SHG-2PF Imaging of Microdomain Ca$^{2+}$-Contraction Coupling in Live Cardiac Myocytes

Samir Awasthi, Leighton T. Izu, Ziliang Mao, Zhong Jian, Trevor Landas, Aaron Lerner, Rafael Shimkunas, Rahwa Woldeyesus, Julie Bossuyt, Brent M. Wood, Yi-Je Chen, Dennis L. Matthews, Deborah K. Lieu, Nipavan Chiamvimonvat, Kit S. Lam, Ye Chen-Izu and James W. Chan

Circ Res. 2016;118:e19-e28; originally published online December 7, 2015; doi: 10.1161/CIRCRESAHA.115.307919

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/118/2/e19

An erratum has been published regarding this article. Please see the attached page for:
/content/120/8/e32.full.pdf

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2015/12/07/CIRCRESAHA.115.307919.DC1
http://circres.ahajournals.org/content/suppl/2017/03/21/CIRCRESAHA.115.307919.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/
Correction to: β-Adrenergic Signaling Inhibits Gq-Dependent Protein Kinase D Activation by Preventing Protein Kinase D Translocation and Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes

In the article by Nichols et al, “β-Adrenergic Signaling Inhibits Gq-Dependent Protein Kinase D Activation by Preventing Protein Kinase D Translocation,” which published in the April 25, 2014 issue of the journal (Circ Res. 2014;114:1398–1409. DOI: 10.1161/CIRCRESAHA.114.303870.), and in the article by Awasthi et al, “Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes,” which published in the January 22, 2016 issue of the journal (Circ Res. 2016;118:e19-e28. DOI: 10.1161/CIRCRESAHA.115.307919.), corrections were needed.

In both articles, the author Brittani Wood has been changed to Brent M. Wood.

These corrections have been made to the current online version of the articles, which are available at http://circres.ahajournals.org/content/114/9/1398 and http://circres.ahajournals.org/content/118/2/e19, respectively.
SUPPLEMENTAL MATERIAL

Detailed Methods

All laboratory procedures in this study conform to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health, the Guide for the Care and Use of Laboratory Animals laid out by Animal Care Committee of the University of California (UC). The animal use was approved by the UC Davis Institutional Animal Care and Use Committee.

Cell isolation
Sprague-Dawley rats were purchased from Charles River (http://www.criver.com). The rats were anesthetized with nembutal (100 mg/kg injected IP). After testing for the suppression of reflexes, the hearts were explanted via midline thoracotomy. A standard enzymatic technique was used to isolate the ventricle myocyte. Briefly, the heart was mounted on a Langendorff system and perfused with a modified Tyrode solution containing (in mmol/L) NaCl 135, KCl 4, MgSO\textsubscript{4} 1.0, NaH\textsubscript{2}PO\textsubscript{4} 0.34, glucose 15, HEPES 10, taurine 10, pH 7.25 (adjusted with NaOH); the perfusion solution was pre-warmed to 37°C and bubbled with 100% O\textsubscript{2}. Then, collagenase B (~ 1 mg/ml, F. Hoffmann-La Roche Ltd, Switzerland), protease type XIV (~0.1 mg/ml), 0.1% BSA and 20 μM Ca2+ were added into the perfusion solution, and the heart was enzymatically digested for 15-20 minute. The ventricular tissue was cut down and minced; the remaining tissue was further incubated in the enzyme solution at 37°C for 15-45 minutes, and minced again to collect isolated ventricular myocytes. The cells were used for experiments within 6 hours after isolation.

Cell preparation for Fluo-4 loading and Di8-ANNEPS staining in live cardiomyocytes
Freshly isolated rat VCMs were incubated in Ca2+ free Tyrode’s solution containing: 145 mM NaCl, 4 mM KCl, 0.33 mM NaH\textsubscript{2}PO\textsubscript{4}, 1 mM MgCl\textsubscript{2}, 10 mM HEPES, 10 mM glucose; the pH was adjusted to 7.3 with NaOH. Prior to imaging, the Ca2+ concentration in the cell incubation solution was increased to 1 mM in a stepwise manner. The cells were consecutively incubated in Tyrode’s solution with 0.2 mM, 0.5 mM and 1 mM Ca2+ for 30 min, 20 min and 20 min respectively. The cells were loaded by incubating 0.5 ml of the cell suspension with 0.5 ml of a solution containing Ca2+ indicator Fluo-4/AM 2.5 μM (Molecular Probes-Invitrogen, Carlsbad, CA) and 0.75 μM pluronic acid in Tyrode’s solution with 1 mM Ca2+, for 30 min at room temperature. To visualize T-tubules, the cells were incubated for 5 min in Tyrode’s solution with 1 mM Ca2+ and 5 μM Di8-ANEPPS (Molecular Probes-Invitrogen).

Antibody labeling in fixed cardiomyocytes
RyRs of mouse VCMs were labeled with Alexa Fluor 488 conjugated anti-RyR\textsubscript{2} antibodies. The cells were fixed in 1% paraformaldehyde for 5 min and washed in cold phosphate buffered saline (PBS) solution twice. Cell membranes were permeabilized by incubating with 0.1% Triton X-100 solution at RT for 5 min, washed, and blocked. After blocking, the cells were incubated with primary antibody (Anti-RyR\textsubscript{2}, mouse monoclonal antibody, MA3-916, Affinity BioReagents, Golden, CO) for 2 hours at RT. They were washed twice with 0.01% Triton X-100 and incubated with secondary antibody (Alexa Fluor 488, Goat anti-mouse IgG, Molecular Probes) for another 2 hours at RT. Finally, the cells were washed twice with 0.01% Triton X-100 and re-suspended in PBS.

Transverse aortic constriction (TAC) surgery and echocardiographic measurements
TAC was performed on mouse (male, 11 week old) as described previously (Rockman et al, ref below), with some modifications. Briefly, after deep anesthesia was induced with 2-4% isoflurane, a small incision was made into the chest cavity in the second intercostal space. The transverse aorta was ligated with suture tied against a 27- gauge wire. Successful constriction of the aorta was confirmed through observation of diminished left carotid artery perfusion. Under 1-4% isoflurane anesthesia
echocardiographic measurements were taken two days before, and 2 weeks and 7 weeks after TAC surgery. Analysis was performed using a Visual Sonic Vevo 2100 system. After confirmation of a decrease of the ejection fraction to less than 50% after 7-8 weeks post TAC, the mouse was used for cardiomyocytes isolation and experimentation.

Calculation of A-band distance pdf using the kernel density methods

The histogram of A-bands distance (Fig.3C) is calculated using the kernel density methods. For every measured distance d_i between adjacent A-bands in the linescan image we define the function

$$h(x, d_i) = \frac{1}{\sqrt{2\pi} wN} \exp \left(-\frac{(x - d_i)^2}{2w^2} \right)$$

(0.1)

where N is the total number of distances. w is the bandwidth and, like bin widths used to construct histograms, larger values give smoother pdfs but can lead to loss of resolution. The estimate of the distance pdf $f(x)$ is

$$f(x) = \sum_{i=1}^{N} h(x, d_i) .$$

(0.2)

By construction, the integral of $f(x)$ overall x is unity.
Online Figure I. Sarcomere length measurement using transmission image. The rat ventricular myocyte shows clear striated sarcomere pattern in the transmission image (middle panel). This pattern in the region of interest (box in magenta color) is recorded as the periodic change in the light intensity (lower panel, grey line), the FFT spectrum of which is used to calculate the sarcomere length. The change of sarcomere length during cell contraction (upper panel, Sarc Length) show the Sarc Length is about 1.8 μm in diastole and about 1.6 μm in systole.
Online Figure II. Histograms of center-to-center distances from Figure 4 of the main text.
Following the data analysis procedure depicted in Figure 4 of the main text, the center-to-center distances between the SHG bright bands were determined and collected into histograms. Alternating distances were binned separately (A-D) and together (E-F) during diastole (A-B) and systole (C-D). Gaussian fits were performed on the histogram data. The alternating distances corresponding to \(L_m \) did not shorten during contraction (A vs. C) whereas those corresponding to \(L_Z \) did shorten (B vs. D). For Figures 4G-H of the main text (E and F above), all center-to-center distances were binned together (no separation of \(L_m \) and \(L_Z \)), but the Gaussian fits from A-D above were displayed on the plots to show the relative contributions of \(L_m \) and \(L_Z \) to the histogram. The “sum” curve in E and F above shows the sum of the displayed Gaussian curve. In these figures, each pixel is approximately 0.033 microns.

A) Diastole - \(L_m \)
\[\mu = 23.67 \quad \sigma = 1.19 \]

B) Diastole - \(L_Z \)
\[\mu = 26.36 \quad \sigma = 1.30 \]

C) Systole - \(L_m \)
\[\mu = 23.54 \quad \sigma = 1.26 \]

D) Systole - \(L_Z \)
\[\mu = 24.98 \quad \sigma = 1.36 \]

E) Diastole - All
F) Systole - All
Online Figure III. Smoothing using a local linear regression.

We use a local linear regression to smooth data. In the process, a polynomial is fit to data in a window that is \(N \) pixels wide. The window is moved across the data set pixel by pixel. The resulting fits are averaged to obtain the smooth data set. The figure above shows the result of the smoothing process on a single SHG-bright band from the data in Figure 5B of the main text. The figure shows fits using different window sizes (\(N \)) and a first degree polynomial (top) or a second degree polynomial. The exact \(N \) necessary depends on the signal-to-noise ratio in the raw data.
Online Figure IV: Smoothing process applied to a full calcium wave data set. The result of applying the smoothing process from Online Figure III, using \(N = 100 \) and a first order polynomial, to the data used to generate Fig. 5B in the main text, is shown above.
Online Figure V: 85% confidence intervals on peak-finding propagated through calculation of Ca(2+)-spark induced strain. 85% confidence intervals (CIs) were obtained from the Gaussian fitting algorithm (described in Fig. 4 of the main text) that was applied to the calcium spark data underlying Fig. 5C and Fig. 6B-C. The CIs were sub-pixel when displayed over the full set of peaks (e.g. Online Figure VI A). In order demonstrate the ultimate impact of the CIs, they were propagated through the calculation of strain in order to obtain 85% CIs on the local strain events. The CIs are displayed above in a heat map (left panel), next to the strain data (right panel). The CIs were calculated from data before smoothing, whereas the strain map is calculated from post-smoothing data, as described in the main text.
Online Figure VI. Smoothing applied to the calcium spark data set.
A) The result of applying the smoothing process from Online Figure III, using N = 20 and a first order polynomial, to the data used to generate Figure 5C in the main text, is shown above. B) Examples of individual bands from (A).
Online Figure VII: Effect of smoothing on calcium spark-induced strain.

A) Effect of smoothing on the power spectra of the bands shown in Online Figure VI B, before (black dots) and after (red line). Smoothing significantly attenuates structure in the power spectra at frequencies of approximately 16-17 Hz and higher. B) Effect of smoothing on a delta function of strain in time (time resolution is 3.1 ms/pixel, as in raw SHG linescan data). C) Effect of smoothing on various smoothed step functions of strain. Smoothing significantly attenuates strain events lasting 60-70 ms and less. D) Simulated strain events with rapid onset/recovery and asymmetry in contraction or relaxation (black dots) were smoothed using the local linear regression algorithm (n=20 pixels, or ~60 ms) discussed in the text. Contractile events with fast rise/relaxation times and sharp transitions may be blurred and delayed by the smoothing process. In all plots above, black dots represent data before smoothing algorithm, and red lines represent smoothed data.
Correction

Correction to: β-Adrenergic Signaling Inhibits Gq-Dependent Protein Kinase D Activation by Preventing Protein Kinase D Translocation

and

Multimodal SHG-2PF Imaging of Microdomain Ca\(^{2+}\)-Contraction Coupling in Live Cardiac Myocytes

In the article by Nichols et al, “β-Adrenergic Signaling Inhibits Gq-Dependent Protein Kinase D Activation by Preventing Protein Kinase D Translocation," which published in the April 25, 2014 issue of the journal (Circ Res. 2014;114:1398-1409. DOI: 10.1161/CIRCRESAHA.114.303870.), and in the article by Awasthi et al, “Multimodal SHG-2PF Imaging of Microdomain Ca\(^{2+}\)-Contraction Coupling in Live Cardiac Myocytes,” which published in the January 22, 2016 issue of the journal (Circ Res. 2016;118:e19-e28. DOI: 10.1161/CIRCRESAHA.115.307919.), corrections were needed.

In both articles, the author Brittani Wood has been changed to Brent M. Wood.

These corrections have been made to the current online version of the articles, which are available at http://circres.ahajournals.org/content/114/9/1398 and http://circres.ahajournals.org/content/118/2/e19, respectively.