Development from single fertilized cells into the diversity we enjoy in the animal kingdom is a highly conserved process driven by robust signaling gradients. Remarkably, similar gradients create simple patterns like the body axis1 as well as complex ones such as fruit fly wing development2 by controlling an equally diverse set of cell behaviors, for example, migration, proliferation, and specialization.2 These behaviors, in turn, are affected by spatiotemporal changes in ligand composition, gradient strength and magnitude, and combinations of agonists and antagonists (which has been more completely reviewed elsewhere3). For myocardium specifically, many highly specialized cardiac lineages arise from a set of common progenitors but specify based on differences in the factors to which they were exposed.4–6 These descriptions primarily rely on soluble cues, but a growing body of literature suggests that specification and subsequent tissue patterns can also arise from physical changes. Whether examined in vitro or in vivo, these cues come in many forms; generally they can be categorized as passive stimuli that occur within the microenvironment surrounding each lineage7–9 or as active forces that are directly applied to cells by other cells or fluids.10–13 For the former case, cells must directly probe the environment through myosin-mediated contractions to sense changes in their surroundings and use the mechanical feedback it
Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>bone morphogenetic protein</td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
<td></td>
</tr>
<tr>
<td>EMT</td>
<td>epithelial–mesenchymal transition</td>
<td></td>
</tr>
<tr>
<td>ESCs</td>
<td>embryonic stem cells</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>focal adhesion</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>primitive streak</td>
<td></td>
</tr>
<tr>
<td>TCF</td>
<td>transcription factor</td>
<td></td>
</tr>
<tr>
<td>TGFβ</td>
<td>transforming growth factor β</td>
<td></td>
</tr>
<tr>
<td>Wnt</td>
<td>wingless</td>
<td></td>
</tr>
</tbody>
</table>

provides to elicit changes in cell behavior. Converely the latter case requires the cell to remodel internally or migrate to transmit the load, a process that could activate similar molecular mechanisms. Regardless of their type and mechanism, these cues can be studied in model organisms or built into protocols to direct stem cell specification or to test their influence more generally as a cue on cell behavior. Although significant evidence from developmental biology exists on soluble gradients, there is growing evidence using unique physical assays ex vivo and engineered microenvironments in vitro that mechanical cues and their interplay with chemical signals influence specification, which we will focus on here.

Although we will summarize what is currently known about the influence that forces and their transduction have on cardiomyogenesis, it would be naive to presume that these pathways are distinct, nonintersecting, or orthogonal to each other, whether or not you limit yourself to physical stimuli only. So whether used separately or in combination with the plethora of soluble morphogen gradients, data described here will suggest a more complex integration of signals such that stimuli are not additive but rather can be compensatory or antagonistic. We will provide further examples where physical cues, as with their molecular biology counterparts, can differentially regulate a process depending on the specific lineage or stage of the cell. As an example at the outset of this discussion, changes in wall stiffness can influence tube looping when presented during tube formation but in adulthood could lead to fibrosis. Just as with soluble factors, physical stimuli can vary with space and time and must be transmitted between myocytes and transduced to the nucleus to be interpreted. So in the following sections, we will address how mechanical cues drive lineage specification of early progenitors and their subsequent differentiation, specifically focusing on the interaction of forces and established signaling pathways.

Mechanical Cues in Early Myocardial Specification: Gastrulation and Mesoderm Formation

Cardiomyogenesis in vivo is governed by spatiotemporally defined signaling pathways that regulate transcription factor (TCF) expression to drive myocardial specification, differentiation, and maturation. In concert with these chemical signals, mechanical cues act on the developing embryo throughout the process of cardiac development. In this first section, we will focus on the earliest specification decisions in model organisms and how mechanics regulates these decisions. Murine models indicate cardiac specification as early as embryonic day 6.5 (E6.5) when a population of cardiac precursor cells residing in the lateral posterior epiblast develops before primitive streak (PS) formation and gastrulation. As epiblast cells migrate through the PS, they undergo epithelial–mesenchymal transition (EMT) to form early mesoderm, which will undergo a series of morphological changes, beginning with formation of the cardiac crescent, to develop into the heart. After EMT and formation of nascent mesoderm, irreversible myocardial commitment occurs, indicating that cues during this transition, either chemical or physical, drive cardiac determination. To better orient this discussion, Figure 1 highlights developmental stages of the heart and when in time signaling pathways and mechanics are prevalent. Mechanical signals play a vital role throughout the entirety of the process, beginning in early cardiomyogenesis by initiating gastrulation and contributing to the establishment of chemical gradients that drive early axis development and subsequent cell specification, commitment, and determination. Two such examples of the mechanical influence in early myocardial specification are cell tension–induced tissue invagination and mechanically generated fluid flow–driven chemical gradients. Both are described in the following section and summarized in Figure 2.

In Drosophila melanogaster morphogenesis, gastrulation begins after the apical constriction of a population of cells at the ventral midline. The apical surface of the cells shrinks in size because the basal surface increases, creating tension at the cell surface that triggers tissue invagination. Expression of TCFs Twist and Snail induce apical constriction during which myosin II localizes to the apical surface of the cells to generate contractile pulses necessary for cell shape remodeling. Snail triggers contraction, whereas Twist prevents relaxation, creating a ratchet-like process to achieve constriction, and embryos mutant in either snail or twist do not gastrulate properly. It has been proposed that Twist expression during gastrulation is maintained not by direct biochemical signals, such as snail expression, but instead by the mechanical cues that occur during PS formation. Ectopic expression of Twist can be induced by mechanically deforming Drosophila embryo, demonstrating its mechanosensitivity. In addition, in Drosophila mutants lacking Snail expression that consequently exhibit abnormal gastrulation, mechanical indentation rescues mesoderm invagination via the Twist signaling pathway and gastrulation proceeds. This mechanically induced rescue indicates that it is the contractile pulses generated by Snail and not a Snail-mediated intracellular signaling mechanism that enables gastrulation to proceed. Twist induces the expression and secretion of folded gastrulation, a critical protein leading to myosin II apical localization and constriction.

In the absence of mechanical force, folded gastrulation is endocytosed, its signaling pathway is not activated and myosin II localization does not occur. However, in the presence of mechanical force applied by either mechanical indentation or Snail-induced pulsatile contraction, folded gastrulation endocytosis is inhibited and it remains in the extracellular space.

After EMT markers, the earliest myocardial regulators, for example, Mesp1/2 and Fgf8, are expressed by the
gastrulating mesoderm and mediate cardiac precursor cell migration through the PS; interruption in expression of either of these genes results in abnormal heart development. In the developing chick embryo, $Fgf8$ expression is symmetrical across the PS but becomes asymmetrical by Hamburger Hamilton stage 5, residing primarily in the right side of the PS node as the mesodermal layer forms. The origin of embryonic asymmetries are debated with some evidence indicating that early lineage bias drive later asymmetries, whereas other evidence argues for a stochastic, environmentally driven model. In addition to the chemical cues known to regulate PS node asymmetry, mechanical forces can also influence the patterning of developmental gradients. For example, during mouse development, $Fgf8$ signaling induces secretion of sonic hedgehog and retinoic acid containing vesicles; both are factors that initiate embryonic tissue patterning required for proper mesodermal development. Leftward sonic hedgehog and retinoic acid gradients across the node are then created by fluid flow, termed nodal flow, that is generated by cilia forces on nodal cells (Figure 2). Disruption of nodal flow in knockout mice was embryonic lethal and created a variety of developmental abnormalities, including pericardial sac ballooning and reversed heart tube looping. In chick PS where nodal cells do not express cilia and there is no extraembryonic space through which nodal flow could occur, asymmetry is established by cell migration across the node rather than by transport of secreted factors. Cells exhibit a brief leftward myosin II–dependent migration at Hamburger Hamilton stage 4 that is required for the lateralization of $Fgf8$– and sonic hedgehog–expressing cells at Hamburger Hamilton stage 5. Thus, regardless of the system and mechanism, it would seem that mechanical signals play a role in the establishment of early $Fgf8$ and sonic hedgehog signaling gradients that drive pattern formation in the embryonic heart, and in some cases,
for example, Fgf8, morphogens can feed back to initiate mechanically controlled pattern formation.

Because these niche are dominated by cell–cell contact, a discussion of early events must include cadherins, a homophilic class of cell adhesion receptors that bind to neighboring cells and create stable mechanical linkages. Cadherins have been implicated in regulating early expression of Fgf1 and Mesp1/2 in the gastrulating embryo to control epiblast cell migration when they ingress into the PS and begin to form the primitive heart tube.30,31 In addition, cadherins act as mechanosensors by initiating intracellular signaling cascades in response to changes in tension to transduce mechanical information about the surrounding environment.45 Cadherin-mediated cell adhesion and its associated signaling pathways play a variety of vital roles in tissue morphogenesis and development, cardiomyogenesis, and cardiac disease.46–48 These functions will be described further in the following sections, but taken together, these data form the basis for how mechanical forces could reshape cardiomyogenesis.

Mechanical Regulation of Signaling Pathways During Cardiomyogenesis

Multiple defined signaling pathways interact during development in exceedingly complex temporal and spatial patterns to drive cardiomyogenesis. These pathways include those that are initiated by soluble cues such as cytokines and growth factors, and those initiated by cell adhesive contacts with the extracellular matrix (ECM) and other cells. Foremost among the soluble signaling pathways are the Wingless (Wnt) and transforming growth factor β (TGFβ) superfamily pathways, whereas the major adhesive pathways include integrin- and cadherin-mediated signaling. Each of these act on cardiomyogenesis at multiple time points and in multiple capacities to orchestrate the process of mesoderm formation, cardiac specification, and differentiation. In the following sections, we will describe the influence of these pathways on cardiomyogenesis and provide examples of an additional layer of complexity in the process in which mechanical forces play a role in modulating the signaling pathways.

Wnt Signaling During Cardiac Development

There are 12 different Wnt growth factor family members, each acting on a variety of receptors at precise points in developmental time and space.49 Wnts modulate numerous steps during cardiomyogenesis and their actions can be biphasic, for example, activation before gastrulation promotes mesoderm formation, early expression postgastrulation decreases cardiac progenitor cell production, and later activation improves differentiation.49,61,62 The canonical Wnt signaling pathway activates GTPases RhoA and Rac that mediate contractility and cytoskeletal reorganization, and alter gene expression via c-Jun N-terminal kinase activation of transcriptional regulator, activator protein 1.50 In myocardial development, noncanonical Wnt and cytoskeletal reorganization have been implicated in migration and polarization of cardiac progenitor cells during gastrulation and cardiac morphogenesis.59,60 In addition, noncanonical Wnt ligands, Wnt2 and Wnt11, act through c-Jun N-terminal kinase/activator protein 1 to positively influence cardiac differentiation.51,62

This complex Wnt signaling that orchestrates cardiomyogenesis is influenced by cell adhesions and cadherin expression, which play a role in mesoderm specification and cardiac differentiation.49,63 The canonical Wnt signaling pathway interacts bidirectionally with cadherin-mediated signaling to regulate cell migration and cell adhesion during development and cardiac morphogenesis.60,64 Mechanical forces may modulate expression of adhesions and the Wnt/β-catenin signaling cascade (Figure 3A; orange), which in turn can influence cell mechanics by altering cytoskeletal organization and contractility.65–68

Mechanical Forces Modulate the Wnt Pathway During Gastrulation

Adherens junctions, composed of homophilic cadherin binding between 2 adjacent cells, are sites of mechanical linkage between the cells and modulate tissue surface tension, which linearly increases with cadherin expression.69,70 Cadherins are sensitive to mechanical signals and in response to increased mechanical tension, will remodel cortical F-actin to increase junctional stiffness.71 Cadherins are linked to F-actin through interactions with β-catenin, which associates with α-catenin and vinculin, 2 mechanosensitive proteins that bind F-actin. Dynamic reorganization of the actin cytoskeleton and modulation of tissue surface tension are essential during development and morphogenesis, implying a crucial role for cadherins and
adherens junctions. For example, as a requirement of cardiac precursor cell migration out of the PS during gastrulation, cells must downregulate expression of E-cadherin to break or remodel cell–cell contacts and allow motility through the PS to form nascent mesoderm (Figure 3B). Fgf8 and Mesp1 signaling generates a reduction in E-cadherin expression by blocking its transcription via repressors, such as Snail. Snail knockout embryos exhibit abnormal mesoderm morphology and fail to undergo complete EMT, likely because E-cadherin downregulation does not occur.

Studies examining the differentiation of embryonic stem cells (ESCs) have verified the important role of E-cadherin–mediated cell–cell contacts in the formation of mesoderm and cardiac differentiation, and indicate that Wnt signaling, via β-catenin, plays a key role in the process. To initiate ESC differentiation, proliferating cells can be forced to aggregate into embryoid bodies using various methods, such as hanging drop, microwell aggregation, or rotary suspension techniques. In the hanging drop method, small volumes of media containing cells are placed on a petri dish lid, the lid is inverted, and the cells aggregate within the droplet because of forces created by the liquid surface tension. Alternately, in microwell aggregation, cell suspensions are placed into microwells of defined size and forced to aggregate because of constric-
tions of the size of the well. The rotary suspension culture technique drives embryoid body formation of ESCs in suspension by submitting them to orbital motion. Each of these forced aggregation techniques generates more homogenous embryoid bodies more efficiently than passive embryoid body formation using liquid suspension culture. Interestingly, forced aggregation techniques improve differentiation into the cardiac lineage as evidenced by a higher number of spontaneously contracting embryoid bodies within days of formation, increased early expression of mesoderm marker, Brachyury, and a later increase in gene expression of cardiac markers Nkx2.5, α-MHC, MLC-2v, TNNT2, MYL7, and Mef2c.

In both rotary suspension and microwell cultures, there is an accompanying increase in expression of E-cadherin, indicative of the improved cell–cell contacts created between the aggregated cells. Forced aggregation increased early nuclear translocation of β-catenin and increased TCF/lymphoid enhancer–binding factor activity, suggesting that the cellular adhesion dynamics altered the Wnt/β-catenin pathway and downstream transcription of cardiac genes, and plays a role in coordinating EMT and cardiac differentiation.

The intersecting cadherin/β-catenin and Wnt/β-catenin pathways demonstrate the interplay of mechanotransduction and traditional autocrine/paracrine signaling that occurs during development. Before gastrulation, epiblast tissue exhibits a compact, tightly packed cell morphology, formed as a result of proliferation and migration occurring during morphogenesis that is thought to be heavily influenced by mechanical forces, inducing cells to create a large number of E-cadherin–mediated mechanical cell linkages. Wnt signaling from the underlying endoderm tissue initiates E-cadherin downregulation during EMT by turning on transcription of Mesp1, which activates the repressor Snail to reduce E-cadherin transcription.
The mechanical interactions during epiblast development prime the tissue to respond to endoderm-originating Wnt signals during EMT by enriching the membrane-bound pool of β-catenin. Furthermore, loss of cadherin-based mechanical linkages induced by Wnt signaling creates a cascade that feeds forward into the canonical Wnt pathway to enhance cardiac differentiation by Wnt inhibition. This pathway, illustrated in Figure 3B, highlights the exceptional complexity of the coordinated signals that occur during cardiac specification and differentiation that rely on both opposing types of signals (physical versus chemical) and modes of application (spatial versus temporal).

Mechanical Forces Modulate the Wnt Pathway During Tube Formation

After gastrulation, cardiac precursor cells migrate and fuse to form a linear heart tube, which later loops into a C- then S-shape that produces the 4 chambers of the heart (Figure 1). During cardiac morphogenesis, N-cadherin cell adhesions are required for heart tube fusion, and noncanonical Wnt signaling can modulate the expression of cadhersins to drive this process. Both noncanonical Wnt5a and Wnt11 signaling pathways have been shown to play a role in cardiac morphogenesis, and it is likely because of the alteration of passive mechanical linkages via N-cadherin that these pathways act. Wnt11-null mice and primary cardiomyoblasts exhibit abnormal N-cadherin and β-catenin expression characterized by a delocalization from the cell membrane and loss of colocalization between the 2 proteins. These cell adhesion abnormalities result in defects in the cardiac outflow tract and altered cell polarity in mouse Wnt11-null mutants, and linear heart tube defects in *Xenopus* Wnt11 loss of function experiments. Similarly, Wnt5a-null mice exhibit abnormalities in the cardiac outflow tract and do not survive postnatally because of gross organ defects.

These examples describing the importance and role of Wnt signaling, especially as it relates to modulating cadherins, suggest that traditional views of development in which the process is primarily driven by chemical signaling, should be amended to include a role for mechanical influences and interactions. Conversely, passive mechanical forces transduced to cells through their adhesion proteins can both modulate and be modulated by Wnt signaling cascades to shape the fate of cardiomyogenesis at the earliest stages of gastrulation through cardiac fate specification, differentiation, and maturation.

TGFβ Superfamily Signaling During Cardiac Development

During development, the TGFβ growth factor superfamily (consisting of >30 family members) generates an assortment of spatial gradients necessary to drive axis formation and patterning of the embryo. In this section, we will briefly outline this pathway and in a subsequent section describe its mechanical sensitivities as described in Figure 4.

In mouse models, TGFβ family signaling begins in the epiblast to establish the first embryonic axis and continues to play a role throughout organogenesis and onwards, with continuing roles in adult tissue homeostasis. This diversity of function relies on the variety of family members, which include TGFβs, bone morphogenetic proteins (BMPs), and Nodal, and each of these 3 influence cardiomyogenesis. Mesoderm induction in mouse begins with the initiation of Nodal expression in the epiblast at E5 that activates BMP4 expression in the extra-embryonic ectoderm, which in turn induces Wnt3 expression in the epiblast. Wnt3 then activates canonical Wnt signaling to drive EMT and later cardiomyogenesis. Knockout mouse models demonstrate the importance of TGFβ superfamily signaling in early cardiomyogenesis, with Nodal and BMP4 homozygous deletions leading to lethality between E7.5 and E9.5 with a failure to undergo normal gastrulation, PS formation, and mesoderm induction. Although Nodal seems to primarily mediate early mesoderm formation, BMP signaling continues to play a critical role in cardiac specification and differentiation after gastrulation. Mice with homozygous BMP2 deletions survive past gastrulation, but die by E10.5 and before that time point exhibit delayed cardiac morphogenesis and ectopic localization of the heart tube, which never develops past the linear tube stage. In addition, forced expression of BMP2 in chick embryos resulted in ectopic expression of cardiac markers *Nkx2.5* and *GATA-4*, whereas inhibition of BMP signaling with antagonist noggin blocked cardiac mesoderm differentiation. Although BMP signaling acts as a positive cue for cardiac differentiation, an early transient inhibition with noggin is necessary to induce cardiomyocyte differentiation in ESCs, indicating a biphasic regulatory role in cardiogenesis. After cardiac progenitors migrate and fuse to form the linear heart tube, BMP signaling continues to influence cardiac morphogenesis, with BMP5, BMP7, and BMP10 orchestrating heart tube looping and chamber formation, evidenced by the absence or hypoplasticity of ventricles in transgenic mice models lacking expression of these BMPs.

Similarly to the BMP branch of the TGFβ superfamily, the TGFβ branch also mediates cardiomyogenesis, but in some instances it inhibits cardiomyocyte differentiation while pushing cardiac progenitors toward smooth muscle and endothelial lineages, and in other instances it promotes differentiation to the cardiomyocyte lineage. Mouse models of TGFβ1 and TGFβ2 gene knockout both exhibit early lethality and cardiac defects. Like BMP, TGFβ2 creates a biphasic influence on cardiomyogenesis, with early expression acting as a positive cue for cardiac mesoderm formation and later expression acting as an inhibitor of cardiac differentiation. Early during cardiac specification, Nodal activates TGFβ2 and the 2 signals act in concert to promote formation of cardiac mesoderm. Although Nodal undergoes autoinhibition after its early expression, TGFβ2 expression persists and continues on to mediate cardiomyogenesis. Inhibition of TGFβ2 with RNA interference enhances expression of cardiac marker *Myh2*, demonstrating its role in blocking cardiomyocyte differentiation, whereas treatment with recombinant TGFβ2 upregulates expression of *Pecam1* and *Myh11*, markers of endothelial and smooth muscle cells. However, in cell models of
cardiomyocyte differentiation, TGFβ1 promotes cardiac differentiation by increasing expression of cardiac markers and contractile proteins, further illustrating the biphasic control of TGFβ over cardiomyocyte differentiation.104,105

The importance of spatial and temporal modulation of TGFβ superfamily signaling during cardiomyogenesis and morphogenesis indicates that a complex regulatory system must be established to orchestrate the diverse effects of the pathways. Modulation of BMP occurs on multiple levels, including post-translational processing, extracellular antagonism, and intracellular inhibition. After translation, enzymes cleave secreted, inactive BMP precursors to produce the active form that can bind its receptor and initiate downstream effects.106,107 Many extracellular proteins, such as noggins, can bind BMP to impede or promote receptor binding, and modulation of receptor availability via internalization or degradation can alter transduction.108–111 Along with soluble regulators of the TGFβ superfamily, components of the ECM modulate signaling by sequestering TGFβ family members. ECM proteins can interact with both BMPs and TGFβs via their heparin-binding sites or prodomains, and these interactions regulate their availability and consequent downstream signaling.112,113

For example, in Drosophila development, the gradient of BMP analog decapentaplegic is maintained through interactions with type-IV collagen.114 Decapentaplegic secreted from cells in the dorsal ectoderm binds type-IV collagen and limits its active range, where it maintains germline stem cell populations and regulates dorsoventral axis patterning. In addition, the BMP4 signaling range increases when its ECM-binding domain is cleaved, demonstrating the importance of ECM sequestration in establishing BMP gradients.115 Release of these ligands from the ECM can be initiated by both chemical or mechanical stimulation, which will be discussed in detail in the following section.116

Mechanical Regulation of TGFβ and BMP Signaling During Cardiac Development

In addition to the chemical regulation of TGFβ superfamily signaling, mechanical forces also modulate the pathways by extracellular and intracellular mechanisms, summarized in Figure 4, and may play a role in driving cardiomyogenesis. BMP signaling is mediated by mechanical forces at multiple stages during the signaling pathway, including BMP receptor availability and transcriptional regulation of BMP ligands and antagonists.117 Receptor internalization via endocytosis or degradation inhibits BMP signaling,118 and cardiomyocyte differentiation requires transient periods of BMP inhibition, indicating that receptor internalization may mediate this process.119 In addition, stem cell models of cardiomyogenesis demonstrate that small molecule degradation of TGFβ receptors promote cardiomyocyte differentiation.108 Endocytosis can be mediated by a variety of mechanical stimuli including cell membrane tension and mechanical deformation and thus, it may be proposed that mechanical forces occurring during morphogenesis may mediate TGFβ and BMP receptor endocytosis to mediate progenitor differentiation (Figure 4B).119 In fact, passive mechanical forces generated by ECM elasticity modulate BMP signaling through BMP receptor endocytosis and alter lineage specification of stem cells; however, it should be noted that mechanically induced endocytosis is not specific to the BMP signaling pathway and modulates cell membrane trafficking generally.120 At the transcriptional level, mechanical forces can alter several members of the BMP pathway (Figure 4A). Changes in BMP ligand expression and their mothers against decapentaplegic homolog (SMAD) family effectors on compliant ECM are myosin-dependent, indicating that they are mechanosensitive.121 Dynamic mechanical stretch applied to cultured neonatal rat cardiomyocytes up-regulates BMP2 expression while transiently downregulating BMP4 expression.122 These changes in BMP expression were accompanied by an increase in cardiac differentiation marker GATA-4, suggesting that the BMP pathway may transduce forces to mediate cardiomyocyte differentiation.

Studies of ECM sequestration and release of TGFβ1 have revealed complex mechanisms that include both chemical and mechanical control of liberation.116,123 TGFβ1 is synthesized in its inactive form, in which it is associated with a latency-associated protein. During post-translational processing, the complex is covalently linked via disulfide bonding to a latent TGFβ-binding protein before secretion into the extracellular space. Once there, the latent TGFβ-binding protein interacts with deposited ECM proteins fibronectin, fibrillin and vitronectin to maintain an inactive pool of TGFβ1 that can later be liberated in its active form to induce various actions on the surrounding cells.124,125 Common methods of activation rely on release of TGFβ1 from its latency-associated protein
Integrins are transmembrane proteins that associate extracellularly with components of the ECM and intracellularly with components of the cytoskeleton. They are considered to be mediators of force transduction between the inside and outside of the cell, and they are vital players in a variety of processes during development, including migration, differentiation, and morphogenesis. Integrins can mediate both proteolytic and mechanically induced release of TGFβ1. Both matrix metalloproteinases and latent TGFβ-binding proteins bind integrins, indicating that integrins may catalyze proteolytic cleavage of TGFβ1 by bringing it into close association with its cleavage enzyme. However, integrin-mediated liberation of TGFβ1 can also occur nonenzymatically, with mechanical forces initiating release. In this model, latency-associated protein is a mechanosensitive protein that, in response to contractile forces transmitted through integrins, unfolds into a conformation that does not support binding with TGFβ1, thus releasing it into the extracellular space and enabling receptor binding (Figure 4C). Force-induced release of TGFβ1 has been well characterized in the context of myofibroblast differentiation in wound healing and cardiac fibrosis. In the later example, contraction of cardiac fibroblasts activates latent TGFβ1 from the ECM and induces differentiation of myofibroblasts that promotes fibrosis in damaged cardiac tissue. However, similarly to the biphasic effects of TGFβ1 discussed above, mechanically induced TGFβ signaling also enacts differing effects depending on the target cell population and the temporal window of application.

For example, cyclic strain applied to ESCs induces SMAD2/3 activation and plays a role in maintaining pluripotency. To date, the influence of mechanical forces on TGFβ1 signaling has not been studied in cardiac progenitor cell differentiation; however, because TGFβ1 plays a role in cardiomyocyte, vascular smooth muscle, and endothelial cell differentiation during development, it is possible that the contractile forces occurring during cardiac morphogenesis may also regulate TGFβ1 release and action during cardiomyogenesis in a similar fashion.

Integrin Regulation of Cardiac Development

Integrins are transmembrane receptors that link ECM and cytoskeleton to mediate tissue structure and function. Composed of heterodimers of α and β subunits that act as receptors for ECM proteins, integrins transduce mechanical information from the cellular environment into the cell (outside–in) and from inside the cell back out (inside–out). Transduction begins with ECM ligand binding and subsequent initiation of the accumulation of several proteins on the cytoplasmic region of integrin dimers to form focal adhesion (FA) complexes. These proteins include adaptor proteins that structurally link integrins to the cytoskeleton by binding F-actin, scaffolding proteins that bind additional FA proteins, and signaling molecules that propagate intracellular signaling cascades. In the myocardium, many of the integrin-associated FA proteins and downstream signaling result from chemical changes that have been associated with cardiac development and disease. However, most are also influenced by mechanics; the impact of both are highlighted in Figure 5 and described here for their chemical changes and in the next section for their mechanical changes.

Integrins and their ECM adhesions are vital for organism formation and function, and they coordinate many events...
During development, such as proliferation, differentiation, and migration. In mammals, >18 α subunits and 8 β subunits have been identified, with the myocardium expressing a small subset of these; however, integrin expression patterns are dynamic, adding to their diversity of function, and turnover can be mediated by mechanical forces. 139–142 Numerous knockout studies illustrate the importance of integrins during cardiomyogenesis, particularly the α4, α5, and β1 subunits. Animals null for α4 integrin die by E15.5 and exhibit cardiac defects including absence of epicardium and coronary vessels, cardiac hemorrhage, and abnormal epicardial progenitor migration. 143 Homozygous knockout of α5 expression is embryonic lethal by E11, interferes with mesodermal axis patterning, and em-

...malities in terminal differentiation, indicating the importance of integrin-linked kinase expression with RNA interference reduces cardioblast generation, verifying the importance of integrin signaling in cardiomyogenesis. 158 In addition to β integrins, multiple α integrin subunits are expressed in ESC-derived cardiomyocytes, for example, α3, α5, α6, α7, α11, and αv, depending on the matrix on which they are cultured, with expression levels of some subunits such as α6 correlating to cardiac marker expression, indicating a role in cardiac differentiation. 159,160

Integrin-Mediated Mechanotransduction in Cardiac Development

During myocardial development, several mechanical forces, both active and passive, are generated. ECM secreted and assembled by progenitor cells gives the developing tissues structural integrity and results in changes in tissue stiffness. Because myocardial tissue begins to fold during morphogenesis and with the onset of chamber pumping, cardiac progenitors, and later cardiomyocytes are submitted to stretching forces. Both of these active and passive forces are mediated by integrin-based cell adhesions. Integrins act as mechanotransductors to pass these signals to the inside of the cell and alter cell function. In addition to the soluble signaling pathways initiated by integrin–ECM interactions and FA complex assembly, direct mechanical linkages exist between the ECM and the nucleus that are thought to alter gene expression by propagating mechanical waves to the nuclear membrane to directly remodel chromatin or open nuclear pores and modify nuclear transport (Figure 5). 161 In addition, the soluble signaling pathways themselves can be activated based on force applied through integrins and the FA complexes. Several mechanosensitive adaptor proteins exist that contain cryptic-binding sites for kinases that are uncovered in the presence of force to allow phosphorylation and downstream signaling to proceed. 138 In this fashion, cyclic stretch activates multiple pathways in cardiomyocytes to mediate processes, such as cell survival, cell–cell communication, structural reorganization, and electrophysiological functioning. 162

During development, cardiac progenitors respond to both passive and active mechanical cues, demonstrating the importance of these forces in cardiomyogenesis. Because the myocardium develops, it transitions from a soft mesoderm tissue (∼500 kPa) to an intermediate stiffness (∼11 kPa). Embryonic cardiomyocytes cultured on soft ECM substrates that mimic the mechanical properties of mature heart tissue develop more organized sarcomeres and exhibit more mature functional behavior than cells on softer or stiffer matrices. 74 However, other work using human ESCs indicated that cells are sensitive to passive mechanical cues only during early cardiac specification, with substrate stiffness affecting mesoderm induction, but not cardiomyocyte differentiation after that time point. 163 Culture on dynamically stiffening hydrogels that mimic in vivo cardiac tissue stiffening further improves cardiomyocyte differentiation and structural organization over culture on static myogenic hydrogels. 9 This slow stiffening occurs during the course of several hours, similar to the time course observed in vivo; however, additional in vitro studies have demonstrated that more rapid mechanical perturbations also affect cardiomyocyte differentiation and maturation. In some cases, cyclic
mechanical strain improved cell survival and cardiomyogenesis,13,164 but impaired cardiomyocyte differentiation in others.166 These conflicting results may arise artificially based on experimental design (time course, stimulation frequency, etc.) but may also reflect differences in cell type (mouse versus human) or maturation stage (pluripotent versus specified).

Mechanistic studies have implicated cell adhesive contacts as mediators of force transduction. Several intracellular signaling pathways associated with integrins such as the phosphoinositide 3-kinase/protein kinase B and p38 mitogen-activated protein kinase pathways were found to be upregulated in response to dynamic stiffening, suggesting that integrins may be mediators of the external mechanical cues leading to improved cardiomyocyte differentiation and maturation.14

Integrin internalization via endocytosis is enhanced on softer substrates; thus, as cardiac tissue stiffens during development, integrin signaling may be enhanced because of a greater number of receptors present at the cell surface.120 In addition, integrin expression is upregulated in response to mechanical stimulation, indicating that forces improve cell adhesion and FA assembly, potentially increasing downstream FA-mediated signaling to modify cardiomyogenesis.140,164 However, future work to clarify the impact of both passive and dynamic forces remains to be done to gain a full understanding of the role of mechanics in cardiomyogenesis.

\textbf{Perspectives: Implications for Disease and Tissue Regeneration}

Continued work in clarifying the role of mechanical signaling in myocardial development has the potential to largely broaden our understanding of the origin of congenital and adult heart disease and dysfunction, as well as to affect future therapies aimed at treating these disorders. Abnormal mechanical cues during development and reduced expression of mechanosensitive receptors or proteins can lead to heart deformations or the emergence of cardiomyopathies. For example, as described above, knockout of various integrin receptors and consequently, cell–ECM interactions that maintain cell shape and tension cues, can create several cardiac defects. In addition, mutations in force-sensitive cytoskeletal proteins such as vinculin, titin, integrin-linked kinase, dystrophin, or sarcoglycan are associated with the development of dilated or hypertrophic cardiomyopathies.166 Cytoskeletal maintenance of cell shape drives the healthy function of cardiomyocytes, but when cytoskeletal remodeling occurs in response to changing mechanical forces (ie, pressure or volume overload), pathological states develop.21 To develop efficacious treatments for these diseases, we must consider not only the biophysical or biochemical contributions to the disease state in isolation but also examine how both of these pathways feed into each other to create the complex network of signaling that occurs physiologically.

Because the adult heart holds a limited capacity for regeneration, efforts to generate myocardial cells and tissue from human pluripotent stem cells have garnered significant attention in recent years. These engineered cells and tissues have potential uses as regenerative therapies or as improved in vitro platforms for drug discovery and testing. Ongoing work has established highly efficient cardiomyocyte differentiation protocols based on modulation of FGF, Wnt, TGFβ, or BMP pathways (reviewed in Burridge et al167), but these methods produce cardiomyocyte populations that contain large heterogeneity in structural and functional maturation. For this reason, novel techniques to engineer cardiomyocytes and cardiac tissue based on a variety of physical signals are being investigated in an attempt to generate mature cells and tissues that more faithfully recapitulate the in vivo myocardium.168,169 As described in this review and elsewhere,165,170 mechanical forces play a significant role in vivo development and cardiomyogenesis, which suggests that similar physical cues may aid in the ex vivo production of cardiomyocytes and promote their organization into artificial cardiac tissues and organoids. In fact, development of tissue culture platforms that investigate the effects of substrate elasticity,163,171 stretching, and shearing13,172,173 has indicated that these systems have potential to improve the efficiency of human pluripotent stem cell differentiation into mature cardiomyocytes. In addition, mechanical stimulation of engineered cardiac tissues can improve their function and these grafts have the capacity to repair damaged heart tissue in vivo.174 Thus, by leveraging the important roles that mechanical cues play at multiple stages during cardiomyogenesis, we can engineer grafts from the cellular to the tissue level and create more effective regenerative strategies for cardiac disease and dysfunction.

\textbf{Conclusions and Future Directions}

Multicellular organisms use a wide array of signaling cues to govern their elaborate patterning and organization from the most basic level of a single cell up to the complex interworking of organ systems. Beginning with the appearance of the first cardiac precursors in the pregastrulation epiblast and continuing through the morphological organization of the beating 4-chambered heart, both soluble cues and biophysical signals regulate cardiomyogenesis. In this review, we have summarized several major chemical pathways contributing to cardiac development and proposed multiple points at which mechanical cues intersect these well-studied pathways to mediate the process. Although the study of mechanotransduction is a relatively new one, great strides have been made in uncovering the function of biophysical influences on cardiac development, function, and disease. However, many of the biochemistry–biophysical interactions discussed in this review have yet to be thoroughly characterized and require future investigation to fully unravel their role in cardiomyogenesis. An example of this discussed above is that although cyclic stretch has been shown to release latent TGFβ ligands from the ECM to influence myofibroblast differentiation, its influence on cardiac progenitor differentiation has not been investigated. Multiple TGFβ pathways influence cardiomyocyte differentiation, so although it has not been shown yet, it can be assumed that cyclic stretch might act in the same way to regulate differentiation. Although cyclic stretch improves cardiomyocyte differentiation, its actions are not limited to TGFβ signaling. Other instances of TGFβ’s mechanical influence include integrin or cadherin signaling; further studies should also help to clarify the complex role of biophysical interactions with these signaling pathways. Beyond TGFβ, the other signaling pathways described here are equally likely to have complex biochemical–biophysical interactions, both during development and in
an adult context. Yet by exploiting knowledge gained about the mechanotransduction pathways activated during development specifically, we have the opportunity to generate novel regenerative strategies for disease intervention. For example, by using applied cyclic stretch to populations of cultured cardiomyocytes and modulating mechanotransduction pathways in the cell, more mature cardiomyocytes may be produced that can then be used for cell transplantation therapies, in vitro modeling or drug discovery. Ultimately, by uncovering the ways in which mechanical forces influence development and adding this knowledge to the prevailing chemical gradient-based views, we will create a more complete picture of mammalian cardiomyogenesis. Advances in this direction will aid future work toward clarifying the healthy development and function of myocardial tissue and assist in creating an understanding of pathological and disease states.

Sources of Funding

We thank the National Institutes of Health and American Heart Association for funding support (ROI AG045428 to A.J. Engler and 1SPO1ST25720070 to C.L. Happe).

Disclosures

None.

References

by guest on July 22, 2017 http://circres.ahajournals.org/ Downloaded from

155. Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and

Mechanical Forces Reshape Differentiation Cues That Guide Cardiomyogenesis
Cassandra L. Happe and Adam J. Engler

Circ Res. 2016;118:296-310
doi: 10.1161/CIRCRESAHA.115.305139
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/118/2/296

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/