Abstract: The clinical correlations linking diabetes mellitus with accelerated atherosclerosis, cardiomyopathy, and increased post-myocardial infarction fatality rates are increasingly understood in mechanistic terms. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Intracellular hyperglycemia causes excessive ROS production. This activates nuclear poly(ADP-ribose) polymerase, which inhibits GAPDH, shunting early glycolytic intermediates into pathogenic signaling pathways. ROS and poly(ADP-ribose) polymerase also reduce sirtuin, PGC-1α, and AMP-activated protein kinase activity. These changes cause decreased mitochondrial biogenesis, increased ROS production, and disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS production also facilitates nuclear transport of proatherogenic transcription factors, increases transcription of the neutrophil enzyme initiating NETosis, peptidylarginine deiminase 4, and activates the NOD-like receptor family, pyrin domain-containing 3 inflammasome. Insulin resistance causes excessive cardiomyocyte ROS production by increasing fatty acid flux and oxidation. This stimulates overexpression of the nuclear receptor PPARα and nuclear translocation of forkhead box O 1, which cause cardiomyopathy. ROS also shift the balance between mitochondrial fusion and fission in favor of increased fission, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. Mitochondrial oxidative stress also plays a central role in angiotensin II–induced gap junction remodeling and arrhythmogenesis. ROS contribute to sudden death in diabetes after myocardial infarction by increasing post-translational protein modifications, which cause increased ryanodine receptor phosphorylation and downregulation of sarco-endoplasmic reticulum Ca++-ATPase transcription. Increased ROS also depress autonomic ganglion synaptic transmission by oxidizing the nAch receptor α3 subunit, potentially contributing to the increased risk of fatal cardiac arrhythmias associated with diabetic cardiac autonomic neuropathy. (Circ Res. 2016;118:1808-1829. DOI: 10.1161/CIRCRESAHA.116.306923.)

Key Words: atherosclerosis ■ diabetes mellitus ■ heart failure ■ insulin resistance ■ myocardial infarction ■ reactive oxygen species
We are in the midst of a global diabetes mellitus epidemic. Since 1985, the number of people with diabetes mellitus has increased from 30 million to nearly 400 million, and the number of people with diabetes mellitus is increasing rapidly in every country. Predictably, as the number of people with diabetes mellitus has increased, a worldwide epidemic of diabetic complications has followed. Cardiovascular disorders are by far the leading cause of death in people with diabetes mellitus, reducing the median life expectancy for diabetic adults aged 55 to 64 years by 8 years.1 Unlike microvascular complications, which are unique to diabetes mellitus, diabetic cardiovascular disorders are clinically similar to cardiovascular diseases in people without diabetes mellitus. However, there are important differences with major clinical implications.

First, diabetes mellitus causes accelerated atherosclerosis, with greater inflammatory infiltrate (macrophages and T lymphocytes), larger necrotic core size, and more diffuse atherosclerosis in the coronary arteries.2 In the general US population, deaths because of coronary artery disease have declined substantially during the past decades in the general population. In contrast, in people with diabetes mellitus the reduction in deaths because of coronary artery disease has been much less dramatic.3 Second, diabetes mellitus increases both diastolic heart failure with preserved ejection fraction and systolic heart failure with reduced ejection fraction. Even after adjustment for standard risk factors, diabetes mellitus increases heart failure risk 4-fold. Contributing factors include diabetes mellitus–induced cardiomyocyte dysfunction (cardiomyopathy), impaired microvascular perfusion because of defective endothelial function, increased collagen deposition with fibrosis, and maladaptive remodeling after myocardial infarction, leading to both diastolic and systolic heart failure.4 Third, diabetes mellitus increases both early (30 days) and late (1 year) post-myocardial infarction (MI) fatality rates.5 The fatality rate for people with diabetes mellitus is nearly twice the rate for people without diabetes mellitus at both the time points. A major cause of post-MI mortality is ventricular arrhythmia.

Diabetes mellitus–induced downregulation of sarco-endoplasmic reticulum Ca++-ATPase (SERCA2a) transcription and increased phosphorylation of the ryanodine receptor by activated calmodulin-dependent protein kinase II (CaMKII)6,7 increase intracellular Ca++, contributing to potentially fatal arrhythmias such as premature ventricular complexes and delayed afterdepolarizations, and activation of a mitochondrial/oxidized–CaMKII pathway8 contributes to increased sudden death in diabetic mice after myocardial infarction. Cardiac autonomic neuropathy, present in almost 50% of patients with diabetes mellitus and coronary artery disease, is associated with a significantly increased risk for fatal cardiac arrhythmias.9

Biochemical, Molecular, and Cellular Mechanisms

Conceptual Overview

Virtually all the data to be discussed in this section comes from studies of murine models and of cultured cells. Murine models are valuable tools for defining the pathogenesis of diabetic cardiovascular disorders. They have significant limitations, however, and it is important to recognize some of their limits. First, no diabetic animal model, regardless of genetic background, recapitulates the structural and functional alterations of human diabetic cardiovascular disease. Rodent models of diabetes mellitus do not develop coronary atherosclerosis with complex plaque formation and plaque rupture, nor do they develop the degree of fibrosis seen in human hearts with late stage diabetes mellitus–associated heart failure. Second, most of the mechanistic data currently available comes from studies of the earliest stages of each complication. Murine atherosclerosis, for example, is limited to foam cell accumulation and fatty streaks in a restricted anatomic distribution. Mechanisms dominant in the pathogenesis of fibrous plaques, complicated lesions, and plaque rupture are likely different from those dominant in fatty streak formation. Cultured cell experiments also have important limitations. Cells from species that do not develop diabetic cardiovascular disease are unlikely to respond to hormonal and metabolic perturbations in the same way as human cells. Immortalized human cell lines metabolize glucose and other relevant substrates differently from primary human cells. Even primary human cell studies are limited by the lack of important interactions with other cell types within and between different tissues that occur.

Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Advanced glycation end-products</td>
</tr>
<tr>
<td>ALCAT1</td>
<td>Acyl-CoA:lysocardiolipin acyltransferase 1</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ApoE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>CaMKII</td>
<td>Calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CHOP</td>
<td>C/EBP-homologous protein</td>
</tr>
<tr>
<td>DRP1</td>
<td>Dynamin-related protein 1</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>FOXO</td>
<td>Forkhead box O</td>
</tr>
<tr>
<td>GLO1</td>
<td>Glyoxalase-1</td>
</tr>
<tr>
<td>GlcNAc-6-P</td>
<td>N-acetylgalactosamine-6-phosphate</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin</td>
</tr>
<tr>
<td>klf15</td>
<td>Kruppel-like factor 15</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LpL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>MCECs</td>
<td>Mouse coronary endothelial cells</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>NET</td>
<td>Neutrophil extracellular traps</td>
</tr>
<tr>
<td>NFkB</td>
<td>Nuclear factor-κB</td>
</tr>
<tr>
<td>NFAT</td>
<td>Nuclear factor of activated T cell</td>
</tr>
<tr>
<td>Nr12</td>
<td>Nuclear erythroid–related factor 2</td>
</tr>
<tr>
<td>OGT</td>
<td>O-GlcNAc transferase</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly(ADP-ribose) polymerase</td>
</tr>
<tr>
<td>PI3-K</td>
<td>Phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for AGE</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SERCA2a</td>
<td>Sarco-endoplasmic reticulum Ca++-ATPase</td>
</tr>
<tr>
<td>UDP-GlcNAc</td>
<td>UDP-N-acetylgalactosamine</td>
</tr>
</tbody>
</table>

References:
1. Shah and Brownlee. Mechanisms of Cardiovascular Disorders in Diabetes Mellitus. 1809
2. We are in the midst of a global diabetes mellitus epidemic. Since 1985, the number of people with diabetes mellitus has increased from 30 million to nearly 400 million, and the number of people with diabetes mellitus is increasing rapidly in every country. Predictably, as the number of people with diabetes mellitus has increased, a worldwide epidemic of diabetic complications has followed. Cardiovascular disorders are by far the leading cause of death in people with diabetes mellitus, reducing the median life expectancy for diabetic adults aged 55 to 64 years by 8 years. Unlike microvascular complications, which are unique to diabetes mellitus, diabetic cardiovascular disorders are clinically similar to cardiovascular diseases in people without diabetes mellitus. However, there are important differences with major clinical implications.
3. First, diabetes mellitus causes accelerated atherosclerosis, with greater inflammatory infiltrate (macrophages and T lymphocytes), larger necrotic core size, and more diffuse atherosclerosis in the coronary arteries. In the general US population, deaths because of coronary artery disease have declined substantially during the past decades in the general population. In contrast, in people with diabetes mellitus the reduction in deaths because of coronary artery disease has been much less dramatic. Second, diabetes mellitus increases both diastolic heart failure with preserved ejection fraction and systolic heart failure with reduced ejection fraction. Even after adjustment for standard risk factors, diabetes mellitus increases heart failure risk 4-fold. Contributing factors include diabetes mellitus–induced cardiomyocyte dysfunction (cardiomyopathy), impaired microvascular perfusion because of defective endothelial function, increased collagen deposition with fibrosis, and maladaptive remodeling after myocardial infarction, leading to both diastolic and systolic heart failure. Third, diabetes mellitus increases both early (30 days) and late (1 year) post-myocardial infarction (MI) fatality rates. The fatality rate for people with diabetes mellitus is nearly twice the rate for people without diabetes mellitus at both the time points. A major cause of post-MI mortality is ventricular arrhythmia.
4. Diabetes mellitus–induced downregulation of sarco-endoplasmic reticulum Ca++-ATPase (SERCA2a) transcription and increased phosphorylation of the ryanodine receptor by activated calmodulin-dependent protein kinase II (CaMKII) increase intracellular Ca++, contributing to potentially fatal arrhythmias such as premature ventricular complexes and delayed afterdepolarizations, and activation of a mitochondrial/oxidized–CaMKII pathway contributes to increased sudden death in diabetic mice after myocardial infarction. Cardiac autonomic neuropathy, present in almost 50% of patients with diabetes mellitus and coronary artery disease, is associated with a significantly increased risk for fatal cardiac arrhythmias.

Conceptual Overview

Virtually all the data to be discussed in this section comes from studies of murine models and of cultured cells. Murine models are valuable tools for defining the pathogenesis of diabetic cardiovascular disorders. They have significant limitations, however, and it is important to recognize some of their limits. First, no diabetic animal model, regardless of genetic background, recapitulates the structural and functional alterations of human diabetic cardiovascular disease. Rodent models of diabetes mellitus do not develop coronary atherosclerosis with complex plaque formation and plaque rupture, nor do they develop the degree of fibrosis seen in human hearts with late stage diabetes mellitus–associated heart failure. Second, most of the mechanistic data currently available comes from studies of the earliest stages of each complication. Murine atherosclerosis, for example, is limited to foam cell accumulation and fatty streaks in a restricted anatomic distribution. Mechanisms dominant in the pathogenesis of fibrous plaques, complicated lesions, and plaque rupture are likely different from those dominant in fatty streak formation. Cultured cell experiments also have important limitations. Cells from species that do not develop diabetic cardiovascular disease are unlikely to respond to hormonal and metabolic perturbations in the same way as human cells. Immortalized human cell lines metabolize glucose and other relevant substrates differently from primary human cells. Even primary human cell studies are limited by the lack of important interactions with other cell types within and between different tissues that occur.

Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Advanced glycation end-products</td>
</tr>
<tr>
<td>ALCAT1</td>
<td>Acyl-CoA:lysocardiolipin acyltransferase 1</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>ApoE</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>CaMKII</td>
<td>Calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CHOP</td>
<td>C/EBP-homologous protein</td>
</tr>
<tr>
<td>DRP1</td>
<td>Dynamin-related protein 1</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>FOXO</td>
<td>Forkhead box O</td>
</tr>
<tr>
<td>GLO1</td>
<td>Glyoxalase-1</td>
</tr>
<tr>
<td>GlcNAc-6-P</td>
<td>N-acetylgalactosamine-6-phosphate</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin</td>
</tr>
<tr>
<td>klf15</td>
<td>Kruppel-like factor 15</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LpL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>MCECs</td>
<td>Mouse coronary endothelial cells</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>NET</td>
<td>Neutrophil extracellular traps</td>
</tr>
<tr>
<td>NFkB</td>
<td>Nuclear factor-κB</td>
</tr>
<tr>
<td>NFAT</td>
<td>Nuclear factor of activated T cell</td>
</tr>
<tr>
<td>Nr12</td>
<td>Nuclear erythroid–related factor 2</td>
</tr>
<tr>
<td>OGT</td>
<td>O-GlcNAc transferase</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly(ADP-ribose) polymerase</td>
</tr>
<tr>
<td>PI3-K</td>
<td>Phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor for AGE</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SERCA2a</td>
<td>Sarco-endoplasmic reticulum Ca++-ATPase</td>
</tr>
<tr>
<td>UDP-GlcNAc</td>
<td>UDP-N-acetylgalactosamine</td>
</tr>
</tbody>
</table>
in human cardiovascular disease. For example, the development of human atherosclerosis involves cross talk among endothelial, smooth muscle, inflammatory, and phagocytic cells in the arterial wall, as well as interactions with cells whose functions are altered by diabetes mellitus in the bone marrow, visceral fat, and liver. Despite these limitations, however, there has been enormous recent progress in understanding the biochemical, molecular, and cellular mechanisms involved in the pathogenesis of diabetic cardiovascular disorders. Many of these are described in several excellent recent reviews.10–12

Hyperglycemia and insulin resistance are the 2 major consequences of diabetes mellitus responsible for cardiovascular disorders in patients with diabetes mellitus, and the mechanisms associated with each are presented in the following sections. The multiple mechanisms discussed in this review seem to share a common element: prolonged increases in reactive oxygen species (ROS) production in diabetic cardiovascular cells. Physiological levels of ROS (H₂O₂) are signaling molecules essential for normal cardiovascular cell homeostasis. However, ROS production at too high a level, for too long, or at an inappropriate subcellular location, leads to impaired cellular function and cardiovascular pathology.

Mechanisms of Hyperglycemia-Induced Cardiovascular Damage

Increased Aldose Reductase Substrate Conversion

Aldose reductase, a member of the large aldo-keto reductase superfamily, catalyzes the reduction of a wide variety of hydrophobic and hydrophilic carbonyl-containing compounds—including glucose and several glycolytic intermediates—to their corresponding alcohols. This enzyme is cytosolic and requires NADPH as a cofactor. In some cell types, where glucose is converted to the sugar alcohol sorbitol, sorbitol is then converted to fructose by another enzyme, sorbitol dehydrogenase, using NAD⁺ as a cofactor. This series of reactions, termed the polyol pathway, has been implicated in the pathogenesis of several diabetic complications, including diabetic cardiovascular disease.13

In diabetic apolipoprotein E (ApoE) knockout mice, overexpression of human aldose reductase accelerated atherosclerosis and pharmacological inhibition of the enzyme prevented this.14 In the same model, diabetes mellitus caused sustained activation of the C2H2-type zinc-finger transcription factor Egr-1, and pharmacological inhibition of the enzyme unexpectedly caused increased early atherosclerotic lesion size in both diabetic and nondiabetic mice.15 Differences in total enzyme activity, cofactor levels, and levels of alternative intracellular substrates, coupled with known differences in enzyme kinetics for different substrates, likely explain these seemingly paradoxical observations.

Increased Intracellular Formation of the Major Advanced Glycation End-Products–Precursor Methylglyoxal

The post-translational modifications of proteins called advanced glycation end-products (AGEs) are formed by glucose-derived dicarbonyls reacting with amino groups of unprotonated lysine and arginine residues of proteins. Methylglyoxal, formed by the nonenzymatic fragmentation of the glycolytic intermediate triose-phosphate, accounts for the majority of hyperglycemia-induced increase in AGE adducts in diabetic tissues.16 Intracellular methylglyoxal is detoxified by the glyoxalase system.17 The enzyme glyoxalase I, together with glyoxalase II and a catalytic amount of glutathione, reduces this highly reactive α-oxoaldehyde to β-lactate. In cells, methylglyoxal reacts with unprotonated arginine residues to form the major methylglyoxal-derived epitope MG-H1 (methylglyoxal hydroimidazolone 1). Intracellular production of AGE precursors damages target cells by 3 general mechanisms. First, AGE modification of intracellular proteins changes their function. Second, AGE modification of extracellular matrix components alters their interaction with other matrix components and with integrin matrix receptors. Third, intracellular methylglyoxal increases expression of both the pattern recognition receptor receptor for AGEs (RAGEs) and its major endogenous ligands, the proinflammatory S100 calgranulins.18 Ligation of these ligands with RAGE causes cooperative interaction with the innate immune system signaling molecule toll-like receptor 4.20 Expressions of RAGE, S100A8, S100A12, and HMGB1 are all increased by high levels of glucose in cell culture and in diabetic animals. This hyperglycemia-induced overexpression is mediated by ROS-induced increases in methylglyoxal, which increase binding of the transcription factors nuclear factor-κB (NF-κB) and activator protein 1 to the promoters of RAGE and of RAGE ligands, respectively.19

Recent work has identified increased methylglyoxal as an important element in the pathogenesis of both diabetic atherosclerosis and diabetic cardiomyopathy. In nondiabetic ApoE null mice, increasing plasma methylglyoxal levels to diabetic levels using a glyoxalase-1 (GLO1) inhibitor caused endothelial inflammation and atherogenesis similar to that induced by diabetes mellitus.21 In human atherosclerotic plaques, MG-H1 levels were associated with rupture-prone plaques having increased levels of the inflammatory mediators interleukin (IL)-8 and monocyte chemotactic protein-1 (MCP-1), and higher MMP-9 activity. MG-H1 was primarily found in lesion macrophages surrounding the necrotic core, and colocalized with cleaved caspase-3.22 In the diabetic heart, methylglyoxal preferentially reacts with both ryanodine receptor 2, the major myocardial intracellular mediator of calcium-induced calcium release, and with SERCA2a, which is responsible for the synchronized reuptake of released intracellular calcium. This coordinated process of calcium cycling is critical for efficient cardiac contractions, and diabetes mellitus–induced defects caused by increased methylglyoxal adduct formation and increased O-GlcNAcylation likely contribute to impaired systolic function. Increased methylglyoxal production also seems to be responsible for poor cardiac stem cell–mediated repair and angiogenic capacity.23

Cardiac stem cells from biopsies of hearts from human diabetics were less able to repair postinfarction damage in immunodeficient mice than cardiac stem cells from nondiabetic patients, and conditioned medium from these cells had less angiogenic capacity. Culture of nondiabetic murine cardiac stem cells in high glucose induced the same cardiac repair and...
angiogenic defects seen in human diabetic cells. In both human and mouse cells, overexpression of GLO1 restored the angiogenic defects. In diabetic mice with defective post-ischemia hindlimb revascularization, overexpression of the methylglyoxal-metabolizing enzyme GLO1 exclusively in bone marrow cells was sufficient to restore bone marrow cell function and neovascularization of ischemic tissue in diabetes mellitus.

Increased methylglyoxal also activates the unfolded protein response in cardiomyocytes. Although transient activation of the unfolded protein response relieves ER stress, prolonged activation of the unfolded protein response in cardiovascular disease triggers apoptosis, mediated by the downstream effector C/EBP-homologous protein (CHOP). CHOP plays a critical role in macrophage apoptosis, a process involved in plaque necrosis in advanced atheroma. In Chop−/−ApoE−/− mice, lesion area plaque necrosis was reduced by 50%. In high-fat fed ApoE−/− and low-density lipoprotein (LDL) receptor−/− mice, CHOP promotes plaque growth, apoptosis, and plaque necrosis. In cardiomyocytes, methylglyoxal also induces apoptosis via CHOP. Infusion of methylglyoxal in nondiabetic mice induced cardiomyocyte apoptosis, inflammation, and a significant reduction in left ventricular (LV) fractional shortening and LV ejection fraction. Each of these adverse effects was prevented in CHOP−/− mice. In the hearts of diabetic mice, overexpression of GLO1 in the vasculature prevented diabetes mellitus–induced reduction of myocardial capillary density, increased apoptosis, and loss of cardiac function. Neuregulin production, which transduces signals between the heart’s microvasculature and cardiomyocytes, endothelial nitric oxide synthase (eNOS) dimerization, and Bcl-2 expression were also maintained in the diabetic GLO1 transgenic hearts.

Activation of Protein Kinase C β, δ, and θ

Protein kinase C (PKC) is a family of protein kinase enzymes with 15 isoforms that are involved in the regulation of protein function. Nine of these 15 PKC isoforms are activated by a lipid second-messenger, diacylglycerol. Elevated intracellular glucose levels increase diacylglycerol levels in a variety of diabetic target tissues, including arterial smooth muscle cells and cardiomyocytes by de novo synthesis. Hyperglycemia primarily activates the β and δ isoforms of PKC, but increases in activity of several other isoforms have also been found. These PKC isoforms can also be activated by intracellular ROS in the absence of diacylglycerol or Ca++. The regulatory domain of these PKC isoforms contains 2 pairs of zinc fingers with 6 cysteine residues and 2 zinc atoms, which can be oxidized by intracellular ROS. Oxidation alters zinc-finger conformation and activates PKC. Many cellular abnormalities involved in diabetic cardiovascular disease have been linked to PKC activation. These include endothelial dysfunction, increased vascular permeability, impaired angiogenesis, and increased apoptosis. Molecular mechanisms affected by diabetes mellitus–induced PKC activation include alterations in functionally significant enzymatic activities, such as mitogen-activated protein kinase, cytosolic phospholipase A2, and Na+–K+–ATPase, and alterations in several transcription factors.

Hyperglycemia-induced activation of PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice by augmenting expression of inflammatory mediators. In addition, it increased macrophage expression of cluster of differentiation 11c (CD11c; integrin, α X complement component 3 receptor 4 subunit), chemokines (C–C motif ligand 2), and interleukin-1β via increased extracellular signal–regulated kinase 1 and 2 and Jun-N-terminal kinase–mitogen-activated kinase. In this same diabetic model, PKCβ activation increased transcription of the proinflammatory cytokine IL-18 and inhibited transcription of IL-18–binding protein in the aorta. Diabetic mice showed increased plaque formation, cholesteryl ester content, and macrophage infiltration. Treatment with a PKCβ inhibitor prevented these. PKC-β2 in endothelial cells from transgenic ApoE null mice overexpressing PKCβ decreased insulin-stimulated Akt/eNOS activation and increased basal and angiotensin-induced expression of the vasoconstrictor endothelin-1. These dual effects increased endothelial dysfunction and accelerated atherosclerosis in this model compared with ApoE−/− mice.

PKC activity has also been linked to myocardial dysfunction, causing cardiomyopathy and cardiac failure. Ruboxistaurin, a PKCβ inhibitor, improved the metabolic gene profile and reduced PKC activity in diabetic hearts without altering levels of circulating metabolites. Selective overexpression of PKC-β2 in the myocardium of diabetic mice increased expression of connecitve tissue growth factor and transforming growth factor-β1, cardiomyopathy and cardiac fibrosis. More recently, activation of PKCα/β in diabetic hearts has been shown to mediate reactivation of fetal splicing programs in diabetic hearts by phosphorylation and up-regulation of the RNA-binding proteins CELF1 and RBfox2. Chronic activation of PKC isoforms α, β, and δ promotes diastolic and systolic dysfunction, fibrosis, cardiomyocyte hypertrophy, and apoptosis. Another PKC isoform, PKC θ, plays crucial roles in the proliferation, differentiation, and activation of mature T cells via activation of several transcription factors in the nuclei of T cells, including nuclear factor of activated T cells (NFAT), c-Jun, c-Fos and activator protein 1. Diabetes mellitus–induced cardiac interstitial fibrosis, reduced contractility, reduced expression of the tight junction maintaining protein ZO-1, and T-cell infiltration were all improved by treatment with an isoform-specific PKC θ inhibitor.

Increased Protein Modification by O-GlNAC

The hexosamine pathway causes reversible post-translation modification of intracellular protein serine and threonine residues by N-acetylglucosamine. In cells damaged by hyperglycemia, excess intracellular glucose provides increased fructose-6-phosphate, which is converted to glucosamine-6-phosphate by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase. Glucosamine-6-phosphate is further converted to N-acetylglucosamine-6-phosphate (GlcNAc-6-P) and finally to UDP-N-acetylglucosamine (UDP-GlcNAc). The enzyme O-GlcNAc transferase (OGT) uses UDP-GlcNAc to transfer N-acetylglucosamine to a variety of proteins, resulting in increased protein modification by N-acetylglucosamine. Another enzyme,
N-acetylglucosaminidase (O-GlcNAcase or OGA), removes this protein modification. Alternative splicing of the genes encoding the O-linked GlcNAc cycling enzymes OGT and OGA yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. O-GlcNAc serves as a nutrient/stress sensor regulating cellular homeostasis by altering signaling, transcription, metabolism, organelle biogenesis, cytoskeletal dynamics, and apoptosis.40,41

The role of the hexosamine pathway in cardiovascular disease has been reviewed recently.42 Studies have linked chronically elevated O-GlcNAc levels to diabetic cardiovascular complications. Adverse cardiac effects of chronically increased O-GlcNAcylation include decreased mitochondrial function, decreased autophagic signaling, and decreased contractile function. In mouse coronary endothelial cells isolated from diabetic mice, O-GlcNAcase protein expression was significantly decreased compared with control mouse coronary endothelial cells. In contrast, OGT protein expression was markedly increased.43 The resultant increased protein modification by O-GlcNAc was responsible for decreased endothelium-dependent relaxation of the coronary arteries and reduced capillary density in the left ventricle. Both of these defects were restored by overexpression of O-GlcNAcase.

Decreased endothelium-dependent relaxation of the coronary arteries and reduced capillary density both reflect inhibition of eNOS, which is required for endothelium-dependent arterial relaxation and for mobilization of stem and progenitor cells from the bone marrow compartment.44 In human arterial endothelial cells, activation of eNOS by phosphorylation at Serine 1177 is inhibited directly by hyperglycemia-induced O-GlcNAcylation at this site45 and indirectly by reduced insulin-stimulated phosphatidylinositol 3-kinase (PI3-K) and Akt activity by O-GlcNAc modification. eNOS activity is also affected by several other post-translational modifications, but the effect of diabetes mellitus on these has not yet been determined.46 Carotid plaques from diabetic patients have a marked increase of O-GlcNAcylation in both cytoplasm and nuclear compartments of endothelial cells compared with nondiabetic subjects.47 Increased O-GlcNAcylation may also contribute to diabetic accelerated atherosclerosis by increasing ubiquitination and proteasomal degradation of the anti-inflammatory NF-κB inhibitory protein A20 in coronary endothelial and smooth muscle cells.48

Chronically elevated O-GlcNAc levels also adversely affect myocardial function. Ventricular contraction and relaxation are controlled mainly by release and uptake of Ca2+ by the SERCA2 pump. In hypertrophied and failing myocardium, SERCA2 protein level and its Ca2+ uptake function are depressed. Overexpression of OGT significantly reduced transcription of SERCA2, causing decreased calcium reuptake and impaired diastolic relaxation.49 High glucose also increased O-GlcNAc modification of the calcium/CaMKIIδ, an enzyme critical for Ca2+ homeostasis and reuptake in cardiomyocytes. O-GlcNAc-modified CaMKII at Ser 279 is increased in the heart of diabetic humans and rats,7 causing autonomous activation of CaMKII. Thus, CaMKII remains activated even after intracellular Ca2+ declines. This contributes to decreased cardiac contractility and potentially fatal arrhythmias, such as premature ventricular complexes and delayed afterdepolarizations (Figure 1). Delayed afterdepolarizations are associated with the initiation of long QT-interval arrhythmias, such as torsade de pointes. Overexpression of GlcNAcase or inhibition of GlcNAc modification increased expression of SERCA2a, ablated sarcoplasmic reticulum Ca2+ leak, improved cardiac contractility, and reduced arrhythmic events. Increased levels of ROS also cause autonomous activation of CaMKII by oxidation of adjacent methionine residues in its regulatory domain.50 Activation of this mitochondrial ROS–oxidized CaMKII pathway increased mortality after myocardial infarction in diabetic mouse models.8

Mitochondrial OGT is increased in diabetic cardiac myocardium, whereas O-GlcNAcase (OGA) is reduced, causing increased O-GlcNAcylation of cardiac mitochondrial proteins. Inhibition of OGA and the resulting increased mitochondrial protein modification by O-GlcNAc increases oxygen consumption and reduces reserve capacity.9 Reduced bioenergetic reserve capacity makes cells more sensitive to stress and cell death.

Different Hyperglycemia-Induced Pathogenic Mechanisms Reflect a Single Upstream Process: Overproduction of ROS

A single upstream hyperglycemia–induced process—overproduction of superoxide by the mitochondrial electron transport chain—activates all 4 mechanisms described in the previous sections51,52 (Figure 2). Enhanced intracellular glucose transport and oxidation leads to mitochondrial overproduction of superoxide.52–54 This can, in turn, activate other superoxide production pathways that may amplify the original damaging effect of hyperglycemia.55 Examples of amplification mechanisms include ROS-mediated uncoupling of eNOS dimers to eNOS monomers in endothelial cells, activation of various NADPH oxidase isoforms in cardiovascular cells, and increased mitochondrial fission mediated by the rho-associated protein kinase 1 (ROCK1).56–57 The initiating role of mitochondrial ROS is suggested by the observation that cells lacking mitochondrial electron transport chain function (p0 cells)53 fail to increase ROS production in response to high glucose.

In mitochondria, increased superoxide causes the release of Fe2+ from ferritin and iron sulfur cluster–containing proteins. Interaction of this released free iron with diffused mitochondrial superoxide–derived hydrogen peroxide forms hydroxyl radicals, the only ROS species capable of cleaving bonds in macromolecules.58 This results in ROS-mediated DNA double-strand breaks in the nucleus, which activate DNA repair mechanisms, including the enzyme poly(ADP-ribose) polymerase 1 (PARP-1). Activation of PARP-1 inhibits the key glycolytic enzyme GAPDH by polyADP-ribosylation, and depletes intracellular NAD+ by degrading it to ADP-ribosine and nicotinamide. Inhibition of GAPDH activity causes upstream accumulation of early glycolytic intermediates, which are diverted into the 4 pathogenic signaling pathways.52,59 Diversion of glucose increases polyol pathway flux, whereas diversion of fructose-6-phosphate increases hexosamine pathway activity. Diversion of glyceraldehyde-3-phosphate to α-glycerol phosphate activates PKC, and reduced activity of GAPDH diverts glyceraldehyde-3-phosphate to the highly reactive α-dicarbonyl...
methylglyoxal, which increases expression of the RAGE and its activating ligand S100A8/9. Together, these diversions and pathway activations lead to cellular dysfunction, inflammation, apoptosis, and fibrosis in cells exposed to excessive glucose flux. The central importance of ROS in initiating each of these processes is illustrated by the fact that each can be prevented when hyperglycemia-mediated ROS generation is curtailed by transgenic expression of the enzyme superoxide dismutase.52,59

Figure 1. Hyperglycemia-induced myocardial protein modification by O-GlcNAc causes increased intracellular Ca\(^{++}\) and delayed afterpolarizations. Increased intracellular glucose flux provides more substrate for the enzyme O-GlcNAc-transferase (OGT). This increases O-GlcNAc modification of calcium/calmodulin-dependent protein kinase IIIs (CaMKII), causing autonomous CaMKII activation. CaMKII increases intracellular Ca\(^{++}\) by phosphorylating ryanodine receptor 2 (RyR). OGT also modifies transcription complex factors regulating expression of sarcoplasmic reticulum Ca\(^{++}\)-ATPase (SERCA2), reducing SERCA2A expression and contributing to increased intracellular Ca\(^{++}\). Increased O-GlcNAc modification of these proteins causes delayed afterdepolarizations in cardiomyocytes. PLB indicates phospholamban.

Figure 2. Four hyperglycemia-induced pathogenic mechanisms are activated by overproduction of reactive oxygen species (ROS). Increased intracellular glucose flux causes mitochondrial overproduction of ROS, which can further amplify ROS production by activating NADPH oxidases and uncoupling endothelial nitric oxide synthase (eNOS). Stable ROS species diffuse into the nucleus, where they cause DNA damage and activation of poly(ADP-ribose) polymerase (PARP). PolyADP-ribosylation of glyceraldehyde-3-dehydrogenase (GAPDH) by PARP reduces GAPDH activity, which causes upstream accumulation of early glycolytic intermediates which are diverted into 4 pathogenic signaling pathways. AGEs indicates advanced glycation end-products; AKR1B1, aldose reductase; DAG, diacylglycerol; DHAP, dihydroxyacetone phosphate; GAT, glutamine fructose-6-phosphate amidotransferase; Glu, glucosamine; NF-\(\kappa\)B, nuclear factor-\(\kappa\)B; PKC, protein kinase C; RAGE, receptor for AGEs; and UDP-GlcNAc, uridine diphosphate N-acetylgalactosamine.
In arteries from patients undergoing coronary artery bypass surgery, the levels and activity of NAD(P)H oxidase protein subunits (p22phox, p67phox, and p47phox) were significantly increased. The endothelium was an additional net source of superoxide production because of dysfunctional endothelial NO synthase. Overexpression of the mitochondrial isoform of SOD also prevents hyperglycemia-induced inhibition of the antitherapeutic enzyme prostacyclin synthase. In diabetes mellitus, inhibition of prostacyclin synthase causes the common prostacyclin and thromboxane precursor prostaglandin \(\text{H}_2 \) to be shunted toward thromboxane synthesis. Activation of thromboxane receptors triggers vasoconstriction, platelet aggregation, increased expression of leukocyte adhesion molecules, and apoptosis. In mice overexpressing the mitochondrial isoform of the hydrogen peroxide scavenging enzyme catalase (mCAT) in macrophages, lesional macrophage accumulation was successfully suppressed, causing a significant reduction in lesional area. The mCAT lesions had fewer monocyte-derived cells, fewer \(\text{Ly6c}(\text{hi}) \) monocyte infiltration into lesions, and lower levels of MCP-1. The decrease in lesional MCP-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of ReIA (NF-\(\xi \)B p65), indicating decreased activation of the proinflammatory NF-\(\xi \)B pathway. Thus, mitochondrial overproduction of ROS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-\(\xi \)B-mediated entry of monocytes and other inflammatory processes. Nox4 expression and activity are also increased in cardiomyocytes exposed to high glucose and in the heart of diabetic mouse models. Transgenic overexpression of the antioxidant enzymes Mn-SOD and catalase reduced ROS, and prevented diabetes mellitus–induced abnormalities in cardiac contractility in an animal model of diabetic cardiomyopathy.

Physiological ROS Production Is Essential for Normal Intracellular Signaling

In normal cardiovascular physiology, ROS production is coupled to circadian clocks and metabolic networks, and ROS species (\(\text{H}_2\text{O}_2 \)) function as signaling molecules essential for normal cellular homeostasis. Physiological ROS (\(\text{H}_2\text{O}_2 \)) signaling is essential for normal intracellular communication, cell differentiation, autophagy, response to insulin and growth factor stimulation, and the generation of physiological inflammatory responses. Enhanced production of \(\text{H}_2\text{O}_2 \) from a mitochondrial source of superoxide is observed when flow rate is increased in human coronary resistance vessels. Hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) hyperpolarizes and dilates human coronary arterioles through opening of \(\text{Ca}^{2+} \)-activated K+ channels. Catalase, a scavenger of \(\text{H}_2\text{O}_2 \), greatly inhibited this flow-induced dilation. Similarly, \(\text{H}_2\text{O}_2 \) exerted a beneficial effect on vasodilator function and reduced blood pressure in transgenic mice with endothelium-targeted Nox4 overexpression.

In the heart, low levels of hydrogen peroxide induce proliferation of mouse embryonic stem cells as well as neonatal cardiomyocytes, and ROS induce expression of cardiac-specific genes, transcription factors, and growth factors in embryonic stem cells. These effects are dampened by free radical scavengers. ROS also act as transducers of mechanical strain–induced cardiovascular differentiation of embryonic stem cells. ROS-dependent activation of integrins and subsequent induction of PI3-K/Akt signaling are also involved in cyclic strain–mediated cardiomyogenesis. Localized ROS production seems to play a role in stretch-induced augmentation of cardiac contractile activity as well. Physiological excitation–contraction coupling in heart muscle may also involve ROS signaling. Prosser et al. showed that physiological stretch rapidly activates Nox2 located on sarcolemmal and t-tube membranes in cardiomyocytes. The local ROS produced sensitizes ryanodine receptors in the sarcoplasmic reticulum. This triggers a burst of \(\text{Ca}^{2+} \) sparks, thereby increasing \(\text{Ca}^{2+} \) signaling sensitivity in healthy cardiomyocytes.

Thus, ROS production at an inappropriate place or time, for too long, at too high a level or of inappropriate forms lead to impaired cellular function and pathological gain of function, whereas ROS production at the right time, place, level, and duration plays a crucial role in physiological homeostasis.

Decreased Nuclear Erythroid–Related Factor 2 Activity

Mechanisms that can damage the cardiovascular system are normally counterbalanced by protective mechanisms that maintain homeostasis. In diabetes mellitus, however, the hyperglycemia, quantitative and qualitative changes in lipids, and insulin resistance which together promote tissue injury often inhibit these protective mechanisms. The number of recognized ROS-regulating enzymes has increased in recent years. Examples include superoxide dismutases, catalases, glutathione peroxidases, glutathione reductase, thioredoxins, thioredoxin reductases, methionine sulfoxide reductases, and peroxyreductins. The activity of these enzymes is largely determined by ROS-induced changes in their transcription. Increased transcription of many of these antioxidant enzymes is mediated by the transcription factor nuclear erythroid–related factor 2 (Nrf2), a member of the cap ‘n’ collar subfamily of basic region leucine zipper transcription factors. By regulating oxidant levels and oxidant signaling, Nrf2 participates in the control of inflammasome signaling, the unfolded protein response, apoptosis, mitochondrial biogenesis, and stem cell regulation.

Nrf2 also increases transcription of Glo1, the rate-limiting enzyme of the glyoxalase system, which prevents post-translational modification of proteins by methylglyoxal, the major AGE precursor. It also increases transcription of the rate-controlling enzyme in the nonoxidative branch of the pentose phosphate pathway, transketolase. Activation of transketolase by the lipid-soluble thiamine derivative benfotiamine inhibits 3 of the major hyperglycemia-driven pathways implicated in the pathogenesis of vascular diabetic vascular damage (the diacylglycerol-PKC pathway, the methylglyoxal–AGE formation pathway, and the hexosamine pathway) and inhibits hyperglycemia-induced NF-\(\xi \)B activation. Transketolase activation by benfotiamine also prevented high glucose-induced arterial endothelial cell death, improved diastolic and systolic function, prevented LV end-diastolic pressure increase and chamber dilatation, improved cardiac perfusion, and reduced cardiomyocyte apoptosis and interstitial fibrosis.
Nrf2 is expressed constitutively, and its intranuclear levels are controlled post-translationally. In the absence of inducers, Nrf2 associates with the redox-sensitive protein Kelch-like erythroid cell-derived protein with cap 'n' collar homology-associated protein 1 (Keap1), where it is rapidly polyubiquinated by Keap1-associated cullin-3 (Cul3)–RING E2 ubiquitin ligase proteins and degraded by proteasomes. Reactive oxygen species (ROS) oxidation of critical cysteine thiols of Keap1 causes release of bound Nrf2 protein. Phosphorylation of Nrf2 by protein kinases such as CK2 help target Nrf2 to the nucleus. Nrf2 forms heterodimers with small Maf proteins, which bind to the antioxidant response element (ARE) in its target gene promoters. After export of Nrf2 from the nucleus, cytosolic Nrf2 is phosphorylated by GSK3β. This phosphorylated Nrf2 is recognized by β-transducin repeat–containing protein (β-TrCP), a substrate adaptor for the S-phase kinase–associated protein-1–Cul1–F-box protein E3 ubiquitin ligase, which targets Nrf2 phosphorylated by GSK3β to the proteosome.

Increased mitochondrial oxidation of glucose or fatty acids activates nuclear factor of activated T cells (NFAT)–mediated transcription of genes promoting diabetic atherosclerosis and heart failure. Mitochondrial overproduction of reactive oxygen species (ROS) causes increased intracellular Ca²⁺, which activates the calcium-activated neutral cysteine protease calpain. Calpain then activates the Ca²⁺/calmodulin-dependent (CaM; Ca²⁺)-serine/threonine phosphatase calcineurin. Dephosphorylation facilitates nuclear translocation of the transcription factor NFAT. In the nucleus, NFAT interacts with polyADP-ribose polymerase (PARP), which increases NFAT transcriptional activity via NFAT polyADP-ribosylation. ICAM-1 indicates intercellular adhesion molecule-1; IL-6, interleukin-6; and MCP-1, monocyte chemoattractant protein-1.
as CK2 may help target Nrf2 to the nucleus. After forming heterodimers with small Maf proteins, Nrf2 binds to the antioxidant response element to induce transcription of its target genes. Export of Nrf2 from the nucleus is controlled by phosphorylation. Src family members such as Fyn phosphorylate Nrf2 at Tyr568, causing export from the nucleus and degradation. Reduction of Nrf2 protein in the cytosolic compartment is mediated by β-transducin repeat–containing protein, a substrate adaptor for the S-phase kinase-associated protein–1–Cul1–F-box protein E3 ubiquitin ligase, which targets Nrf2 phosphorylated by GSK3β to the proteosome (Figure 3).

Modification of critical Keap1 cysteine thiols by the dietary isothiocyanate sulforaphane also releases Nrf2. In endothelial cells, sulforaphane prevented hyperglycemia-induced activation of the hexosamine and PKC pathways and prevented increased cellular accumulation and excretion of the major AGE precursor methylglyoxal. In the aortae of diabetic mice, sulforaphane treatment restored aortic levels of Nrf2 and Nrf2-dependent antioxidant gene expression, preventing diabetes mellitus–induced activation of the nuclear PARP-1 is activated by intracellular hyperglycemia via ROS-induced DNA strand breaks (Figure 4).

NFAT Activation
The transcription factor NFAT has been implicated in the development of diabetic cardiovascular complications. Many of the cell types involved in diabetic cardiovascular disease express ≥ of the 4 calcium-dependent NFAT isoforms, NFATc1–NFATc4. In resting cells, NFAT proteins are phosphorylated and are located in the cytoplasm. In diabetes mellitus, intracellular calcium is increased by increased ROS. Increased intracellular calcium then activates NFAT by increasing NFAT dephosphorylation by the Ca2+/calmodulin-dependent serine/threonine phosphatase calcineurin, which facilitates NFAT translocation into the nucleus. Once in the nucleus, NFAT interacts with coregulators to achieve optimal NFAT activation. In the nucleus, ADP-ribosylation mediated by PARP-1 acts as a molecular switch to positively regulate NFAT-dependent cytokine gene transcription. In diabetes mellitus, nuclear PARP-1 is activated by intracellular hyperglycemia via ROS-induced DNA strand breaks (Figure 4).

In diabetic mice, activated NFATc3 plays a role in accelerated atherosclerosis. Activated NFATc3 induces arterial cell expression of the proinflammatory matrix protein osteopontin, a cytokine that promotes atherosclerosis and diabetic vascular disease. NFAT inhibition effectively reduced osteopontin, IL-6, MCP-1, intercellular adhesion molecule-1, CD68 and tissue factor expression in the arterial wall, and lowered plasma IL-6 in diabetic mice. In diabetic ApoE−/− mice, inhibition of NFAT-signaling completely suppressed a 2.2-fold increase in atherosclerotic plaque area. Inhibition of NFAT also reduced lipid content in the plaque of diabetic mice independent of plasma glucose and lipid levels. NFATc3 activated by increased mitochondrial ROS production also increases arterial vasoconstrictor reactivity to endothelin-1.

NFAT activation also seems to play a role in cardiac hypertrophy, fibrosis, and cardiomyocyte apoptosis. In the diabetic heart, NFAT is activated by the calcium-activated neutral cysteine protease calpain, which in turn activates calcineurin. In cardiomyocytes, high glucose increases calpain activity, which activates NFAT-dependent cardiac hypertrophy and heart failure. In 2 mouse models of diabetes mellitus, cardi-ac-specific deletion of calpain reduced myocardial hypertrophy and fibrosis, leading to the improvement of myocardial function. Calpain activation correlated with increased activity of NFAT and NFκB, consistent with calpain’s role in activation of calcineurin and degradation of the cytosolic NFκB inhibitor, NFκB inhibitor α.

Increased Peptidylarginine Deiminase 4 and NETosis Activation
Atherosclerotic lesions begin with the deposition of cholesterol-rich lipoproteins in the artery wall, followed by the entry of inflammatory leukocytes into lesions. Early lesions are characterized by infiltration of neutrophils and lipid-filled monocyte-derived macrophages. In coronary artery disease, inflammation becomes chronic, and lesions progress rather than resolve. During lesion progression, neutrophils and macrophages continue to accumulate, and recruit proinflammatory IL-17–producing T cells. Smooth muscle cell proliferation and altered matrix production occur. Advanced lesions containing a variety of inflammatory cell types accumulate a necrotic core, which contains dead macrophage foam cells, prothrombotic molecules, and matrix proteases. A large necrotic core predisposes to release of thrombogenic material because of protease erosion or rupture of the plaque.

Recently, Warnatsch et al showed that neutrophils prime macrophages for proinflammatory responses in atherosclerotic plaques. This priming is mediated by neutrophil extracellular traps (NETs), extracellular webs of DNA bound to cytotoxic histones which are released by activated neutrophils. This process, called NETosis, seems to follow a coordinated multistep process: histone citrullination, chromatin decondensation, migration of elastase and other granule enzymes into the nucleus, disintegration of the nuclear membrane and release of DNA, histones and granule proteins into the extracellular space. The release of NETs primes macrophages to produce pro-IL-1β, which is cleaved to mature proinflammatory IL-1β by caspase-1. Caspase-1, in turn, is secreted by macrophages in response to activation of the NOD-like receptor
family, pyrin domain-containing 3 (NLRP3) inflammasome (discussed in the following section; Figure 5). Apoe$^{-/-}$ mice with deletions of 2 serine proteases that localize to NETs, neutrophil elastase and proteinase-3 (Apoe$^{-/-}$/Ela2$^{-/-}$/Prtn3$^{-/-}$), developed dramatically smaller atherosclerotic lesions compared with Apoe$^{-/-}$ control animals, despite similar lipid concentrations and leukocyte counts in blood. Triple mutant mice had no NETs, lower systemic IL-1β concentration, and fewer lesional IL-17–producing T cells.99 NETs are also prothrombotic.96 Neutrophils from type 1 and

Figure 5. Diabetes mellitus increases neutrophil extracellular traps (NETs), priming macrophages for inflammation. Increased reactive oxygen species (ROS) increase transcription and activation of peptidylarginine deiminase 4 (PAD4), the enzyme which initiates formation and release of NETs by citrullination of histones. Released NETs prime macrophages to produce pro-interleukin (IL)-1β, which is cleaved to mature proinflammatory IL-1β by caspase-1 secreted by macrophages in response to NOD-like receptor family, pyrin domain-containing 3 inflammasome activation. αH4cit indicates α histone 4 with arginine residues converted to citrulline; αH4R, α histone 4 arginine; and Cit, citrullination.

Apoe$^{-/-}$ mice with deletions of 2 serine proteases that localize to NETs, neutrophil elastase and proteinase-3 (Apoe$^{-/-}$/Ela2$^{-/-}$/Prtn3$^{-/-}$), developed dramatically smaller atherosclerotic lesions compared with Apoe$^{-/-}$ control animals, despite similar lipid concentrations and leukocyte counts in blood. Triple mutant mice had no NETs, lower systemic IL-1β concentration, and fewer lesional IL-17–producing T cells.99 NETs are also prothrombotic.96 Neutrophils from type 1 and

Figure 6. NOD-like receptor family, pyrin domain-containing 3 (NRLP3) inflammasome activation in diabetic atherosclerosis. Intracellular hyperglycemia–induced reactive oxygen species (ROS) in monocytes and vascular endothelial cells increases receptor for advanced glycation end-products (RAGE) expression, which heterodimerizes with toll-like receptor 4 (TLR4). Signaling from this complex causes nuclear factor-κB (NF-κB)–mediated transcription of inactive NRLP3, pro-interleukin (IL)-1β, and pro-IL-18. Increased intracellular Ca++ triggers oligomerization of inactive NRLP3, associated with apoptosis–associated speck–like protein (ASC), and procaspase-1. This activated inflammasome complex catalyzes the conversion of procaspase-1 to caspase-1, and of pro-IL-1β and pro-IL-18 to mature IL-1β and IL-18. S100A8/12, calgranulin A/B heterodimer ligand for RAGE.
type 2 diabetic humans as well as mice are primed to produce NETs, and have increased expression of peptidylarginine deiminase 4, the enzyme critical for histone citrullination–mediated chromatin decondensation and NET formation. Increased peptidylarginine deiminase 4 transcription is driven by NFκB, which is chronically activated in diabetes mellitus. Hyperglycemia-induced ROS probably activate peptidylarginine deiminase 4 as well, by increasing intracellular Ca2+ concentration. Other consequences of increased intracellular ROS such as PKC activation increase levels of the NETosis-priming cytokine tumor necrosis factor-α. Normal resolution of inflammation caused by infiltration of neutrophils and macrophages involves a switch from synthesis of arachidonic acid–derived prostaglandins and leukotrienes to synthesis of lipoxins, which stop neutrophil recruitment. At the same time, increased production of resolvins and protectins from omega-3 polyunsaturated fatty acids induce neutrophil apoptosis. Phagocytosis of these apoptotic neutrophils by macrophages causes a switch to an anti-inflammatory macrophage phenotype, which secretes anti-inflammatory and reparative cytokines. The mechanism responsible for defective inflammatory lesion resolution in atherosclerosis and diabetes mellitus is not known.

NLRP3 Inflammasome Activation

Increased expression of the NOD-like receptor family, pyrin domain-containing 3 inflammasome components Nlrp3 and apoptosis-associated speck–like protein was found in monocytes from new, untreated patients with type 2 diabetes mellitus. Along with increased expression, there was an increased inflammasome activation. Consistent with this, the drug-naïve type 2 diabetic patients had significantly higher serum levels of the proinflammatory cytokines IL-1β and IL-18 than did healthy subjects. In a type 2 diabetic rat model, excessive activation of NLRP3 was associated with cardiac inflammation, cell death, disorganized ultrastructure, and fibrosis. NLRP3 gene silencing ameliorated cardiac inflammation, apoptosis, fibrosis, and LV cardiac dysfunction. The NLRP3 inflammasome is formed by oligomerization of inactive NLRP3, associated with apoptosis-associated speck–like protein, and procaspase-1. This complex, in turn, catalyzes the conversion of procaspase-1 to caspase-1, which contributes to the production and secretion of mature proinflammatory IL-1β and IL-18. The transcription factor NF-kB, which is chronically active in mononuclear cells from diabetic patients and in vascular endothelial cells of diabetic rats promotes transcription of NLRP3, proIL-1β, and proIL-18. These proteins remain in the cytoplasm in inactive forms. A second signal activates the NLRP3 inflammasome by facilitating the oligomerization of inactive NLRP3, apoptosis-associated speck–like protein, and procaspase-1.

Many, but not all reported activators of the NOD-like receptor family, pyrin domain-containing 3 inflammasome converge on excessive production of ROS (Figure 6). The ROS-induced reduction of intracellular NAD+ levels, discussed previously, reduces the activity of SIRT2, causing accumulation of acetylated α-tubulin. Acetylated α-tubulin regulates the transport of mitochondria and helps form an efficient interaction between the adaptor protein apoptosis-associated speck–like protein and NLRP3. ROS also activate NLRP3 by opening the cell membrane calcium channel TRPM2, increasing Ca2+ influx. The mitochondrial membrane phospholipid cardiolipin, discussed in the following section, also activates the NLRP3 inflammasome after translocation to the outer mitochondrial membrane, where it binds to NLRP3. It is currently not known what causes cardiolipin to move to the outer mitochondrial membrane, but ROS-induced cardiolipin remodeling may be one explanation. Activation of NLRP3 in diabetic heart and artery may also reflect the increased cell surface CD36 induced by insulin resistance (discussed in the following section), which facilitates internalization of oxidized LDL and intracellular conversion of oxidized LDL to cholesterol crystals.

Consequences of Oxidative miRNA Modification and ROS-Induced Downregulation of Specific miRNAs

ROS oxidatively modify certain microRNAs. ROS can hydroxylate guanine to produce 8-oxo-7,8,-dihydroguanosine. Oxidized miR-184 was shown to mismatch with the 3' untranslated regions of the antiapoptotic proteins Bcl-xL and Bcl-w, thereby sensitizing cardiomyocytes to apoptosis. Administration of oxidatively modified miR-184 increased infarct size in an ischemia/reperfusion model. Increased expression of several miRNAs, which may contribute to diabetic atherosclerosis is correlated with insulin resistance, but virtually nothing is known about the mechanisms regulating expression of these miRNAs. A recent study of miRNA-QTL using liver tissue from 424 morbidly obese, insulin-resistant subjects identified an association of miR-128-1 and miR-148a expression with SNPs linked to abnormal human blood lipid levels. In vivo studies in the Aporε−/− mouse verified that increased miR-128-1 and miR-148a dysregulate cholesterol/lipid and energy homeostasis. MiR-128-1 also regulates expression of SIRT1, the NAD+-dependent lysine deacetylase, and these miRNAs also affect expression of several components of the heterotrimeric AMP-activated protein kinase (AMPK). Diabetes mellitus–induced ROS have been implicated in the downregulation of miR-499, miR-133a, and miR-373 in diabetic cardiomyocytes. Although most individual miRNAs target hundreds of specific mRNAs, thereby coordinately regulating complex gene networks, downregulation of miR-133a in a normal adult genetic background was sufficient to induce cardiac hypertrophy, and its downregulation is a prerequisite for the development of apoptosis, fibrosis, and prolongation of the QT-interval in animal models.

Insulin resistance associated upregulation of miR-128-1 and perhaps miR-34a may also play a critical role in diabetic atherosclerosis. MiR-34a directly targets and decreases SIRT1 expression. SIRT1 activity would be reduced further by miR-34a targeting of the rate-limiting enzyme in the salvage pathway for NAD+ biosynthesis, NAMPT. In a well-established porcine model of diabetic atherosclerosis which develops complex atherosclerotic plaques resembling human complex plaques, the expression and activity of the NAD+-dependent deacetylase SIRT1 were markedly reduced. As mentioned earlier, ROS-activated PARP depletes NAD+ in
Mechanisms of Insulin Resistance–Induced Cardiovascular Damage

Insulin resistance is operationally defined as an impaired ability of different cell types to respond normally to insulin. In people with type 2 diabetes mellitus, insulin resistance is caused by underlying heritable factors and is exacerbated by environmental factors, such as obesity.

Insulin signaling is initiated by its binding to tyrosine kinase insulin receptors (IR). IR activation of the PI3-K–Akt pathway is responsible for most of the metabolic actions of insulin. The IR has 2 splice isoforms, both of which can phosphorylate at least 6 known IR substrate (IRS) proteins. These IRSs are capable of interacting with 8 known forms of the PI3-K regulatory subunit. PI3-K regulatory subunits, in turn, can associate with 3 forms of the PI3-K catalytic subunit, and the product of PI3-K activity can then activate 3 isoforms of Akt. The combinatorial possibilities of the IR–IRS–PI3-K–Akt pathway alone exceed 1000. When differential compartmentalization, stoichiometry, and kinetics of the various downstream signaling components are included, this number increases dramatically. Many of these steps are negatively regulated by action of phosphatases or inhibitory proteins. The complexity of this signaling system is essential to selectively mediate the large variety of known responses to insulin. Because of this complexity, the molecular pathogenesis of insulin resistance is still incompletely understood.

It has been suggested that insulin resistance is a physiological mechanism that protects the cardiovascular system from nutrient-induced injury, and that therapies attempting to override it with intensive insulin therapy in an effort to lower plasma glucose levels could, therefore, be harmful. Because insulin resistance in critical tissues seems to be pathway-specific for glucose metabolism, attempts to treat insulin resistance with intensive insulin therapy may well increase deleterious effects of insulin on lipid and lipoprotein metabolism. However, physiological hyperinsulinemia in response to pathway-specific insulin resistance in liver without exogenous insulin is responsible for the flooding of the heart with triglyceride-derived fatty acids. Insulin resistance itself also seems to be harmful because of associated metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial dysfunction, impaired fuel switching, and energy dysregulation. Metabolic inflexibility occurs early in the course of glucose intolerance, and obesity-induced perturbations in substrate switching persist in isolated muscle mitochondria. Current evidence suggests that myocardial cells (and those of striated muscle and liver) function optimally when they retain their capacity to switch freely between oxidative substrates in response to nutritional physiological cues.

Increased Endothelial Fatty Acid Oxidation, Increased Mitochondrial ROS, and Diabetic Atherosclerosis

Insulin resistance increases fatty acid oxidation in arterial endothelial cells. In 2 insulin-resistant nondiabetic animal models, inhibition of either free fatty acid release from adipocytes or free fatty acid oxidation in arterial endothelium prevented the increased production of ROS and its damaging effects. In arterial endothelial cells, this free fatty acid–induced increase in ROS activates the same damaging pathways seen with high glucose: AGEs, PKC, the hexosamine pathway (GlcNAc), and NFkB. Free fatty acid–induced overproduction of superoxide also activates a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage, and inactivates 2 important antiatherogenic enzymes: prostacyclin synthase and eNOS.

King first proposed that in diabetes mellitus, a pathway-specific insulin resistance in diabetic vascular cells reduces the antiatherogenic actions of insulin, whereas leaving insulin’s proatherogenic actions unaffected. Subsequently, this group showed in apoE null mice that specific overexpression of PKCβ2 in endothelial cells caused pathway-specific insulin resistance by inhibiting downstream PI3-K–Akt signaling, thereby inhibiting eNOS activation. NO released from endothelial cells is a potent inhibitor of platelet aggregation and adhesion to the vascular wall. Endothelial NO also controls the expression of genes involved in atherogenesis. It decreases expression of MCP-1, and of surface adhesion molecules such as CD11/CD18, P-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1. Because PI3-K–Akt signaling also causes the sequestration of forkhead box O (FOXO) transcription factors in the cytoplasm, thereby preventing transcription of a variety of proatherogenic genes, inhibition of PI3-K–Akt signaling by PKCβ2 would be expected to increase transcription of these proatherogenic genes.
Surprisingly, in human arterial endothelial cells, cells from diabetics showed higher levels of the activating Ser 1177 phosphorylation of eNOS, despite increased PKCβ expression, reduced PI3-K–Akt signaling, and increased levels of oxidative stress. PKCβ activity was associated with lower flow–mediated dilation, which was reversible by PKC inhibition. These results are consistent with hyperglycemia-induced and fatty acid–induced ROS overproduction. Increased ROS activates PKC, which similar to PI3-K–Akt, phosphorylates eNOS at Ser 1177. However, increased ROS also reduce eNOS activity by 2 mechanisms: oxidation of tetrahydrobipterin, the essential cofactor of eNOS, and uncoupling of dimeric eNOS to monomeric eNOS. These changes convert the nitric oxide–producing dimeric eNOS to superoxide-dimeric eNOS to monomeric eNOS. These changes convert eNOS activity by 2 mechanisms: oxidation of tetrahydrobiopterin, the essential cofactor of eNOS, and uncoupling of dimeric eNOS to monomeric eNOS. These changes convert the nitric oxide–producing dimeric eNOS to superoxide-dimeric eNOS to monomeric eNOS.131 In contrast to IR inhibition
producing monomeric eNOS. Inhibiting PKCβ reduces triglyceride accumulation in hearts expressing the transgene, more lipid accumulated in hearts expressing the transgene, and myocytes were enlarged and exhibited abnormal architecture. Hearts of transgenic mice were dilated, and LV systolic function was impaired. Inhibition of de novo ceramide biosynthesis reduced fatty acid oxidation and increased glucose oxidation in isolated perfused LpL hearts and improved systolic function and prolonged survival rates of cardiac-specific LpL overexpressing mice.146

Both increased fatty acid uptake and increased fatty acid oxidation in the diabetic heart are mediated, in part, by increased PPARα activity.140,141 Like the other 2 members of this nuclear receptor family, PPARβ/δ and PPARγ, PPARα forms heterodimers with the retinoid X receptors, which bind to PPAR-responsive elements. PPARα activation by binding of its endogenous ligand (1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine [16:0/18:1-GPC])142 causes bound transcriptional repressors (such as SMRT and N-CoR) to be exchanged for transcriptional coactivators—primarily PGC-1α and PGC-1β—which form active transcriptional complexes with CBP/p300, SRC-1, and several other proteins. PPARα transcriptional activity is further increased by PKCβ2-mediated Ser phosphorylation.143 Because increased ROS activate PKCβ2 and several other PKC isoforms (discussed previously), this may contribute to the upregulation of PPARα-target genes in diabetic heart. PPARα(−/−) mice were protected from the development of diabetes mellitus–induced cardiac hypertrophy, whereas the combination of diabetes mellitus and the MHC-PPARα genotype resulted in a more severe cardiomyopathic phenotype than either did alone. Cardiomyopathy in diabetic MHC-PPARα mice was accompanied by myocardial long-chain triglyceride accumulation. Reactive oxygen intermediates were identified as candidate mediators of cardiomyopathic effects in MHC-PPARα mice.140 Recently, the muscle ring finger-3 ubiquitin ligase was shown to stabilize PPARα activity in vivo.144 Both diabetes mellitus and treatment with the cardiotoxic ROS-producing chemotherapeutic agent doxorubicin increase muscle ring finger-3 expression. Muscle ring finger-3 expression was increased in hearts from insulin-resistant high-fat diet-fed mice, and it was shown to monoubiquitinate cardiac PPARα.

Cardiomyopathy resulting from this increased fatty acid flux is called lipotoxicity. Two general mechanisms have been proposed to explain lipotoxicity. One mechanism proposes that in diabetic cardiomyocytes, increased fatty acid flux results in increased synthesis of diacylglycerols, diglycerides, and ceramide.145 Aberrant accumulation of these signaling intermediates, particularly ceramide, seems to be cardiotoxic. In transgenic mice with heart-specific LpL overexpression, more lipid accumulated in hearts expressing the transgene, and myocytes were enlarged and exhibited abnormal architecture. Hearts of transgenic mice were dilated, and LV systolic function was impaired. Inhibition of de novo ceramide biosynthesis reduced fatty acid oxidation and increased glucose oxidation in isolated perfused LpL hearts and improved systolic function and prolonged survival rates of cardiac-specific LpL overexpressing mice.146

The second general mechanism proposes that increased fatty acid oxidation results in increased ROS production, which causes cardiomyopathy by a variety of downstream actions. Although the oxidation of fatty acids normally yields significantly more energy per carbon atom than does the oxidation of glucose, oxidative phosphorylation capacity is impaired in hearts from insulin-resistant db/db mice. However, H₂O₂ production is increased. In human myocardium from insulin-resistant diabetic patients, mitochondrial H₂O₂ production was also increased during oxidation of lipid-based substrates compared with carbohydrate-based substrates.148

Increased Myocardial Fatty Acid Oxidation, Increased Mitochondrial ROS, and Diabetic Cardiomyopathy

The normal adult heart consumes a large amount of energy and uses a variety of substrates to produce ATP. Seventy percent of total energy is derived from mitochondrial oxidative phosphorylation of fatty acids, with most of the rest derived from glucose oxidation.12 Fatty acid uptake in the heart is mediated by CD36, a scavenger receptor class B type I, and fatty acid translocase, whereas glucose uptake is mediated by insulin-stimulated translocation of glucose transporter 4. In diabetes mellitus, myocardial insulin resistance with impaired insulin signaling decreases glucose transporter 4 translocation to the cell surface, whereas increasing cell surface CD36.13 At the same time, insulin resistance in adipose tissue and liver causes an increased delivery of triglycerides and triglyceride-rich lipoprotein lipase (LpL) releases fatty acids. In diabetes mellitus, heart-specific LPL activity is upregulated.134,135 Thus, insulin resistance causes a major increase in fatty acid flux into the myocardium. Similarly, murine models of insulin-dependent and noninsulin-dependent diabetes mellitus had serum triglyceride levels 2.6- and 4.2-fold higher, respectively, than normal mice, and 7- and 3.5-fold higher levels of heart microsomal CD36, respectively, than control mice.136 Thus, there is a dramatic shift away from glucose utilization and an overreliance on fatty acids as the energy source in the diabetic heart.

Even in type 1 diabetes mellitus, where substrate-induced insulin resistance is much less severe than the intrinsic insulin resistance of type 2 diabetes mellitus, studies have shown a dramatic impairment in glucose uptake in cardiomyocytes because of diminished insulin-induced transcription and translocation of glucose transporter 4. In streptozotocin-induced type 1 diabetes mellitus animals, levels of glucose transporter 4 were significantly reduced, forcing the cardiomyocytes to rely on fatty acids.139

The normal adult heart consumes a large amount of energy and uses a variety of substrates to produce ATP. Seventy percent of total energy is derived from mitochondrial oxidative phosphorylation of fatty acids, with most of the rest derived from glucose oxidation. Fatty acid uptake in the heart is mediated by CD36, a scavenger receptor class B type I, and fatty acid translocase, whereas glucose uptake is mediated by insulin-stimulated translocation of glucose transporter 4. In diabetes mellitus, myocardial insulin resistance with impaired insulin signaling decreases glucose transporter 4 translocation to the cell surface, whereas increasing cell surface CD36. At the same time, insulin resistance in adipose tissue and liver causes an increased delivery of triglycerides and triglyceride-rich lipoprotein to the heart, where heart-specific lipoprotein lipase (LpL) releases fatty acids. In diabetes mellitus, heart-specific LPL activity is upregulated. Thus, insulin resistance causes a major increase in fatty acid flux into the myocardium. Similarly, murine models of insulin-dependent and noninsulin-dependent diabetes mellitus had serum triglyceride levels 2.6- and 4.2-fold higher, respectively, than normal mice, and 7- and 3.5-fold higher levels of heart microsomal CD36, respectively, than control mice. Thus, there is a dramatic shift away from glucose utilization and an overreliance on fatty acids as the energy source in the diabetic heart.

Even in type 1 diabetes mellitus, where substrate-induced insulin resistance is much less severe than the intrinsic insulin resistance of type 2 diabetes mellitus, studies have shown a dramatic impairment in glucose uptake in cardiomyocytes because of diminished insulin-induced transcription and translocation of glucose transporter 4. In streptozotocin-induced type 1 diabetes mellitus animals, levels of glucose transporter 4 were significantly reduced, forcing the cardiomyocytes to rely on fatty acids.
The explanation for this apparent paradox is that the major site of electron leakage from increased fatty acid oxidation is electron transfer flavoprotein, which receives electrons from the FADH$_2$ formed during the first oxidation step of β-oxidation54 (Figure 7). Increased myocardial ROS production in the diabetic heart occurs early, before accumulation of triglycerides are evident because of increased fatty acid oxidation and resultant oxidative damage to mitochondrial cardiolipin,140 the specific phospholipid of mitochondrial membranes. Cardiolipin is important for efficient electron flux, ATP synthesis, and reduced ROS formation. In addition, cardiolipin is involved in mitochondrial-mediated apoptosis, and it plays a critical role in regulating mitochondrial fission and fusion.$^{150-152}$ In nondiabetic heart, the major species of cardiolipin contains 4 linoleic acids (teta 18:2 cardiolipin). This unique acyl composition is not derived from de novo synthesis of cardiolipin, but rather from a remodeling process that involves phospholipases and acyltransferase–transacylases. In diabetic myocardium from murine models with insulin resistance (ob/ob, db/db, and high-fat diet) and in models of severe insulin-deficient type 1 diabetes mellitus (STZ [streptozotocin]), the fatty acyl content of the more saturated 18:2 cardiolipin is dramatically reduced, whereas the content of longer chain, more unsaturated fatty acyl cardiolipin is substantially increased.112 Because of this increase in highly unsaturated side chains, diabetic heart cardiolipin is more vulnerable to oxidative damage. Cardiac overexpression of cardiolipin synthase increases tetra 18:2 cardiolipin in diabetic mice and prevents diabetes mellitus–induced changes in cardiolipin lipid remodeling. The cardiolipin deficiency and profound remodeling caused by diabetes mellitus and by diet-induced obesity is caused by ROS-induced transcription of Acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1; Figure 7). ALCAT1 catalyzes the transfer of linoleoyl-CoA onto monos- or dilsyocardi lipin. Overexpression of ALCAT1 caused cardiolipin deficiency and fatty acid compositional changes similar to diabetes mellitus and obesity, with increased production of ROS, whereas ALCAT1 deficiency increased levels of tetra 18:2 cardiolipin in mouse heart and reduced ROS production.111

High levels of ROS are also a major proximal activator of the FOXO family of transcription factors. Increased ROS stimulate FOXO translocation from the cytosol into the nucleus by increasing FOXO GlcNAcylation, Jun-N-terminus kinase signaling, and CaMKII activation.153,154 Cysteine oxidation also increases FOXO transcriptional output.155 Numerous other signals and post-translational modifications can also regulate FOXOs, and FOXOs regulate a multitude of diverse processes by interacting with many different transcription factors and other nuclear proteins. In the hearts of diabetic mice and of mice with high-fat diet–induced insulin resistance, FOXO proteins were persistently activated.155 This persistent activation was associated with downregulation of IRS1, reduced activity of IRS1 and its downstream target Akt, and the development of cardiomyopathy. In cardiomyocyte-specific FOXO1 knockout mice fed a high-fat diet, neither insulin resistance nor cardiomyopathy occurred.

Altered Mitochondrial Dynamics

Mitochondria dynamics are the continuous processes of mitochondrial fusion, fission, biogenesis, and mitophagy, which maintain optimal cellular bioenergetics and ROS homeostasis. The topic of altered mitochondrial dynamics and cardiovascular disease has been reviewed recently.156 and the reader is referred to that comprehensive review for more extensive

Figure 7. Increased cardiac fatty acid oxidation, reactive oxygen species (ROS) formation, and cardiolipin remodeling. Insulin resistance–induced increased cardiac β oxidation of free fatty acids (FFAs) causes greater H$_2$O$_2$ production than does increased glucose oxidation because of increased electron leakage from the electron transfer flavoprotein (ETF) complex. These ROS activate Acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1) transcription. ALCAT1, located in the mitochondrial-associated membrane of the endoplasmic reticulum, causes pathological remodeling of cardiolipin from tetra 18:2 cardiolipin to cardiolipin with highly unsaturated fatty acid side chains and cardiolipin deficiency because of oxidative damage. This reduces ETC (electron transport chain) electron flux, ATP synthesis, and further increases ROS.
In the context of insulin resistance and diabetic cardiomyopathy, the balance between mitochondrial fusion and fission is altered in favor of increased fission and decreased fusion. This increased ratio of fission to fusion causes increased production of ROS and decreased mtDNA, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis. The primary regulators of mitochondrial fusion are dynamin-related GTPases termed mitofusins 1 and 2 and optic atrophy protein 1 located in the inner mitochondrial membrane. In humans with type 2 diabetes mellitus, expression of the fusion protein mitofusin 1 is decreased in myocardium.

The primary regulator of mammalian mitochondrial fission is the GTPase dynamin-related protein 1, which is recruited from the cytosol to the mitochondrial outer membrane where it binds to 4 dynamin-related protein 1 receptors: mitochondrial fission factor, mitochondrial dynamics protein of 49 kDa and 51 kDa, and FIS1. Oligomerization of Drp1 is thought to provide the mechanical force to constrict mitochondrial membranes and to fragment the organelle. Drp1 activity is regulated by the Ca²⁺/calmodulin-dependent serine/threonine phosphatase calcineurin. Dephosphorylation of Drp1 at Ser 656 by calcineurin activates dynamin-related protein 1 and increases mitochondrial fission. Calcineurin itself is activated by the calcium-activated neutral cysteine protease calpain. Because increased ROS activate calpain and calcineurin in cardiomyocytes, the increased mitochondrial ROS production from increased fatty acid oxidation described earlier could explain, in part, the observed increased fission in hearts of insulin-resistant diabetics (Figure 8). Increased mitochondrial fragmentation also occurs in mitochondria from mouse coronary endothelial cells, where the level of the fusion protein optic atrophy protein 1 is decreased, and the level of dynamin-related protein 1 is increased. Insulin resistance itself may also contribute to the increased ratio of fission to fusion. In nondiabetic noninsulin-resistant cardiomyocytes, insulin increased optic atrophy protein 1 levels and mitochondrial fusion, and reduction of either optic atrophy protein 1 or mitofusin 2 with siRNA prevented this.

Circadian Clocks, Metabolic Networks, and Diabetic Cardiovascular Disease

Cell-autonomous circadian clocks encoded by a transcription–translation feedback loop exist in most peripheral tissues, including liver, fat, muscle, and pancreatic β cells. In the liver, they promote lipid catabolism, gluconeogenesis, and mitochondrial biogenesis during sleep/fasting, and lipogenesis, glycogen synthesis, and cholesterol and bile acid synthesis in the awake/feeding state. In adipose tissue, they promote lipid catabolism during sleep/fasting, and lipogenesis.
when awake and feeding. In muscle, they promote oxidative metabolism during sleep/fasting, and fatty acid update during feeding. Different tissues exhibit distinct clock-controlled properties. The core transcriptional components of the mammalian circadian clock are the transcriptional activators CLOCK and BMAL1, which coactivate transcription at E-box–containing gene promoters, including the period (Per) and cryptochrome (Cry) genes. PER and CRY proteins form a complex that is imported into the nucleus and inhibits their own transcription. During the night/fasting, these proteins are degraded, resulting in reactivation of their transcription in the early morning. A short feedback loop consisting of the orphan nuclear receptor REV-ERβα and the retinoic acid orphan receptors α and β activate and repress, respectively, Bmal1 transcription. REV-ERβα controls oscillation, abundance and activation of SREBPαs through modulation of INSIG2. PGC-1α, a transcriptional coactivator that regulates mitochondrial biogenesis and energy metabolism, is rhythmically expressed in the liver and skeletal muscle of mice. PGC-1α stimulates the expression of clock genes including Bmal1 and Rev-ERβα through coactivation of the retinoic acid orphan receptors family of nuclear receptors. Mice lacking PGC-1α show abnormal diurnal rhythms and metabolic rate. The disruption of physiological rhythms in these animals is correlated with aberrant expression of clock genes and those involved in energy metabolism. Analyses of PGC-1α–deficient fibroblasts and mice with liver-specific knockdown of PGC-1α indicate that it is required for cell-autonomous clock function.

Metabolic networks influenced by oscillation of clock genes and downstream transcription factors also reciprocally influence clock function. Major metabolic coupling signals include NAD+, SIRT1, AMPK, and ROS. NAD+ activates SIRT1, which deacetylates and thereby inhibits the CLOCK:BMAL1 complex. PARP-1 also ADP-ribosylates the CLOCK protein, which affect CLOCK function at multiple levels. AMPK controls proteolytic degradation of PER and CRY. Clock mutant mice develop hypertriglyceridemia and mice with liver-specific knockdown of PGC-1α indicate that it is required for cell-autonomous clock function.

In the diabetic cardiovascular system, however, continuously increased ROS production caused by hyperglycemia and insulin resistance depletes NAD+ by activating PARP-1, which cleaves NAD+ into ADP ribose and nicotinamide in the process of synthesizing ADP ribose. This depletion of NAD+ inhibits SIRT1’s enzymatic activity, which normally deacetylates and activates both PGC-1α and LKB1, the kinase that activates AMPKα2. Decreased SIRT1 activity would decrease mitochondrial biogenesis, increased ROS production, and a profoundly disturbed clock synchronization of glucose and lipid metabolism. Recently, the flavone nobiletin was discovered to improve the amplitude of the clock repressor PERIOD 2, acting through retinoic acid orphan receptors. Nobiletin treatment of wild-type mice on a high-fat diet prevented weight gain and visceral adiposity, whereas treatment had no effect in Clock homozygous mutant mice. Nobiletin had potent insulin-sensitizing actions, consistent with the observed reduction in hepatic and serum triglycerides, and reversed high-fat diet–induced alterations in clock gene expression in liver and fat.

Conclusions

Knowledge about the biochemical, molecular, and cellular mechanisms responsible for cardiovascular disorders in diabetes mellitus has increased enormously in recent years. As a consequence, the clinical correlations linking hyperglycemia and insulin resistance with accelerated atherosclerosis, heart failure (both heart failure with preserved ejection fraction and heart failure with reduced ejection fraction), and increased post-MI fatality rates are increasingly understood in mechanistic terms. For each of these clinical entities, the multiple mechanisms discussed in this review seem to share a common element: prolonged increases in ROS production in diabetic cardiovascular cells. In normal cardiovascular physiology, ROS production is coupled to circadian clocks and metabolic networks, and ROS species (H2O2) function as signaling molecules essential for normal cellular homeostasis. In contrast, ROS production at too high a level, for too long, or at an inappropriate location, leads to impaired cellular function and cardiovascular pathology. Intracellular hyperglycemia causes excessive ROS production by increasing electron leak from the mitochondrial electron transport chain. This can be amplified by ROS-induced uncoupling of nitric oxide synthase (eNOS) and activation of NADPH oxidases. Increased mitochondrial ROS cause DNA double-strand breaks by releasing free iron and H2O2, which diffuse into the nucleus. These DNA strand breaks activate latent nuclear PARP. PolyADP-riboseylation of GAPDH by PARP leads to partial inhibition of this key glycolytic enzyme. As a result, early glycolytic intermediates accumulate and are then diverted into pathogenic signaling pathways. These pathways include increased substrate conversion by the enzyme aldose reductase, increased formation of methylglyoxal, the major advanced glycation product precursor, activation of PKC isoforms β, δ, and θ, and increased protein modification by O-GlcNAc. Activation of GS3Kβ by excessive ROS production reduces intracellular Nfr2, the transcription factor that normally increases expression of ROS-degrading enzymes. Nfr2 also regulates expression of the rate-limiting enzyme of the glyoxalase system, GLO1, which degrades the major AGE precursor methylglyoxal.

PARP activation also degrades NAD+, reducing activity of the NAD+-dependent sirtuin deacetylases. SIRT1 normally deacetylates and activates both PGC-1α and LKB1, the kinase that activates AMPKα2. Reduced SIRT1 deacetylation decreases activities of LKB1, PGC-1α, and AMPKα2, causing decreased mitochondrial biogenesis, increased ROS production, and a profoundly disturbed circadian clock synchronization of glucose and lipid metabolism. Excessive ROS
production also facilitates nuclear transport of NFAT transcription factors by activating the Ca2+/calmodulin-dependent serine/threonine phosphatase calcineurin. Excessive ROS also increase transcription of *Pad4*, the neutrophil enzyme initiating NETosis, which primes macrophages for proinflammatory responses in atherosclerotic plaques. Many reported activators of the NOD-like receptor family, pyrin domain-containing 3 inflammasome also converge on excessive production of ROS.

Insulin resistance causes excessive ROS production by cardiomyocytes because it increases fatty acid uptake and oxidation. Thus, there is a dramatic shift away from glucose utilization and an overreliance on fatty acids as the energy source in the diabetic heart. Although oxidation of fatty acids normally yields significantly more energy per carbon atom than does the oxidation of glucose, oxidative phosphorylation capacity is impaired in hearts from insulin-resistant animal models and human diabetics. Despite a reduced oxidative phosphorylation capacity, mitochondrial H2O2 production is increased during oxidation of lipid-based substrates compared with carbohydrate-based substrates. This reflects the fact that the major site of electron leakage from increased fatty acid oxidation is electron transfer flavoprotein, which receives electrons from β oxidation–generated FADH2, independent of the electron transport chain complexes. Increased myocardial ROS production in the diabetic heart occurs early, before accumulation of triglycerides are evident because of increased fatty acid oxidation and resultant ROS-induced cardiolipin remodeling by ALCAT1. Finally, in the context of insulin resistance and diabetic cardiomyopathy, the balance between mitochondrial fission and fission is altered in favor of increased fission and decreased fusion. This increased ratio of fission to fusion causes increased production of ROS and decreased mtDNA, reducing the metabolic capacity and efficiency of the mitochondrial electron transport chain and ATP synthesis.

Reactive oxygen intermediates have also been identified as candidate mediators of the cardiomyopathic effects of cardiac overexpression of the nuclear receptor PPARα. High levels of ROS are also a major proximal activator of the FOXO family of transcription factors. The increased ROS associated with insulin resistance stimulate translocation of FOXO from the cytosol into the nucleus, and persistent myocardial FOXO1 activation in insulin-resistant diabetic mice causes cardiomyopathy.

In contrast to the mechanisms underlying diabetic accelerated atherosclerosis and diabetic cardiomyopathy, much less is known about the mechanisms responsible for diabetes mellitus–associated increases in both early and post-MI mortality rates. A major cause of post-MI mortality is ventricular arrhythmia. Mitochondrial ROS play a central role in gap junction remodeling and fatal arrhythmia generation. ROS also increase myocardial protein modification by O-GlcNAcylation, which downregulates SERCA2a transcription and increases phosphorylation of the ryanodine receptor by autonomously activating CaMKII. This contributes to potentially fatal arrhythmias, such as premature ventricular complexes and delayed afterdepolarizations. Overexpression of GlcNAcase normalized CaMKII activity, restored SERCA2a transcription, and reduced arrhythmic events. In addition, ROS can activate CaMKII directly through a mitochondrial/oxidized–CaMKII pathway. Activation of this mitochondrial ROS-oxidized CaMKII pathway increased mortality after myocardial infarction in diabetic mouse models. Deficiency or excess of the clock-dependent oscillator Klf15 causes loss of rhythm QT variation, abnormal repolarization, and enhanced susceptibility to ventricular arrhythmias in mice.

Although human repolarization occurs through a complex interaction of multiple repolarizing ionic currents, rather than the outward potassium current which is central in mice, altered Klf15 expression may also contribute to human arrhythmogenesis by the ROS-dependent mechanisms described above. Klf15 controls rhythmic expression of key enzymes involved in normal glucose, lipid, and nitrogen homeostasis. Disruption of branched chain amino acid catabolism caused by reduced klf15 suppresses cardiac mitochondrial respiration and induces superoxide production.

In human diabetic hearts, regional myocardial autonomic denervation may also predispose patients to malignant arrhythmias. Much work remains to be done in this area. However, increased ROS have been shown to depress sympathetic ganglion synaptic transmission by oxidizing residue Cys 239 of the nACh receptor α3 subunit. This subunit is also present in parasympathetic neurons. These were not examined, but the same mechanism likely depresses diabetic parasympathetic ganglia synaptic transmission as well.

Acknowledgments

Owing to space limitations, a comprehensive list of reference citations could not be included. We apologize to those colleagues whose work is not specifically referenced, and gratefully acknowledge their contributions to the field.

Sources of Funding

This work was supported by grants from the National Institutes of Health, the Juvenile Diabetes Research Foundation and the American Diabetes Association.

Disclosures

None.

References

tween transactivation and transrepression activity of the peroxisome pro-

Semenkovich CF. Identification of a physiologically relevant endogenous
function by insulin and contraction in skeletal muscle. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lip-
cations for the management of subsets of type 2 diabetes. J Mol Cell Cardiol

A. Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-trans-
Camps Muñoz P, Monfar M, Testar X, Palacín M, Zorzano
Circulation 2014;130:554–564. doi: 10.1161/CIRCULATIONAHA.113.008476.

and superoxide anion production in coronary endothelial cells from a

Barry V , Verdejo H, Iglewski M, et al. Insulin stimulates mitochon-

and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll

and superoxide anion production in coronary endothelial cells from a

Johnson JI, Bugger H, Zaha VG, Abel ED. Mitochondrial energetics in
the heart in obesity-related diabetes: direct evidence for increased un-
coupled respiration and activation of uncoupling proteins. Diabetes.

Anderson EJ, Kysson AP, Rodrigue E, Anderson CA, Lehr EJ, Neuffer
PD. Substrate-specific derangements in mitochondrial metabolism and
redox balance in the atrium of the type 2 diabetic human heart. J Am Coll

Wang ZY, Hare J, Sullivan J, Grevengoed T, Schisler I, Tyunei
J, Homma S, Jiang XC, Abel ED. Goldberg IJ. Ceramide is a cardio-
10.1194/jlr.M800147-JLR200.

Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XK, Aizis S,
Johnson JI, Bugger H, Zaha VG, Abel ED. Mitochondrial energetics in
the heart in obesity-related diabetes: direct evidence for increased un-
coupled respiration and activation of uncoupling proteins. Diabetes.

Parra V, Verdejo H, del Campo A, Pennanen C, Kuzmicic J, Iglewski M,
Goldberg IJ, Halcox JP27130.

Montaigne D, Marechal X, Coisne
JP27130.

Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell
646. doi: 10.1038/nrm3877.

Min K, Kwon OS, Sunghwa AJ, Wiggs MP, Sollane JK, Christou DD, Yoo
JK, Hwang MH, Szeo HH, Kavazis AN, Powers SK. Increased mitochon-
drial respiration of reactive oxygen species and calpain activation are
required for doxorubicin-induced cardiac and skeletal muscle myopathy.

Andersson C, Alderman AO, Godavarthy K, Klemm MN, Vatikiotis BP.
Mitochondrial dynamics in type 2 diabetic but not in obese patients.

Söderberg M, Westman E, Fagerholm M, Jonsson A, Wachtel J, Holm J,
Pehrsson I, Sjöqvist F, Christiansson A, Nordenberg D, Persson C, Sollander
M, Byberg E, Kallberg P, Kanne A, Andersson M. Myocardial function and
redox balance in the atrium of the type 2 diabetic human heart. J Am Coll

Parra V, Verdejo HE, Iglewski M, et al. Insulin stimulates mitochon-
drial fusion and function in cardiomyocytes via the Akt-mTOR-NF
db13-0130.

Molecular and Cellular Mechanisms of Cardiovascular Disorders in Diabetes
Manasi S. Shah and Michael Brownlee

Circ Res. 2016;118:1808-1829
doi: 10.1161/CIRCRESAHA.116.306923
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/118/11/1808

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org/subscriptions/