From C-Reactive Protein to Interleukin-6 to Interleukin-1
Moving Upstream To Identify Novel Targets for Atheroprotection

Paul M Ridker

Abstract: Plasma levels of the inflammatory biomarker high-sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or high-density lipoprotein cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of low-density lipoprotein cholesterol. Yet, although hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to interleukin (IL)-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β-producing NOD-like receptor family pyrin domain containing 3 inflammasome. Cholesterol crystals, neutrophil extracellular traps, atheroprope flow, and local tissue hypoxia activate the NOD-like receptor family pyrin domain containing 3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker for upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute-phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with little change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10 065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials using alternative anti-inflammatory agents active against the CRP/IL-6/IL-1 axis, including low-dose methotrexate and colchicine, are being explored. If successful, these trials will close the loop on the inflammatory hypothesis of atherosclerosis and serve as examples of how fundamental biologic principles can be translated into personalized medical practice.

(Circ Res. 2016;118:145-156. DOI: 10.1161/CIRCRESAHA.115.306656.)

Key Words: atherosclerosis ■ clinical trials ■ cytokines ■ inflammation ■ prevention

Vascular inflammation plays important roles in plaque initiation, progression, and the process of sudden fibrous cap rupture that triggers local thrombosis and onset of hypoxia-related myocardial damage. Recent evidence suggests that a wide array of cell types in the monocyte and macrophage lines are involved in atherothrombosis, as are specific cytokines, chemokines, and adhesion molecules that relate to vascular function. Yet, despite accumulating evidence, interest in moving beyond low-density lipoprotein (LDL) cholesterol (LDL-C) to target the inflammatory process itself has only recently garnered significant investigative support. Part of this hesitation relates to the fact that the clinical expression of the inflammation hypothesis of atherothrombosis has relied on assays for high-sensitivity C-reactive protein (hsCRP) as a biomarker of vascular risk. Although hsCRP is clinically proven as a method to predict vascular risk and to enhance event rates in clinical trials, C-reactive protein (CRP) itself is unlikely to provide an effective target for intervention. Thus, clinical investigation has sequentially moved upstream, first to interleukin-6 (IL-6) and then to interleukin-1 (IL-1), seeking more promising targets for anti-inflammatory atheroprotection. On the basis of robust pathophysiologic, genetic, and phase II trial data, large-scale outcome trials directly targeting the central IL-6 signaling pathway, as well as the upstream IL-1β-producing NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, are underway. In this review, epidemiologic, genetic, experimental, and clinical evidence supporting this upstream movement from CRP to IL-6 to IL-1 are described, as is the unifying concept of hsCRP as a downstream biomarker for IL-1β activity.
Evidence for CRP: Strong Positive Associations With Atherothrombotic Disease in Primary and Secondary Prevention, Neutral Data for Causality

CRP is a nonglycosylated circulating pentraxin composed of 5 identical subunits arranged with pentameric symmetry. First described by Tillett and Francis in 1930 at the Rockefeller University, the concept of CRP functioning as an acute phase reactant was developed by Macleod, Avery and McCarty in the 1940s. By the 1980s, work by Kushner, Pepys, and others had established that the bulk of circulating CRP was produced by hepatocytes under regulatory control from circulating cytokines, in particular IL-6. With a circulating half-life of ≈19 hours, the plasma concentration of CRP is largely determined by synthetic rate.

Although a few case reports from the 1950s suggested elevated levels of CRP following acute myocardial infarction, cardiovascular interest in CRP re-emerged in the 1990s with reports from several groups describing increased CRP among those with ongoing ischemia, unstable angina, and chronic atherosclerotic disease. However, because CRP levels increase after a variety of inflammatory stimuli (including myocardial ischemia), these important studies could not address whether CRP elevations preceded the onset of vascular disease. That controversial issue was settled by data from prospective Physicians Health Study (PHS) which, in 1997, published evidence demonstrating that levels of CRP measured with a high-sensitivity assay were elevated decades before first ever acute ischemic events (Figure 1). This study also demonstrated that those at future risk for vascular events had stable elevations of hsCRP over long periods of time; that the anti-inflammatory agent aspirin was significantly more effective in preventing first ever heart attacks when taken by those with elevated levels of hsCRP; and that effects were additive to that of total and high-density lipoprotein cholesterol but limited to arterial atherosclerotic events (including peripheral arterial disease, stroke, and sudden cardiac death) but not deep vein thrombosis. It is important in retrospect to recognize that the PHS did not indicate that CRP itself was causal for atherosclerosis because other inflammatory biomarkers measured in that study, including sICAM-1 (soluble intercellular adhesion molecule type-1), IL-6, and fibrinogen, also predicted future vascular risk, as did the alternative inflammatory pentraxin serum amyloid A. These data were, however, consistent with early observations of thermal heterogeneity in rupture-prone plaques and, hence, contributed to the emerging concepts that both local and systemic inflammation were relevant for acute infarction. The prospective PHS data in apparently healthy men was rapidly replicated in apparently healthy women. Then, with the availability of standardized commercial assays for hsCRP, >50 prospective cohorts worldwide would perform critical replications in multiple varied patient groups. By 2010, these data had been carefully brought together in a meta-analysis conducted by the Emerging Risk Factor Consortium. In that overview encompassing >160,000 individuals with 1.3 million person-years of follow-up, each standard deviation increase in log-normalized hsCRP associated with a multivariate adjusted relative increase in risk of 1.37 for future coronary heart disease (95% confidence interval 1.27–1.48) and 1.55 (95% confidence interval 1.37–1.76) for future cardiovascular mortality. Importantly, the magnitude of effect for hsCRP was at least as large as that for total cholesterol, high-density lipoprotein cholesterol, and blood pressure (Figure 2). The effects of hsCRP on vascular risk are linear across a broad range of values. Levels of hsCRP < 1, 1 to 3, and > 3 mg/L connote lower, average, and higher relative vascular risk in the context of other traditional risk factors.

Many clinicians elect to use the hsCRP containing Reynolds Risk Score (www.reynoldsriskscore.org) in daily practice because this global risk algorithm consistently outperforms those based on traditional Framingham covariates. In a direct head-to-head comparison of risk scores, including the new American College of Cardiology/American Heart Association pooled cohort model that was performed within the prospective Multi-Ethnic Study of Atherosclerosis (MESA), the Reynolds Risk Score had the largest C-statistic (indicating superior discrimination) and the best match between predicted and observed event rates (indicating superior calibration).

Were hsCRP only a risk marker for atherothrombosis, it is unlikely that clinical guidelines worldwide would come to endorse its use in intermediate risk populations. That acceptance derived from further evidence that there was a specific therapy—statins—that could be recommended to those with elevated hsCRP even when LDL levels were already low. The hypothesis underlying that claim came from initial observations in the Cholesterol and Recurrent Events (CARE) trial, indicating that statins lowered hsCRP in an LDL-independent manner and that the relative risk reductions attributable to statin therapy were greater among those with elevated hsCRP. This observation, subsequently corroborated in the AirForce/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL), Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE IT), and A to Z trials, led to the clinical concept of dual goals for statin therapy in which greatest clinical benefits were seen for those who not only reduced LDL cholesterol and blood pressure (Figure 3) but elevated levels of CRP were associated with elevated levels of inflammatory cytokines, including IL-6, IL-1, and IL-1Ra (Table). In this way, statin therapy was seen to exert direct anti-inflammatory effects in atherosclerotic plaques, contributing significantly to current interest in novel immunomodulatory statins.
Recently analyses from the Improved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) reiterate the fact that on-treatment hsCRP levels are as important a predictor or recurrent events as on-treatment levels of LDL-C. Ultimately, the 18,000 patient Justification for Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) primary prevention trial would show that rosuvastatin 20 mg reduces by half the rate of first ever heart attack and stroke among those with initially low levels of LDL-C but elevated levels of hsCRP. As in earlier studies, on-treatment levels of hsCRP in JUPITER proved to be as important for predicting recurrent disease as were on-treatment levels of LDL-C, and the magnitude of initial hsCRP elevation was directly related to the magnitude of efficacy attributable to statin initiation. Because those in JUPITER started with low levels of LDL-C, JUPITER also provided the first evidence from a major contemporary trial that on-treatment levels of LDL-C below 25 to 30 mg/dL was likely to be safe, critical data for the development of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors.

Although the above data established hsCRP as a powerful risk biomarker for first and recurrent events, they do not establish CRP as a causal agent for atherothrombosis. CRP is predominantly produced in the liver as a primary acute phase reactant and plays a role in complement activation and innate immune function. CRP can also be produced by inflammatory cells in localized inflammation, albeit at concentrations less likely to have systemic effects. For example, beyond hepatic production, inflammatory cytokines have been shown to stimulate CRP production in human coronary artery smooth muscle cells and in human adipocytes. In other work, CRP has been found to have direct proinflammatory and prothrombotic effects on human endothelial cells, partially through increases in plasminogen activator inhibitor expression and decreased prostacyclin release. Increased thrombosis after arterial injury has also been reported in human CRP transgenic mice which, when crossed with apolipoprotein-E–deficient mice, show a marked increase in atherosclerosis.

![Figure 1](http://circres.ahajournals.org/)

Figure 1. Left, Relationship of baseline plasma levels of high-sensitivity C-reactive protein (hsCRP) to risks of future myocardial infarction, stroke, and cardiovascular death in the prospective Physicians’ Health Study among those randomly allocated to aspirin or placebo. Right, Risk estimates associated with elevated hsCRP levels are stable over long periods of time. Adapted from Ridker et al. with permission of the publisher. Copyright ©1997, the Massachusetts Medical Society.

![Figure 2](http://circres.ahajournals.org/)

Figure 2. Left, Meta-analysis of the relationship of high-sensitivity C-reactive protein (hsCRP) levels in healthy individuals to future risks of coronary heart disease. Right, The magnitude of cardiovascular risk associated with a 1 SD change in hsCRP is at least as large as that associated with a similar change in systolic blood pressure (BP), total cholesterol, or non–high-density lipoprotein cholesterol (HDLC). Adapted from Kaptoge et al.
mice, resulted in strains with accelerated aortic atherosclerosis. Other mouse studies, however, did not find evidence of a role for CRP in atherosclerotic development. Further, some human infusion studies suggesting more direct effects on atherothrombotic pathways are difficult to interpret because of possible contamination of early CRP preparations with bacterial lipopolysaccharide. In complementary recent studies from my group (using an anti-sense oligonucleotide targeted to CRP production) and from Mark Pepys’ group (using pharmaceutical grade CRP infusions), no upstream effects on systemic inflammation were observed in direct response to alterations in CRP production. These neutral data for causality are consistent with population-based Mendelian randomization genetic studies which have confirmed the clinical utility of hsCRP as a biomarker, but did not support direct causation.

Ongoing controversy regarding causal roles for CRP do not diminish the clinical utility of hsCRP as a diagnostic test in primary and secondary prevention, an issue that has recently been reviewed elsewhere. hsCRP has also proven effective as an enrichment criterion for secondary prevention trials seeking to enhance vascular risk. Current guidelines in the United States, Europe, and Canada endorse hsCRP ascertainment for those at intermediate risk or where there is uncertainty about the utility of statin therapy.

Moving Partially Upstream to IL-6: Positive Associations With Disease and Partial Links to Causality

If CRP is a downstream biomarker for atherothrombosis, what do comparable data for the upstream secondary messenger cytokine IL-6 show? First, like hsCRP, IL-6 levels measured in apparently healthy populations also predict future vascular risk; this observation was initially made in men in 2000, confirmed in women, and subsequently reproduced in >25 prospective epidemiologic cohorts worldwide. Second, also in parallel with hsCRP, meta-analysis performed by the Emerging Risk Factors Collaboration would eventually demonstrate that for each SD increase in log IL-6, there is a 25% increase in risk of future vascular events (relative risk 1.25, 95% confidence interval 1.19–1.32; Figure 3). Third, like hsCRP, IL-6 levels have been shown to correlate with endothelial dysfunction, arterial stiffness, and extent of subclinical atherosclerosis and are similarly predictive of incident type 2 diabetes mellitus. There is no clinically approved assay for IL-6, however, and measurement in clinical settings is more difficult than for hsCRP because of issues of circadian variation, short half-life, post-prandial effects, and assay stability.

Where IL-6 differs substantively from CRP are in its links to causal pathways related to atherothrombosis. Although IL-6 is the primary cytokine leading to hepatic CRP production,
upstream IL-6 signaling has also been linked to plaque initiation and destabilization, to microvascular flow dysfunction, and to adverse outcomes in the setting of acute ischemia. In contrast to CRP, IL-6 is highly upregulated at the site of coronary occlusion in patients with ST segment elevation myocardial infarction. This latter observation is of particular interest because IL-6 (but not CRP) can be produced by cardiac myocytes under conditions of local hypoxia in the viable border zone of reperfused infarctions. These data are consistent with the concept that downstream CRP synthesis is largely secondary to IL-6-induced stimulation.

Perhaps the most persuasive data suggesting a direct role for IL-6 signaling in atherosclerosis derives from Mendelian randomization studies that, in contrast for those done earlier for CRP, do show evidence suggestive of causality. Broadly, Mendelian randomization studies take advantage of the random assortment of alleles that occurs at conception and then seeks to link specific genetic polymorphisms both to a measured intermediate phenotype (such as hsCRP) and to a defined clinical outcome (such as myocardial infarction or stroke). In elegant studies from 2 independent consortia that have used this strategy, polymorphism in the IL-6 signaling pathway at rs2228145 and rs7529229 was found to concordantly associate with lifetime lower levels of hsCRP, as well as lifetime lower levels of vascular risk. (Figure 4). These data suggest that, on a genetic segregation basis, vascular risk varies widely because of heritable differences in IL-6 signaling. Because heritable differences in IL-6 signaling influence both hsCRP and rates of vascular events, we can more strongly infer a causal relationship between IL-6 and vascular disease on this basis. As noted, this positive upstream data for IL-6 signaling provides a counterpoint to earlier null Mendelian randomization studies of downstream hepatic acute phase reactants, including both CRP and fibrinogen.

Enthusiasm for IL-6 as a direct target for atheroprotection is tempered by counterbalancing issues. First, in the same meta-analysis indicating similar risk signals for IL-6 as for CRP, elevations of IL-18, tumor necrosis factor (TNF), matrix metalloproteinase 9 (MMP-9), and lipoprotein-associated phospholipase A2 (Lp-PLA2) were also observed. Thus, as with hsCRP, these data suggest that moving further upstream beyond IL-6 may be needed for anti-inflammatory approaches to atheroprotection. Second, because IL-6 functions primarily as a secondary signaling cytokine, it is uncertain whether direct inhibition of IL-6 would lead to desired effects on vascular disease or have the specificity needed for therapeutic use; as reviewed elsewhere, these concerns in part reflect distinctions between auto-inflammatory disorders (driven primarily by monocytes and macrophages) as compared with autoimmune disorders (driven primarily by T cells and adaptive immunity). Third, IL-1 levels largely drive IL-6 signaling. Yet, many of the drivers of IL-1 production through the NLRP3 inflammasome that are directly related to atherothrombosis do not on their own affect IL-6.

Despite these reservations, clinical trials of IL-6 inhibition with agents, such as tocilizumab (a humanized anti-IL-6 receptor antibody), are under serious consideration. Preliminary data from a single dose study of tocilizumab in non-ST elevation myocardial infarction showed this approach to reduce area under the CRP curve and to have a directionally similar effect on area under the troponin T curve, but this latter effect was not statistically significant (ClinicalTrials.gov NCT01491074). The ENTRACTE study is an ongoing randomized open-label trial comparing tocilizumab to the TNF inhibitor etanercept on the rate of vascular events among patients with moderate to severe rheumatoid arthritis (ClinicalTrials.gov NCT01331837). In this study, rheumatoid arthritis patients aged ≥50 years with inadequate clinical response to at least one nonbiologic disease-modifying agent and a history of coronary disease are being followed prospectively for vascular events. Because all ENTRACTE participants have symptomatic rheumatoid arthritis and thus are in need of active anti-inflammatory therapy, there is no placebo group in this trial.

A further potential limitation of direct IL-6 inhibition is that this approach may upregulate apolipoprotein B, leading to an increase in LDLC. Initial tocilizumab studies in rheumatoid arthritis patients suggested that this effect was dose-dependent, potentially unrelated to inflammatory status, and thus a significant limiting factor in the development of IL-6 receptor blockade for atherosclerosis. However, whether this increase in LDL is more than a reverse acute phase effect remains controversial. Partially to address this issue, several surrogates of vascular risk were evaluated in the recent MEASURE trial evaluating IL-6 receptor blockade in rheumatoid arthritis. In this study of 132 patients treated with tocilizumab or placebo for 24 weeks, total cholesterol, LDLC, and triglycerides increased by 12%, 28%, and 11%, respectively, among those allocated to tocilizumab. Yet, high-density lipoprotein–associated serum amyloid A content decreased with tocilizumab, and the apolipoprotein B to apolipoprotein A1 ratio remained stable over time. As such, an argument can be made that these changes may not be proatherogenic. Further, if putative changes in LDLC associated with IL-6 receptor blockade can be controlled with high-dose statin therapy, this approach may be viable. On the other hand, toxicity in terms of infection and potential reactivation of tuberculosis
could reduce enthusiasm for agents, such as tocilizumab. As will be reviewed later, current clinical data do not suggest that these untoward effects are as prevalent in association with specific partial inhibition of IL-1.

Moving Fully Upstream to IL-1: Can a Causal Pathway be Proven and a Therapeutic Target Validated?

If CRP is conceived as a downstream biomarker and IL-6 as a secondary signaling cytokine, then it is not surprising that the upstream IL-1 signaling pathway has emerged as a major target for immune modulation and atherothrombotic protection. IL-1 is the apical proinflammatory mediator in both acute and chronic inflammation and among the most powerful inducers of innate immunity. IL-1 induces both its own production (an issue in several auto-inflammatory disorders), as well as the synthesis and expression of multiple secondary inflammatory mediators, including IL-6.

Two genetically coded proteins, IL-1α and IL-1β, bind to the type 1 IL-1 receptor. IL-1α is largely membrane-bound and thus plays predominantly a local rather than systemic role. By contrast, IL-1β is the primary circulating form of IL-1 but is produced as a precursor (pro-IL-1β) that is cleaved following activation of the NLRP3 inflammasome by caspase-1 to produce the active cytokine under a variety of inflammatory stimuli. As reviewed by Dinarello, the active form of IL-1β can result in autocrine, paracrine, and endocrine effects and, thus, is hypothesized to be involved in a broad spectrum of auto-inflammatory disorders in which monocyte–macrophage lines are the critical dysfunctional cells that promote pathologic inflammation. This is an important distinction from classical auto-immune disorders in which T cells are the critical driver of the inflammatory response.

There is considerable genetic influence on IL-1β production, and rare inherited disorders, such as Muckle Wells syndrome, cryopyrin-associated periodic syndrome, and neonatal-onset multisystem inflammatory disease, are associated with overproduction of IL-1β. These disorders typically present with periodic fever, neutropenia, fatigue, myalgia, elevated CRP levels, and in severe cases with joint deformation and developmental disability. Importantly, because intervention with canakinumab (an anti-IL-1β antibody), anakinra (an IL-1 receptor antagonist [IL-1Ra]), and rilonacept (an IL-1 trap) all improve symptoms in these overproduction syndromes, it can be inferred that the critical culprit is IL-1β rather than IL-1α.

Because IL-1β levels cannot be reliably measured in plasma, there are no comparable epidemiologic studies relating IL-1β to cardiovascular risk as there are for hsCRP and IL-6. However, abundant experimental and pathologic data have long implicated IL-1β in atherogenesis. Early work in the 1980s showed that IL-1 can induce leucocyte adhesion in vascular endothelial cells, lead to procoagulant activity, and serve as a mitogen for human vascular smooth muscle cell. In mouse knockout models, deficiency of IL-1β is associated with reduced lesion formation. By contrast, in cholesterol-fed porcine models, exposure to exogenous IL-1β increases intimal medial thickening. In humans, atherosclerotic lesions have been shown to contain IL-1β and polymorphisms in the IL-1Ra gene correlate with rates of restenosis and local atherosclerotic progression.

Equally important, multiple factors known to associate with atherosclerosis have recently been found to activate the crucial IL-1β–producing NLRP3 inflammasome (Figure 5). In 2010, 2 groups demonstrated that cholesterol crystals can serve as endogenous danger signals that when engulfed by inflammatory monocytes can directly trigger the NLRP3 inflammasome; these data provide a critical linkage between cholesterol deposition and a systemic pro-inflammatory state. In 2013, Xiao et al reported that atheropane oscillatory flow activates sterol regulatory element-binding protein 2 in endothelium and subsequently also induces the NLRP3 inflammasome. In 2014, Folco et al reported that hypoxia potentiates IL-1β expression in human macrophages, again suggesting a direct proinflammatory effect on atherogenesis secondary to NLRP3 activation. Most recently, in mid-2015, Warnatsch et al reported that cholesterol crystals interact with neutrophils to trigger the release of neutrophil extracellular traps which prime macrophages to produce the precursor pro-IL-1β. Neutrophil extracellular traps comprise extracellular released DNA fibers that form net-like entities which bind bacteria and platelets and exert multiple cytotoxic effects. In the process of NETosis, neutrophils expel cytosolic and nuclear material, a suicidal act that can lead to acute thrombosis and is related to several proatherosclerotic processes. Extracellular chromatin is injurious in ischemia reperfusion and correlates in man with the extent of underlying atherosclerosis. In oncologic settings, cancer-associated NETosis is associated with increased deep vein thrombosis and pulmonary embolism. Diabetes mellitus, a major cardiovascular risk factor, has also been reported to prime neutrophils to undergo NETosis.

The central role played by the inflammasome has made inhibition of the IL-1 pathway an attractive theoretical target for atheroprotection, and several agents that target IL-1 activity are currently available (Table). In a phase II study of 182 patients with non-ST elevation acute coronary syndrome, Morton et al have shown that 14 days of treatment with the IL-1Ra anakinra significantly reduces the area under the CRP release curve, confirming that IL-1 drives CRP elevation during acute ischemia. Similarly, 2 pilot studies performed by Abbate et al in ST-segment–elevation myocardial infarction reported that anakinra reduces the magnitude of ischemia-driven CRP release. However, anakinra leads to dual IL-1α and IL-1β inhibition, which may not be optimal for atheroprotection or provide the best safety balance between IL-1 activation and inhibition. In a Mendelian randomization study of the IL-1RN gene (that encodes endogenous IL-1Ra), IL-1Ra raising alleles were associated with lower levels of IL-6 and CRP and reduced rates of rheumatoid arthritis, but also with an increase in myocardial infarction and abdominal aortic aneurysm. Interpretation of this study is complex, however, because there was no genetic method to differentiate IL-1α from IL-1β activity.

In contrast to anakinra, canakinumab is a fully human monoclonal antibody targeting IL-1β and thus provides a highly specific method to address whether IL-1β inhibition can improve cardiovascular outcomes without alteration of IL-1α. Canakinumab is an approved agent for the treatment
of Muckle Wells syndrome and cryopyrin-associated periodic syndrome and has also shown activity in the settings of diabetes mellitus and gout. In a phase IIb trial conducted among 556 diabetics with high vascular risk, canakinumab produced dose-dependent reductions exceeding 50% for IL-6 and CRP, as well as having a smaller effect on circulating fibrinogen (Figure 6). In that trial, canakinumab had no effect on LDL or high-density lipoprotein, though a small increase in triglycerides was observed. Moreover, single doses of canakinumab were shown to inhibit inflammasome-mediated IL-1β, IL-6, and CRP production for a period of several months, demonstrating that long-term inflammatory inhibition could be achieved if canakinumab was given only 3 to 4 times annually. This is important because chronic inhibition of inflammation may be crucial to atherosclerotic protection. Because canakinumab leaves IL-1α function intact, this approach should have reduced infectious risk when given long term; in contrast to IL-6 or TNF inhibitors, IL-1β inhibition with canakinumab does not appear to reactivate tuberculosis nor cause increased infectious risk among those with HIV.

Partly on the basis of these phase II data, the large-scale Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) was launched in 2011 to address whether IL-1β inhibition with subcutaneous canakinumab every 3 months as compared with placebo can reduce recurrent cardiovascular event rates in stable coronary artery disease patients who remain at high inflammatory risk because of a persistent elevation of hsCRP. Enrollment in CANTOS was limited to those with hsCRP >2 mg/L for 3 important reasons. First, absolute event rates are enhanced in the trial because the anticipated median hsCRP of the study group should be roughly 4 mg/L, despite treatment with an aggressive prevention regimen, including statins. Second, by prescreening for

Table. Characteristics of IL-1 Inhibitors

<table>
<thead>
<tr>
<th>Name</th>
<th>Mechanism</th>
<th>IL-1α</th>
<th>IL-1β</th>
<th>IL-1Ra</th>
<th>FDA Approval</th>
<th>Dose</th>
<th>Route</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anakinra</td>
<td>Receptor antagonist</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Rheumatoid Arthritis</td>
<td>100 mg</td>
<td>SC</td>
<td>Daily</td>
</tr>
<tr>
<td>Rinalocept</td>
<td>IL-1 trap</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>CAPS</td>
<td>160 mg</td>
<td>SC</td>
<td>Weekly</td>
</tr>
<tr>
<td>Canakinumab</td>
<td>IL-1b antibody</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>CAPS</td>
<td>150 mg</td>
<td>SC</td>
<td>3 Months</td>
</tr>
<tr>
<td>Gevokizumab</td>
<td>IL-1b antibody</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>…</td>
<td>0.3 mg/kg</td>
<td>IV</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

CAPS indicates cryopyrin-associated periodic syndromes; IL-1Ra, IL-1 receptor antagonist. Adapted from Van Tassell et al with permission of the publisher. Copyright ©2013, the American Heart Association.
elevated hsCRP, the trial protocol limits canakinumab exposure to those with inflammation, a step which should improve safety and tolerability. Third, as noted earlier, IL-1β levels cannot reliably be measured in plasma. Thus, CANTOS trial is effectively using hsCRP as a surrogate for enhanced IL-1β activity.

With 10065 post–myocardial infarction patients enrolled worldwide, CANTOS is an event-driven trial due to complete in 2017 when ≈1400 cases of myocardial infarction, stroke, or cardiovascular death have accrued. The trial is testing 3 doses of canakinumab against placebo and is powered to detect a 20% relative risk reduction in hard cardiovascular events (Figure 7). Canakinumab directly inhibits the IL-1β to IL-6 to CRP axis with no effect on LDLC; thus, CANTOS will be the first large-scale test of the inflammation hypothesis of atherothrombosis. Prior work with anakinra and canakinumab has shown modest effects on HbA1c through similar anti-inflammatory pathways. As diabetes mellitus is often considered an inflammatory disease,100 rates of incident diabetes mellitus and progression of diabetes mellitus are critical secondary endpoints of the trial. Further, as canakinumab has been hypothesized to reduce metastatic disease in part through alteration of adhesion molecule function, incident cancers are also being tracked closely;101 this latter issue is collinear with interests in inhibition of IL-1 and innate immune function as a potential therapeutic tool in the oncology community.102 A logical extension of the CANTOS program will be to evaluate IL-1β inhibition in the setting of acute ischemia; very recent data in mice parabiosis models have shown that IL-1β contributes to bone marrow activation after acute myocardial infarction and that neutralizing IL-1β with a murine analogue of canakinumab can inhibit this process in a manner favoring infarct healing.103 Anticipated side effects from canakinumab include an increased risk of infection, and thus, any potential benefits on vascular events must exceed this potential hazard. Prespecified analyses within CANTOS include effect modification by on-treatment levels of IL-6 measured in fresh plasma.

In addition to CANTOS, the cardiovascular community is actively engaged in trials of alternative agents that impact the central CRP, IL-6, and IL-1 axis. As one example, the United States National Heart, Lung, and Blood Institute has funded a 7000-patient hard outcomes trial evaluating low-dose methotrexate (15–20 mg weekly) as compared...
with placebo in aggressively treated secondary prevention patients. In observational studies, low-dose methotrexate is associated with reduced cardiovascular event rates among those with rheumatoid arthritis and psoriatic arthritis, and in animal models low-dose methotrexate has been shown to reduce lesion formation. As a second example, the anti-inflammatory agent colchicine (which primarily functions as a microtubule inhibitor) is also known to have effects on the NLRP3 inflammasome and can reduce IL-1β expression. In a pilot study of those with ST elevation myocardial infarction, 5 days of colchicine reduced area under the creatine kinase-MB (CK-MB) curve and infarct size defined by late gadolinium enhancement using cardiac magnetic resonance imaging. Most importantly, in an open-label randomized trial, colchicine was found to reduce cardiovascular event rates. This provocative observation requires testing in formal double-blind settings.

Several outstanding recent reviews have addressed the basic immunology underlying atherothrombotic progression and the mechanisms of specific drug response. In concert with this work, the translational research community has come a long distance since studies in the mid-1990s first linked biomarkers of inflammation to future vascular risk. Close collaboration between clinical, epidemiologic, and bench investigators has now led to randomized outcome trials targeting the CRP, IL-6, and IL-1 pathway. If successful, these trials will close the loop on the inflammatory hypothesis and the mechanisms of specific drug response. In particular, NLRP3 inflammasome inhibition and colchicine have been studied as potentially efficacious in this setting.

Sources of Funding

The work described in this article is supported by investigator-initiated research grants to Dr Ridker from Novartis and AstraZeneca; the Leducq Foundation, the American Heart Association, and the National Heart Lung and Blood Institute (HL101422-03).

Disclosures

Dr Ridker is listed as a co-inventor on patents held by the Brigham and Women’s Hospital, Harvard Medical School, that relate to the use of inflammatory biomarkers in cardiovascular disease and diabetes that have been licensed to Siemens and AstraZeneca, and has received investigator-initiated research grant support from the National Heart Lung and Blood Institute, Novartis, Astra-Zeneca, the Doris Duke Charitable Foundation, the Leducq Foundation, and the Donald W Reynolds Foundation to perform work relevant to the topics discussed in this article.

References

24. Morrow DA, de Lorenzo JA, Sabatine MS, Wiviott SD, Blazing MA, Shu A, Rifai N, Califf RM, Braunwald E. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the
Circulation Research
January 8, 2016

47. Kawasaki SY, Kawakita A, Yamasaki S, Imazato T, Iwamoto N, Fujikawa K, Aramaki T, Tama M, Nakamura H, Ida H, Origuchi T, Ueki Y, Eguchi K. Effects of the anti-interleukin-6 receptor antibody, tocilizumab, on...

Xiao H, Lu M, Lin TY, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemod-

From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection
Paul M Ridker

doi: 10.1161/CIRCRESAHA.115.306656

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/118/1/145

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/