Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis

David T. Paik, Meena Rai, Sergey Ryzhov, Lehanna N. Sanders, Omonigho Aisagbonhi, Mitchell J. Funke, Igor Feoktistov, Antonis K. Hatzopoulos

Rationale: Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown.

Objective: To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury.

Methods and Results: Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopeptin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels.

Conclusion: Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.

(Circ Res. 2015;117:804-816. DOI: 10.1161/CIRCRESAHA.115.306886.)

Keywords: fibrosis ▪ heart failure ▪ myocardial infarction ▪ neovascularization ▪ Wnt signaling pathway
To identify the cell types expressing Wnt10b protein in the heart donors with an antibody recognizing the N-terminal domain of Wnt10b,16 we found similar accumulation in the intercalated discs of the mouse heart (Figure 1C). Western blot analysis of protein samples prepared from freshly isolated cardiomyocytes confirmed myocyte-specific Wnt10b expression (Online Figure I).

Wnt10b Is Induced in Cardiomyocytes at the Infarct Border During Granulation Tissue Formation

To determine the spatiotemporal pattern of Wnt10b expression in the heart after injury, we induced MI in C57BL/6 adult mice by permanent ligation of the left coronary artery and analyzed whole heart RNA samples at specific time points of the cardiac tissue repair process. Specifically, we quantified Wnt10b levels during the inflammatory response phase (day 1–3 after injury), granulation tissue formation (ie, during neovascularization and fibrosis after day 4), and in mature scar at day 21 in comparison with baseline levels. Our results showed Wnt10b RNA levels began to rise around day 3 post MI, peaking at day 7 by 6- to 8-fold, but returning to baseline levels during scar maturation (Figure 1D). Wnt10b peak levels followed the induction of transforming growth factor-β1 that is known to promote granulation tissue formation and fibrosis (Figure 1D).17

To identify the location of Wnt10b induction in the heart after injury, we analyzed mouse cardiac tissue sections on day 2 and 7 post MI. Although little to no change in Wnt10b protein localization was detected at day 2 post MI (Online Figure I), we observed strong induction of Wnt10b protein specifically in the myocytes of the infarct border zone at day 7 post MI (Figure 1E and 1F). In addition to the intercalated disc localization observed in normal hearts or in cardiomyocytes remote from the infarct, Wnt10b accumulated prominently in the cytoplasm of border zone cardiomyocytes (Figure 1E and 1F).

Taken together, our data show that Wnt10b protein localizes in the intercalated discs of cardiomyocytes in the normal adult heart. This pattern is disturbed in ischemic cardiomyopathy patients with cytoplasmic accumulation of WNT10B. Moreover, Wnt10b protein is strongly increased in peri-infarct cardiomyocytes during the neovascularization and fibrosis phase of cardiac repair after experimental MI.

Wnt10b Gain-of-Function Promotes Functional Recovery After Injury

To determine whether Wnt10b gain-of-function is beneficial or detrimental to cardiac repair, we genetically enhanced the natural Wnt10b expression in cardiomyocytes by generating a transgenic (TG) mouse line carrying the entire Wnt10b coding sequence under the adult cardiomyocyte-specific α-myosin heavy chain (αMHC-Myh6) gene promoter (Figure 2A).18 Molecular analyses of ventricular tissue showed that αMHC-Wnt10b TG mice expressed higher levels of Wnt10b RNA and Wnt10b protein in the heart compared with wild-type (WT) controls; however, Wnt10b protein in TG was primarily localized in the intercalated discs, as in WT cardiomyocytes (Figure 2B; Online Figure II). Wnt10b overexpression did not cause changes in the ventricles of TG mice at the macroscopic or ultrastructural level, but it led to enlargement of both atria (Online Figure II). TG mice displayed normal ventricular dimensions and functional parameters compared against the C-terminal protein domain of Wnt10b,16 we found similar accumulation in the intercalated discs of the mouse heart (Figure 1C). Western blot analysis of protein samples prepared from freshly isolated cardiomyocytes confirmed myocyte-specific Wnt10b expression (Online Figure I).

Methods

A complete Methods section is available in the Online Data Supplement.

Results

Wnt10b Is Expressed in Cardiomyocytes and Localized in the Intercalated Discs

To identify the cell types expressing WNT10B protein in the adult human heart, we stained tissue sections from healthy heart donors with an antibody recognizing the N-terminal domain of WNT10B. Immunofluorescence analysis showed that WNT10B was localized in the intercalated discs of cardiomyocytes, colocalizing with β-catenin (CTNNB1) and Connexin 43 (GJA1; Figure 1A). In contrast, we detected abundant cytoplasmic staining and WNT10B accumulation along the lateral borders of cardiomyocytes in ventricular tissue from ischemic cardiomyopathy patients (Figure 1B). Using a distinct antibody

<table>
<thead>
<tr>
<th>Nonstandard Abbreviations and Acronyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang-1</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>MI</td>
</tr>
<tr>
<td>NF-κB</td>
</tr>
<tr>
<td>Tie2</td>
</tr>
<tr>
<td>TG</td>
</tr>
<tr>
<td>VEGF</td>
</tr>
<tr>
<td>VSMCs</td>
</tr>
<tr>
<td>WT</td>
</tr>
</tbody>
</table>

wound healing process after MI, the effects of canonical Wnt ligands, such as Wnt10b, on cardiac tissue repair have not been investigated.9,10,14,15

To determine the effects of Wnt10b on the cardiac repair process, we analyzed the spatial and temporal patterns of Wnt10b activation in the heart before and after injury. We discovered that in normal human and mouse hearts, Wnt10b is expressed in cardiomyocytes and stored in the intercalated discs. After ventricular tissue injury in mice, Wnt10b expression is strongly and transiently upregulated in cardiomyocytes around the injury, peaking during granulation tissue formation. Our results show that Wnt10b gain-of-function in cardiomyocytes leads to (1) increased angiogenesis both directly by stimulation of endothelial cell proliferation and by induction of vascular endothelial growth factor receptor 2 (Vegfr-2) expression, (2) formation of coronary-like vessels surrounded by vascular smooth muscle cells (vSMCs) via induction of angiopoietin-1 (Ang-1) in vSMCs, (3) cardiomyogenesis within scar tissue, and (4) decreased numbers of myofibroblasts and infiltrating inflammatory cells. Furthermore, we show that the mechanisms underlying arteriolar formation by Wnt10b depend on coordinated stimulation of the nuclear factor-κB (NF-κB) signaling pathway in endothelial cells and vSMCs. These findings suggest that Wnt10b has the potential to orchestrate and improve the natural reparative capacity of the heart.
with WT controls (Online Table I). Flow cytometry of primary nonmyocyte cells isolated from adult WT and TG ventricles also showed comparable numbers of immune, endothelial, and stromal cells (Online Figure III).

Because the enlarged atria of TG mice hindered ligation of coronary vessels, we assessed the effects of Wnt10b overexpression on cardiac tissue repair using the cryoinjury model.19,20 Histological and molecular analyses of Wnt10b expression after cryoinjury showed induction at day 7 after injury that was confined to cardiomyocytes in the injury border zone, as observed in the MI model, suggesting that both spatial and temporal Wnt10b expression patterns are comparable in the 2 injury models (Online Figure IV).

Cardiac functional parameters were measured by echocardiography at baseline before injury, and at 1 day, 1 week, and 3 weeks after injury (Figure 2C–2E). The results showed that the extent of the initial injury was similar in WT and TG mice as demonstrated by similar drops in fractional shortening 1 day after injury. However, whereas the function of WT hearts continued to deteriorate over time, left ventricular functional output of TG hearts improved 3 weeks after injury (Figure 2C). Functional recovery in TG mice was primarily because of preservation of systolic function, with preserved chamber size and contractility (Figure 2D and 2E). Improved cardiac function in TG mice matched attenuated induction of prognostic markers of HF, such as matrix metalloproteinase-9 (Mmp9)21–23 and atrial and brain natriuretic peptides (Nppa, Nppb),22,24,25 when compared with WT counterparts (Figure 2F).

Consistent with the echocardiography data, histological analysis demonstrated that the original injury size was comparable in WT and TG mice. By 3 weeks post injury, however, TG ventricles displayed reduced scar than WT counterparts, with attenuated deposition of Collagen 1A (Figure 2G and 2H). The injured tissue in TG ventricles instead contained numerous patches of α-actinin+ myocytes with developing sarcomeric structures (Figure 2I and 2J). Together, our data suggest that Wnt10b has a favorable effect on cardiac repair, leading to reduced scar size, cardiomyocyte generation, improved systolic function, and reduction in the expression of HF markers.

Wnt10b Overexpression Increases Neovascularization of Scar Tissue

To test the effect of Wnt10b on cardiac tissue repair, we compared scar neovascularization and myofibroblast accumulation.
Figure 2. Wnt10b gain-of-function improves ventricular function after injury. A, Schematic drawing of the αMHC-Wnt10b transgene (TG). B, Western blot analysis of protein samples isolated from total cardiac tissue shows higher Wnt10b protein levels in transgenic (TG) hearts compared with wild-type (WT) hearts. β-Actin served as loading control. Molecular weights are indicated in kilodaltons (kDa). C, Fractional shortening percentage changes at 1 day, 1 week, and 3 weeks after cryoinjury show that cardiac function recovers over time in TG mice, whereas it deteriorates in WT controls. WT: n=10, TG: n=11. D, Representative M-mode echocardiograms at baseline and 3 weeks after cryoinjury demonstrate improved ventricular function in TG mice compared with WT counterparts 3 weeks after injury. E, Percentage changes in left ventricular internal dimension in systole (LVIDs) and diastole (LVIDd) 3 weeks post cryoinjury, relative to baseline values, indicate that functional recovery in TG mice is primarily because of improved systolic function. WT: n=10, TG: n=11. F, mRNA analysis by quantitative polymerase chain reaction at baseline (arbitrarily set as value 1 in WT) and 7 days post cryoinjury (dpc) shows that expression of heart failure predictor genes is attenuated in TG mouse hearts compared with WT. n=3 to 6 mice per group. G, Masson’s trichrome staining of ventricle sections 4 days and 3 weeks after cryoinjury shows that scar size in TG mice is reduced by ≈2-fold compared with WTs. n=4 mice per group. H, Immunohistochemistry of Col1A in injured tissue of WT and TG ventricles 3 weeks post cryoinjury shows reduced collagen deposits in TG. Boxed areas are shown at higher magnification. Scale bars, 200 µm. I, Comparison of Actn2 staining for cardiomyocytes in WT and TG ventricles 7 dpc in low magnification shows the appearance of cardiomyocyte patches in TG, Injury areas between epicardium and healthy tissue are delineated with dashed lines. J, Actn2 staining in WT and TG ventricles 7 dpc in high magnification. Images from 3 distinct TG mice display abundant Actn2 staining within scar tissue. Inset (far right) shows sarcomeric structures in Actn2+ cells. Scale bar, 200 µm; inset, 50 µm. BL indicates baseline; INJ, injured tissue; Mmp-9, matrix metalloproteinase 9; non-INJ, noninjured tissue; and Npp, natriuretic peptide precursor. *P<0.05; **P<0.01; NS, not significant, unpaired t test. All data are mean±SEM.
between WT and TG mice after cryoinjury. Histological and flow cytometry analyses showed that ventricles of uninjured WT and TG mouse hearts contained comparable numbers of endothelial cells (Online Figure V). After injury, immunofluorescence analysis using the CD31 antibody to mark endothelial cells showed the presence of small and sparse microcapillaries in the injury zone of WT mice, whereas TG mice contained numerous large blood vessels (arrowheads). Scale bars, 200 µm. Quantification of vascular density in noninjured and injured ventricles shows that scar tissue in TG mice is ≈2-fold more densely vascularized than WT controls. n=3 mice per group. B, Number of CD31−αSMA− endothelial cells, C, CD140a−CD31− fibroblasts, D, αSMA−CD31− myofibroblasts, and E, αSMA−Col1A− myofibroblasts among noncardiomyocyte CD45− primary cells isolated from WT and TG ventricles, determined by flow cytometry. Cell population numbers from WT ventricles at baseline shown as reference. TG hearts contain higher endothelial cell, equal fibroblast, and lower myofibroblast numbers compared with WT 5 days after cryoinjury. n=6 mice per group. F, IF analysis of Ki-67 (red) and CD31 (green) shows higher numbers of proliferating endothelial cells (arrows) in the injured tissue of TG ventricles compared with WT, 7 days after cryoinjury. Right, Magnified images from boxed regions on the left and middle panels. Sections were counterstained with DAPI (blue) to mark cellular nuclei. Scale bar, 100 µm; insets 50 µm. G, Ratio of Ki-67−CD31− proliferating endothelial cells to Ki-67−CD31− proliferating stromal cells in WT and TG ventricles 5 days post cryoinjury (dpc), determined by flow cytometry. n=3 mice per group. BL indicates baseline; and αSMA, α-smooth muscle actin. **P<0.01; ***P<0.001; NS, not significant, unpaired t test. All data are mean±SEM.

Figure 3. Wnt10b gain-of-function promotes neovascularization and attenuates myofibroblast expansion during cardiac repair after injury. A, Immunofluorescence (IF) images of CD31 antibody staining (green) in the injury (INJ) and peri-injury (Non-INJ) zones of wild-type (WT) and transgenic (TG) mouse cardiac tissue sections 3 weeks after cryoinjury (left). Injury zones between epicardium and noninjured tissue are delineated with dashed lines. The injury zone in WT mice contains mostly microcapillaries, whereas in TG mice, it contains numerous large blood vessels (arrowheads). Scale bars, 200 µm. Quantification of vascular density in noninjury and injury cardiac sections shows that scar tissue in TG mice is ≈2-fold more densely vascularized than WT controls (right). n=3 mice per group. B, Number of CD31−αSMA− endothelial cells, C, CD140a−CD31− fibroblasts, D, αSMA−CD31− myofibroblasts, and E, αSMA−Col1A− myofibroblasts among noncardiomyocyte CD45− primary cells isolated from WT and TG ventricles, determined by flow cytometry. Cell population numbers from WT ventricles at baseline shown as reference. TG hearts contain higher endothelial cell, equal fibroblast, and lower myofibroblast numbers compared with WT 5 days after cryoinjury. n=6 mice per group. F, IF analysis of Ki-67 (red) and CD31 (green) shows higher numbers of proliferating endothelial cells (arrows) in the injured tissue of TG ventricles compared with WT, 7 days after cryoinjury. Right, Magnified images from boxed regions on the left and middle panels. Sections were counterstained with DAPI (blue) to mark cellular nuclei. Scale bar, 100 µm; insets 50 µm. G, Ratio of Ki-67−CD31− proliferating endothelial cells to Ki-67−CD31− proliferating stromal cells in WT and TG ventricles 5 days post cryoinjury (dpc), determined by flow cytometry. n=3 mice per group. BL indicates baseline; and αSMA, α-smooth muscle actin. **P<0.01; ***P<0.001; NS, not significant, unpaired t test. All data are mean±SEM.
Wnt10b Gain-of-Function in Cardiomyocytes Induces Canonical Wnt Signaling in Adjacent Endothelial Cells, Increasing Their Proliferative Capacity

Analysis of RNA from TG ventricles before injury showed that Wnt10b gain-of-function led to upregulation of canonical Wnt signaling target genes Axin2, Lef1, and Tcf7 (Figure 4A). To identify the cell types with canonical Wnt activation in TG hearts, we stained cardiac tissue sections with an antibody recognizing the canonical Wnt signaling molecule β-catenin. Immunofluorescence analysis showed accumulation of β-catenin in endothelial cells, but not in cardiomyocytes, indicating Wnt10b overexpression activated canonical Wnt signaling in endothelial cells in a paracrine fashion (Figure 4B). Furthermore, transfection of freshly isolated cardiac endothelial cells with canonical Wnt activity luciferase reporter constructs confirmed higher canonical (ie, β-catenin mediated) Wnt signaling in cells from TG mice compared with those from WT mice (Figure 4C).

To test whether canonical Wnt activity promotes the proliferative capacity of endothelial cells, we purified and cultured freshly isolated endothelial cells from WT and TG ventricles (Online Figure VI). Our data show that the endothelial cells from TG ventricles possessed higher growth potential in culture and branching morphogenesis on growth factor reduced Matrigel than endothelial cells isolated from WT ventricles (Figure 4D–4G). This effect was abolished when endothelial cells were treated with the small molecule canonical Wnt inhibitor IWR-1-endo, but not the c-Jun N-terminal kinase inhibitor SP600125, demonstrating that the high growth potential of cardiac endothelial cells isolated from TG ventricles was because of elevated canonical Wnt activity (Figure 4H and 4I).

Wnt10b Enhances Endothelial Cell Growth Both Directly and Through Induction of Vegfr-2 Expression

To test whether the high growth potential of endothelial cells isolated from TG ventricles was a direct effect of Wnt10b on endothelial cells, we isolated cardiac microvascular endothelial cells from WT mice and exposed them to increasing concentrations of recombinant Wnt10b protein, which induced canonical Wnt activity (Online Figure VII). Wnt10b protein directly promoted endothelial cell growth in culture, suggesting canonical Wnt activity induction and stimulation of endothelial cell proliferation was a direct effect of Wnt10b (Figure 5A; Online Figure VII).

The Vegf-a/Vegfr-2 ligand/receptor axis specifically regulates endothelial cell proliferation. As shown in Figure 5B, Wnt10b induced Vegfr-2 in addition to the canonical Wnt gene target Axin2 in cultured endothelial cells, indicating that Wnt10b can further enhance the response of endothelial cells to Vegf-a by increasing the levels of its receptor. To test this possibility, we analyzed the effect of Vegf-a in vascular tube formation in the presence or absence of Wnt10b. We found Wnt10b and Vegf-a cooperated in stimulating endothelial tube formation in vitro (Figure 5C). These findings indicate that Wnt10b both directly stimulates endothelial cell growth and amplifies the proangiogenic effects of Vegf-a by induction of Vegfr-2.

Wnt10b Promotes Formation of Mature Coronary-Like Blood Vessels

In addition to greater density, the vasculature within injured tissue of TG hearts consisted of large diameter blood vessels, in contrast to small diameter capillaries present in WT hearts (Figure 3A). Costaining with antibodies recognizing endothelial cells and vSMCs confirmed that scar tissue in TG mice contained greater number of blood vessels surrounded by a prominent smooth muscle cell layer than that in WT mice (Figure 6A).

To identify the molecular basis of the observed vascular phenotype, we measured expression of Ang-1 and its receptor tyrosine kinase with immunoglobin-like and EGF-like domains 2 (Tie2), which regulates vSMCs recruitment and blood vessel stability. Analysis of ventricle tissue RNA of WT and TG mouse hearts showed comparable baseline Ang-1, Ang-2, and Tie2 expression levels before injury. However, there was a strong (15-fold) induction of Ang-1 expression 1 week after injury in WT ventricular tissue, which was further increased by 2-fold in TG ventricles (Figure 6B). In contrast, there were no major differences in the expression of Tie2 and the Ang-1 antagonist Ang-2 between WT and TG tissue (Figure 6B).
Histological analysis pointed to higher Ang-1 levels in α-smooth muscle actin-positive cells surrounding blood vessels within TG scar tissue compared with WT controls (Figure 6C). To test whether Wnt10b-induced arteriole morphogenesis is because of activation of the Ang-1/Tie2 signaling axis, we cocultured endothelial cells and vSMCs with or without...
Wnt10b and a Tie2 kinase-specific inhibitor. We found Wnt10b-induced association of endothelial and smooth muscle cells in growth factor reduced Matrigel. Moreover, Tie2 inhibition abolished Wnt10b-induced endothelial/smooth muscle cell interactions (Figure 6D). Taken together, our results indicate that Wnt10b promotes vSMCs recruitment and blood vessel stability by activating the Ang-1/Tie2 pathway.

Wnt10b Orchestrates Vessel Stabilization Through Coordinate Induction of NF-κB Signaling in Endothelial and Smooth Muscle Cells

Previous studies have identified NF-κB and Notch signaling as critical pathways in arteriogenesis, collateral vessel formation, and vascular network size during development or in the adult through coordinate promotion of angiogenesis and vSMC recruitment. We observed no significant differences in Notch signaling targets, such as Hey1 and Hey2, after injury between WT and TG mice (Online Figure VIII). To test whether Wnt10b acts upstream of the NF-κB signaling pathway, we investigated its effect on NF-κB signaling activation. Our data show that Wnt10b treatment of endothelial cells and vSMCs, transfected with NF-κB luciferase reporter constructs, led to induction of NF-κB signaling in both cell types (Figure 7A and 7B). The NF-κB signaling activation effect was Wnt10b-specific because the noncanonical Wnt11 ligand, which is also strongly induced in the heart after injury, had only a moderate effect. No synergistic interaction was observed between Wnt10b and tumor necrosis factor-α–induced NF-κB signaling in endothelial cells even at low tumor necrosis factor-α concentrations (Online Figure VIII).

To test whether the effect of Wnt10b on the induction of genes regulating endothelial cell growth (Vegfr-2) and vSMC recruitment (Ang-1) genes was because of activation of NF-κB signaling, we incubated endothelial cells and vSMCs with Wnt10b in the presence or absence of the NF-κB signaling inhibitor SN50. The results show that Wnt10b-mediated induction of Vegfr-2 in endothelial cells and Ang-1 in vSMCs were abolished by SN-50 (Figure 7C and 7D). Furthermore, Wnt10b also induced platelet-derived growth factor subunit B expression in endothelial cells in a NF-κB–dependent manner. Platelet-derived growth factor subunit B is known to act on platelet-derived growth factor receptor-β, expressed in vSMCs, to promote recruitment to newly formed blood vessels.

Previous studies have shown that leaky blood vessels hinder tissue recovery because they allow infiltration of immune cells resulting in unresolved inflammation, which in turn may aggravate ventricular remodeling. This raised the possibility that Wnt10b-induced blood vessel stability attenuates inflammation. Consistent with this possibility, flow cytometry analysis 5 days after cryoinjury showed lower levels of inflammatory cells within ventricular tissue of TG mice compared with WT mice (Figure 7E and 7F; Online Figure IX).

Consequently, our data indicate that Wnt10b promotes angiogenesis and blood vessel stabilization through parallel stimulation of NF-κB signaling in endothelial cells and vSMCs, a pathway that is known to regulate induction of proangiogenic...

Figure 5. Wnt10b stimulates endothelial cell growth directly and in synergy with vascular endothelial growth factor (Vegf).

A, Growth of primary cardiac endothelial cells, CD31⁺CD140a⁻, isolated from 4-week-old wild-type ventricles in the presence of PBS as vehicle control or Wnt10b protein (300 ng/mL). At day 6, cultures treated with Wnt10b exhibit increased numbers of CD31⁺CD140a⁻ cells counted by flow cytometry. Results obtained in independent cell isolation experiments from 3 mice per group. B, Quantitative polymerase chain reaction analysis shows that Wnt10b induces Axin2 and vascular endothelial growth factor receptor 2 (Vegfr-2) in microvascular cardiac endothelial cells (MVEC-1), but it has no effect on Vegfr-1 and Vegfr-a expression. C, Wnt10b promotes branching morphogenesis and synergizes with mouse Vegf164 (10 ng/mL) in MVEC-1 cells on growth factor reduced Matrigel (left). Total number of branches per 1 mm² field (right). Results obtained in independent cell isolation experiments from 3 mice per group. *P<0.05; **P<0.01; ***P<0.001; NS, not significant, unpaired t test in A and B, one-way ANOVA with Bonferroni’s multiple comparisons test in C. All data are mean±SEM.
and arteriogenic factors in endothelial cells (Figure 8). The coordinated formation of stable blood vessels improves perfusion of injured tissue and prevents prolonged infiltration of inflammatory cells, creating an optimized microenvironment for cardiomyocyte growth and enhanced repair of injured cardiac tissue.

Discussion

Here, we show that canonical Wnt signaling activating Wnt10b ligand is expressed in cardiomyocytes and stored in intercalated discs. After injury, Wnt10b expression is induced in cardiomyocytes in border zone during the granulation tissue formation phase of cardiac repair, when neovascularization and fibrosis take place. Our data show that Wnt10b gain-of-function stimulates new blood vessel growth in 2 separate ways. First, Wnt10b activates canonical Wnt signaling in endothelial cells, a process that is known to promote angiogenesis after myocardial injury. Second, by stimulating Vegfr-2 expression in endothelial cells, Wnt10b further enhances Vegf-α-mediated endothelial cell proliferation.

Furthermore, Wnt10b mediates stable vessel formation via induction of platelet-derived growth factor subunit B expression in endothelial cells and Ang-1 in smooth muscle cells, 2 growth factors that promote vascular stabilization, reduce permeability, and enhance blood flow. Previous studies have established that simultaneous supply of VEGF and Ang-1 leads to superior functional neovascularization of ischemic tissues, whereas administration of VEGF alone generates leaky vessels and hemorrhages. Although such secreted factors regulating individual aspects of blood vessel formation have been identified, knowledge of upstream regulators that coordinate the entire process was missing. To our knowledge, Wnt10b is the first morphogen that coordinates coronary-like vessel formation, pointing to new approaches to effectively revascularize poorly perfused areas of the heart. However, future studies will need to address the mechanisms leading to atrial enlargement as a potential negative effect caused by Wnt10b overexpression.

Formation of large blood vessels with robust support structures involves endothelial cell growth, branching, and recruitment of smooth muscle cells. In support of our data on the role of Wnt10b in adult cardiac repair, it was recently shown that endothelial transcription factor ERG (ETS Related Gene) promotes vascular stability and growth through canonical Wnt activation during development. Previous studies have also identified the NF-κB pathway,
Notch signaling, RAF-1/ERK, and the adaptor protein Shc as intracellular components that coordinate arteriogenesis, collateral vessel formation, and vascular network size during development or in the adult.36–38 Although we did not detect changes in Notch signaling in TG mouse hearts, we discovered that Wnt10b activated NF-κB signaling in both cardiac endothelial and smooth muscle cells. It is thus likely that coordinated activation of NF-κB signaling in both cell types mediating vessel growth and stability is responsible for the Wnt10b effects. In support of this notion, we found inhibition of NF-κB signaling abolished Wnt10b-induced expression of Vegfr-2 and Pdgf-b in MCEC-1 (C) and Ang-1 in MOVAS (D) is blocked by the NF-κB inhibitor SN-50 (50 μg/mL). E and F, Flow cytometry–based quantification of CD45+ immune cells (E) among viable noncardiomyocytes and CD11b+Ly6G+ neutrophils (F) among CD45+ cells isolated from wild-type (WT) and transgenic (TG) ventricles 5 days post cryoinjury (dpc) shows that immune cell infiltration is attenuated in TG hearts. Cell populations from WT ventricles at baseline used as reference. n=4 to 6 mice per group. *P<0.05; **P<0.01; ***P<0.001; NS, not significant, unpaired t test. All data are mean±SEM. MOVAS indicates mouse vascular smooth muscle cells; Pdgf-b, platelet-derived growth factor subunit B; Vegfr-2, vascular endothelial growth factor receptor 2; and vSMCs, vascular SMCs.

Figure 7. Wnt10b induction of angiogenic and arteriogenic factors depends on activation of nuclear factor-κB (NF-κB) signaling in endothelial cells (ECs) and smooth muscle cells (SMCs). A and B, Luciferase activity assay in pNF-κB-luc-plasmid–transfected ECs (A) and vSMCs (B) treated with vehicle (PBS), Wnt10b (300 ng/mL), or Wnt11 (300 ng/mL). Wnt10b activates NF-κB signaling in both cell types. Wnt10b induction of Vegfr-2 and Pdgf-b in MCEC-1 (C) and Ang-1 in MOVAS (D) is blocked by the NF-κB inhibitor SN-50 (50 μg/mL). E and F, Flow cytometry–based quantification of CD45+ immune cells (E) among viable noncardiomyocytes and CD11b+Ly6G+ neutrophils (F) among CD45+ cells isolated from wild-type (WT) and transgenic (TG) ventricles 5 days post cryoinjury (dpc) shows that immune cell infiltration is attenuated in TG hearts. Cell populations from WT ventricles at baseline used as reference. n=4 to 6 mice per group. *P<0.05; **P<0.01; ***P<0.001; NS, not significant, unpaired t test. All data are mean±SEM. MOVAS indicates mouse vascular smooth muscle cells; Pdgf-b, platelet-derived growth factor subunit B; Vegfr-2, vascular endothelial growth factor receptor 2; and vSMCs, vascular SMCs.

The effects of Wnt10b on neovascularization of the injured tissue led to significant restoration of ventricular function after injury, as evidenced by improved systolic parameters, reduced infarct size, and attenuated expression of HF biomarkers in TG mice. This recovery phenotype mimics that of mice with sustained Ang-1 treatment, which promoted vessel size expansion and increased the diameter of arterioles, suggesting that Wnt10b acts upstream of the Ang-1/Tie2 signaling axis.46 Wnt10b also promoted formation of cardiac tissue within scar, which may further account for the improved ventricular function. This result would be consistent with findings showing that canonical Wnt signaling activation promotes cardiomyocyte

Figure 8. Model of Wnt10b gain-of-function effects on arteriole formation in the injured heart. Wnt10b coordinates blood vessel growth and stability by (1) activation of canonical Wnt/β-catenin signaling to stimulate endothelial cell proliferation, and (2) nuclear factor-κB (NF-κB)–dependent induction of vascular endothelial growth factor receptor 2 (Vegfr-2) and platelet-derived growth factor subunit B (Pdgf-b) in endothelial cells (EC) and Ang-1 in vascular smooth muscle cells (vSMC) to further promote vascular growth and vSMC recruitment.
proliferation in the embryonic heart.51 Finally, Wnt10b gain-of-function led to decreased numbers of collagen-producing myofibroblasts and infiltrating proinflammatory cells, although further studies are needed to test whether this is a direct Wnt10b effect on these cell types. At present, it is not clear whether these responses reflect direct effects of Wnt10b on myofibroblast or cardiomyocyte proliferation, expansion and differentiation of cardiac progenitor cells, or regulation of cell fates during endothelial-to-mesenchymal (EndMT) or mesenchymal-to-endothelial (MEndT) transitions.12,52–54

Interestingly, Wnt pathway antagonists, such as sFRPs (secreted Frizzled-related Proteins), also have positive effects in cardiac repair because they stimulate early cell survival through Akt-1 activation.9,10,14,55 In contrast, activation of canonical Wnt signaling in myofibroblasts accelerated scar formation, benefiting recovery as shown in mice with constitutive fibroblast expression of β-catenin.13,56 It would be important to test whether stage-, ligand-, and cell-specific manipulation of Wnt signaling could further optimize the recovery process.

A limitation of the Wnt10b gain-of-function approach in our study is that the observed phenotypes may not only recapitulate the endogenous role of Wnt10b but also reflect the collective overexpression effects of structurally related Wnt ligands in the heart. This problem is particularly acute in the Wnt signaling pathway, which consists of 19 ligands and 10 frizzled receptors with overlapping, often redundant expression and function.57,58 However, it is noteworthy that the observed phenotypes are distinct from those described in αMHC-Wnt11 transgenic mice, which displayed cardiomyopathy because of hypertrophic ventricular myocytes,59 suggesting that, at least part of the results are specific to the Wnt10b ligand. Thus, the development of Wnt10b administration protocols, or compounds designed to mimic Wnt10b, will likely help orchestrate stable blood vessel formation after injury, improve cardiac tissue recovery, and potentially decrease ventricular remodeling and HF.

Acknowledgments
We thank the Cardiovascular Pathophysiology and Complications Core of the Mouse Metabolic Phenotyping Center, the Cell Imaging Shared Resource (supported by National Institutes of Health [NIH] grants CA68485, DK20593, DK58404, HD15052, DK59637, and EY08126), the Translational Pathology Shared Resource, the Transgenic Mouse/ES Cell Resource, Molecular Cell Biology Resource, and the FACS Core at Vanderbilt University Medical Center. This work also utilized the core(s) of the Vanderbilt Diabetes Research and Training Center funded by grant 200503 from the National Institute of Diabetes and Digestive and Kidney Disease. We thank Lianli Ma and Zhizhang Wang for performing mice surgeries and echocardiograms, and Douglas Sawyer and Chee Lim for providing freshly isolated cardiomyocytes.

Sources of Funding
This work was supported by National Institutes of Health grants HL083958 and HL100398 to A.K. Hatzopoulos, HL095787 to I. Feoktistov, and Institutional Support from Vanderbilt University Medical Center to A.K. Hatzopoulos; a Program in Cardiovascular Mechanisms: Training in Investigation Fellowship (T32HL007411) to D.T. Paik and L.N. Sanders; and HMI/VUMC Certificate Program in Molecular Medicine to D.T. Paik; National Institute of General Medical Sciences grant T32GM07347 to Vanderbilt MSTP; and an American Heart Association predoctoral Fellowship to O. Aisagbonhi.

Disclosures
None.

References

36. Paik et al. Wnt10b Enhances Cardiac Repair 815

What Is Known?

- Angiogenesis and fibrosis are launched simultaneously during scar tissue formation after myocardial infarction.
- Canonical Wnt signaling is activated within the infarct zone in blood vessel-forming endothelial cells and collagen-producing myofibroblasts.
- Wnt proteins are induced after myocardial infarction, but their roles in cardiac repair processes are not known.

What New Information Does This Article Contribute?

- The canonical Wnt signaling ligand Wnt10b is stored in the intercalated discs of adult cardiomyocytes and induced in the border zone of the infarct.
- Wnt10b regulates canonical Wnt and nuclear factor-κB signaling activation in multiple cell types that take part in the injury repair process.
- Overexpression of Wnt10b in the heart promotes formation of blood vessels and cardiomyocytes, attenuates fibrosis, and preserves left ventricular function after injury.

Novelty and Significance

Despite considerable progress in thrombolytics and percutaneous interventions to restore circulation after myocardial infarction, we have no means to improve the natural healing processes of the heart with the goal of preserving ventricular function and prevent heart failure. We discovered that the canonical Wnt ligand Wnt10b is highly induced in peri-infarct cardiomyocytes after injury, at the onset of scar tissue formation. To study the effects of Wnt10b on the cardiac tissue repair process, we generated a transgenic αMHC-Wnt10b mouse that overexpresses Wnt10b in cardiomyocytes. We found that αMHC-Wnt10b mice show robust formation of blood vessels and cardiomyocytes, less fibrosis, and better preserved ventricular output after acute injury when compared with wild-type mice. Wnt10b induces endothelial cell proliferation via canonical Wnt signaling activation and stimulates arteriole formation in nuclear factor-κB–dependent manner. Our findings suggest that Wnt10b has the potential to enhance cardiac tissue repair and regeneration and may lead to novel therapeutic strategies to improve ventricular function after injury.
Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis

David T. Paik, Meena Rai, Sergey Ryzhov, Lehanna N. Sanders, Omonigho Aisagbonhi, Mitchell J. Funke, Igor Feoktistov and Antonis K. Hatzopoulos

Circ Res. 2015;117:804-816; originally published online September 3, 2015;
doi: 10.1161/CIRCRESAHA.115.306886

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/117/9/804

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2015/09/03/CIRCRESAHA.115.306886.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Detailed Methods

Transgenic mice
The αMHC-Wnt10b plasmid was generated by inserting the full-length Wnt10b cDNA into the αMHC (Myh6) gene promoter-polyA hGH cloning vector1 (kindly provided by Dr. J. Robbins). The αMHC-Wnt10b transgenic (TG) mouse was generated by pronuclear microinjection of the construct into fertilized oocytes at the Vanderbilt Transgenic Mouse/Embryonic Stem Cell Shared Resource (TMESCSR). Two independent lines that displayed identical phenotypes in response to injury were maintained and used in this work. TG mice were raised in C57BL/6 background and wild-type littermates were used as controls. All analyses were performed using mice at 12-32 weeks of age fed with a normal chow diet. All experiments were performed in accordance with the Institutional Animal Care and Use Committee (IACUC) at Vanderbilt University Medical Center.

Cardiac injury models
Experimental MI by permanent ligation of left anterior descending (LAD) artery was performed as previously described.2 For cryoinjury, animals were fasted for 4 to 6 hours prior to the surgical preparations. Mice were anesthetized with 50 mg/kg pentobarbital sodium via intraperitoneal injection. Following aseptic preparation, an incision on the anterolateral left ventricle wall was performed. The left anterior descending (LAD) coronary artery was explored and a round 3-mm diameter metal probe cooled to -196°C with liquid nitrogen was applied to the left ventricle wall for 10 seconds. The cryoinjured area was macroscopically identified as a firm white disk-like region. Continuous Electrocardiograms (ECGs) were obtained during the procedure. At the conclusion of the myocardial injury procedure, the intercostal space and skin were closed and the mice were recovered on a water-circulated heating pad.3

Echocardiography
Mice were rested and calmed before echocardiography was performed. All mice were conscious and unsedated during measurements using the VEVO 2100 machine and transducer MS-400 (VisualSonics) to measure and calculate various cardiac parameters. The left ventricle was located in B-Mode and was traced over five consecutive beats in M-Mode. Left ventricular internal dimension in diastole and systole (LVIDd and LVIDs) were measured from M-Mode using the short axis. Final values were averaged from three independent measurements. The following equations were used to calculate the LV EF and FS:

\[
\text{LV Vol;d} = \left[\frac{7.0}{(2.4 + \text{LVIDd})} \right] \times (\text{LVIDd}^3)
\]
\[
\text{LV Vol;s} = \left[\frac{7.0}{(2.4 + \text{LVIDs})} \right] \times (\text{LVIDs}^3)
\]
\[
\text{LV EF} \% = 100 \times \left(\frac{\text{LV Vol;d} - \text{LV Vol;s}}{\text{LV Vol;d}} \right)
\]
\[
\text{LV FS} \% = 100 \times \left(\frac{\text{LVIDd} - \text{LVIDs}}{\text{LVIDd}} \right)
\]

Cell culture
Primary cardiac endothelial cells were isolated using the immuno-magnetic sorting method by positive selection with the CD31 antibody. Mouse ventricles were excised and digested in DMEM with 10 mg/ml Collagenase type II, 2.4 U/ml Dispase II, 0.3 μg/ml DNAse IV, 2.5 mM CaCl₂ solution and non-myocyte cells were isolated through nylon filter. Leukocytes were removed by immuno-sorting against CD45 antibody by negative selection. Cardiac endothelial cells were isolated by immuno-sorting with the CD31 antibody using MS columns - MACS separator system by positive selection (Miltenyi Biotec Inc.).

Mouse cardiac microvascular endothelial (MCEC-1) cells, generously provided by Dr. J. Mason (National Heart and Lung Institute, London, UK), were isolated from mice containing a gene encoding the thermolabile SV40 T antigen and maintained in the presence of interferon-γ at 33°C.4 Six days prior to
performing experiments, cells were re-plated and cultured in the absence of interferon-γ at 37°C, as previously described.\(^5\)

Vascular aortic smooth muscle cells (MOVAS, ATCC# CRL-2797) isolated from C57BL/6 mice were obtained from ATCC. Cells are cultured in DMEM supplemented with 10% FBS and 0.2 mg/ml G-418.\(^6\)

Primary endothelial cell proliferation and tube formation assays

Primary cardiac endothelial cells at passage 1 (P1) were seeded in 24-well plate at concentration 5 x 10\(^3\) cell/cm\(^2\) (total of 10,000 cell per well) and grown in complete Endothelial Cell (EC) medium, i.e., DMEM medium containing 10% FBS, 1X antibiotic antymycotic solution (Sigma) and supplemented with 50 µg/ml of endothelial cell growth solution (ECGS; Biomedical Technologies) and 10 units/ml heparin. Every 24 hours, cells were detached and counted. Small molecule canonical Wnt inhibitor IWR-1-endog (EMD), negative control compound IWR-1-exo (Santa Cruz), JNK inhibitor SP600125 (EMD), and JNK inhibitor II negative control compound (EMD) were administered at 1 µM concentration.

Primary cardiac endothelial cells isolated from wild-type and TG ventricles were cultured for 5 days in EC medium at 37°C, then in DMEM with 10% FBS but no growth factors for 24 hours. Primary cardiac endothelial cells were then seeded on Growth Factor Reduced (GFR) Matrigel (BD Biosciences) at 40,000 cells per well on a 96-well plate. MCEC-1 cells at P0 at 37°C were treated with 300 ng/ml rmWnt10b and/or 10 ng/ml rmVEGF (R&D Systems) for 24 hours in 10% FBS in DMEM without growth factors, then seeded on GFR Matrigel at 40,000 cells per well on a 96-well plate. Endothelial cell tubes were imaged using light microscope 6 hours after plating. Total number of branches was counted and averaged over three biological replicates per sample.

For endothelial cell-vascular smooth muscle cell co-culture experiment, MCEC-1 cells were incubated in empty DMEM (with no FBS) for 24 hours in absence or presence of 300 ng/ml Wnt10b. MCEC-1 cells were then labeled with 5 µM lipophilic DiD fluorescence dye (Life Technologies) for 1 hour at 37°C and 30,000 cells were plated per well (96-well plate) on GFR Matrigel for 18 hours in DMEM (with no FBS) in absence or present of 300 ng/ml Wnt10b. Vascular smooth muscle cells (MOVAS) were labeled with 5 µM DiO dye (Life Technologies) and plated on top of the MCEC-1 cells at 7,500 cells per well, as 4:1 EC:vSMC ratio, in presence or absence of 1 µM Tie2 Kinase Inhibitor (Calbiochem, 4-(6-Methoxy-2-naphthyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole). Cells were co-cultured for 6 hours and imaged using a fluorescence microscope.

Flow cytometry

To prepare primary non-myoocyte cardiac cells, mice were first injected intraperitoneally with 50 U heparin for 10 minutes, then euthanized. Hearts were isolated and washed with 2% FBS, 10,000 U/ml heparin, 1X PBS solution. Ventricular tissue was then minced and digested with 10 mg/ml Collagenase type II, 2.4 U/ml Dispase II, 0.3 µg/ml DNAse IV, 2.5 mM CaCl\(_2\) solution for 20 minutes at 37°C. Digested tissue is filtered through 100 µm filter and again with 70 µm filter. Flow cytometry analysis was performed using BD LSR II as previously described\(^7\), with the aid of Flow Cytometry Shared Resource at Vanderbilt University Medical Center. Initial gating procedure for live, singlet cells used for all flow cytometry analyses performed is shown in Online Figure X, using LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Life Technologies). Antibodies used were biotin anti-Col1A (Rockland immunochemicals), anti-α-smooth muscle actin-FITC (Sigma), Leukocyte Common Antigen Ly-5 (CD45)-V450 (BD Bioscience), CD11b-V450 (BD Bioscience), PE/Cy7 anti-mouse Ly-6G (Biolegend), anti-mouse/rat Ki-67-PE (eBiosciences) and APC anti-mouse CD31 (Biolegend).

Quantitative RT-PCR

Total RNA was isolated from mouse hearts using the TRIzol Reagent (Invitrogen) and from cultured cells using the RNeasy Mini Kits (Qiagen) following the manufacturers’ instructions. RNA was reverse-
transcribed into cDNA as previously described. Quantitative PCR was performed using the iQ SYBR Green Supermix (BioRad) on an C1000 Thermal Cycler (BioRad). Expression of GAPDH and β-Actin were used as internal controls to normalize the expression of genes of interest. Primer sets were tested to have amplification efficiency of 90-110%, calculated via standard curve of log (DNA copy number) vs. relative fluorescence unit. Relative gene expression was calculated using the $2^{(-DDCt)}$ method.

Mouse primers used are as below:

<table>
<thead>
<tr>
<th>Gene</th>
<th>5'</th>
<th>3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang-1</td>
<td>CCACCATGCTTGAGATAGGAACC</td>
<td>CTGTGAGTAGCGCTCGGTCCC</td>
</tr>
<tr>
<td>Ang-2</td>
<td>GTGGTGCAAGACGAGAGCGCTG</td>
<td>CACTTCTGTTGCTGGATGC</td>
</tr>
<tr>
<td>Axin2</td>
<td>CCAGAAGATGACAAAGAGCCAAAGA</td>
<td>CTCAGTCGATTCCTCCACTTGC</td>
</tr>
<tr>
<td>β-actin</td>
<td>CTAAGAGGCTATGGCCTCGCC</td>
<td>CCGGACTCATGGACTCTCTG</td>
</tr>
<tr>
<td>Gapdh</td>
<td>CTCACTCAAGATGGTCAGCAATG</td>
<td>GAGGGAGATGCTCAGTGTTGG</td>
</tr>
<tr>
<td>Lef1</td>
<td>ATCCACCACAGGAGAAAAGAAT</td>
<td>GTTAGGCTGCCCTCTGAGAGTTT</td>
</tr>
<tr>
<td>Mmp-9</td>
<td>CAGGAGCTGATAAGTGGGTGTC</td>
<td>GTACTGGAGATGGCTGGAGAG</td>
</tr>
<tr>
<td>Nppa</td>
<td>TTTCAGAAACCTCGTACAGCCACTTG</td>
<td>AAAGCTGGTGGAGCTGGAGAG</td>
</tr>
<tr>
<td>Nppb</td>
<td>ATGGATCTCCTGAAAGAGGCTG</td>
<td>GTGCTGCTTGAGACCCAA</td>
</tr>
<tr>
<td>Pdgfb</td>
<td>GCACACTTCTGCTTTGACCGCC</td>
<td>CACAGAGCTGTCAAGGGG</td>
</tr>
<tr>
<td>Tcf7</td>
<td>GCATCCCTCATTCCAAGTATGGGAC</td>
<td>GCTGCTCTCCTCCCTGAGG</td>
</tr>
<tr>
<td>Tie2</td>
<td>CAACAGGCTATGCGCTCC</td>
<td>GAAAAGGGTGTTGCTGTAC</td>
</tr>
<tr>
<td>Tgf-β1</td>
<td>AGATAAAAATCAGTGGGAGGAGGC</td>
<td>GTCCCTCTTAAGTCAATGGCAAGC</td>
</tr>
<tr>
<td>Vgf-a</td>
<td>CAAAGGCTCAGCCCTAGGAGGCG</td>
<td>CCCCTAGGGAGGCTCCCTGAGC</td>
</tr>
<tr>
<td>Vgf-r-1</td>
<td>GGAACACGACAGGAGAAGACG</td>
<td>GTAGGCTGACCCACCATG</td>
</tr>
<tr>
<td>Vgf-r-2</td>
<td>CTCAGTGACCCAGGACGAC</td>
<td>GACTTACCTGCCCAGTGG</td>
</tr>
<tr>
<td>Wnt10b</td>
<td>AGAAAGATGCTTCCTGAGGATTCTCTG</td>
<td>CAAAGTAAACCAGCTTCC</td>
</tr>
</tbody>
</table>

Histological analyses

Freshly isolated hearts were thoroughly perfused with Phosphate Buffered Saline (PBS) and embedded in Tissue-Tek Optimal Cutting Temperature (OCT) compound. 5 µm cryosections were fixed in 1:1:1 acetone:methanol for 5 min at 4°C. Sections were blocked in 1% bovine serum albumin (BSA), 0.05% saponin in PBS for 1 hour at room temperature. Sections were incubated with primary antibodies overnight at 4°C and then with Alexa-Fluor and Cy3-conjugated secondary antibodies (Life Technologies, Jackson ImmunoResearch) and fluorescent dye DAPI (1:5,000) for 1 hour at room temperature. Slides were
mounted with VECTASHIELD fluorescent mounting medium (Vector Laboratories). Images were taken on Olympus FV-1000 inverted confocal microscope and processed using the FV10-ASW 1.6 Viewer software (Olympus). Primary antibodies used were αSMA (Sigma A5228, 1:800), CD31 (BD Pharmingen 553370, 1:100), Wnt10b (Santa Cruz sc-25524, 1:25), WNT10B (Millipore MABN717, 1:50), GJA1 (Abcam Ab11370, 1:800), COlIV (Abcam Ab6586, 1:100), β-catenin (Sigma C2206, 1:800), α-Actinin (Sigma A7811, 1:800), Plakoglobin (Sigma P8087, 1:800), Ki-67 (Abcam ab15580, 1:400), Ang-1 (Abcam ab8451, 1:100), and Col1a1 (Abcam ab292, 1:400).

Vascular densities of the injured and non-injured tissue were measured by calculating the pixel density of fluorescence obtained with antibody staining against CD31 using the MetaMorph 7.6 software (Molecular Devices). 18 to 53 0.035 mm² frames were randomly selected and analyzed per mouse.

For analysis of scar size, 5 µm of transverse ventricular sections were stained with Masson’s Trichrome blue and imaged on AZ100M widefield microscope (Nikon). Scar area ratio was calculated as (scar area)/(total ventricular area) in transverse venticle sections. Scar and total ventricular areas were calculated using the NIH ImageJ software (N=4 mice per group). Relative fibrotic density of injured tissue was similarly calculated from Col1a1 immuno-stained transverse ventricular sections, where images were RGB-stacked with identical maximum threshold value and their mean gray values were measured.

αSMA+/CD31+ vessels with diameter of 10 µm or greater were counted in the injury zones from immunostained horizontal sections. 4 to 6 0.4 mm² frames were randomly selected and analyzed per mouse (N=4 mice per group).

Protein isolation and Western blot analysis

Freshly isolated hearts were thoroughly perfused with PBS and homogenized in 3% protease inhibitor, 1% phosphatase inhibitor II, 1% phosphatase inhibitor III in NP40 lysis buffer (Sigma) using tissue homogenizer. Tissue homogenate was spun at 14,000 rpm for 10 minutes and supernatants were collected as total protein samples. Proteins were separated by SDS-PAGE gel and transferred to nitrocellulose membranes. 10 ng of total protein was loaded per well. Primary antibodies recognizing β-Actin (Sigma A1978, 1:40,000) and Wnt10b (Santa Cruz sc-25524, 1:1000) were used. Infrared secondary antibodies (LI-COR) were applied for 1 hour at room temperature at a dilution of 1:10,000. Signal was detected using the Odyssey infrared imaging system (LI-COR).

Luciferase assays

The SuperTOPFlash vector (STF; Addgene) carries the firefly luciferase gene reporter under the control of 7 tandem T-Cell factor/lymphoid enhancer factor (TCF/LEF) binding sites that respond to canonical Wnt signaling. Primary cardiac endothelial cells at P2 were seeded in 24-well plates at a concentration of 10⁵ cells/well. Cells were grown for 3 days in DMEM medium supplemented with ECGS and heparin. Medium was changed to DMEM without growth factors and cells were incubated for additional 24 hours. Cells were then transfected with 150 ng/well of STF and 1.1 ng/well of pRL-SV40 that carries the Renilla luciferase gene in order to control for transfection efficiency. 24 hours later luciferase activity was measured using the Dual-Luciferase Reporter Assay kit (Promega) on TD-20/20 luminometer.

For NF-κB luciferase assays, MCEC-1 and MOVAS cells were seeded in 12-well plates at concentration of 80,000 cells/well and cultured in complete medium for 12 hours. Cells were transiently transfected with 936 ng/well of pNF-κB-Luc (Stratagene) and 7.9 ng/well of pRL-SV40 for 24 hours using Fugene HD (Promega) following manufacturer’s instructions. Cells were treated with 300 ng/ml rmWnt10b, 300 ng/ml rhWnt11, 20 ng/ml rmTNFα (R&D Systems), and/or 50 µg/ml NF-κB inhibitor SN-50 (Calbiochem) for 6 hours, then luciferase activity was measured as above. Firefly luciferase activity was normalized to *Renilla* luciferase activity and reported as fold induction over basal levels.
Human heart tissue
The human heart tissue samples were obtained from Vanderbilt Cardiology Main Heart Registry/Biorepository. The study was approved by Vanderbilt Institutional Review Board and written informed consent was obtained from all heart tissue donors or organ donor families. Explanted heart from patients with ischemic cardiomyopathy or organ donors whose heart were unmatched for transplantation were collected into the Biorepository. At the time of explantation, a section of left ventricular (LV) free wall tissue was immediately frozen in liquid nitrogen, and a small piece of LV tissue from the same section was embedded in OCT media and stored at -80°C until used for immunofluorescence analysis.

Electron Microscopy
Mouse heart tissue was fixed in 2.5 % glutaraldehyde, 0.1 M sodium cacodylate solution for 1 hour in room temperature, then for 24 hours at 4°C. Electron micrograms were taken on Philips/FEI T-12 transmission electron microscope in the Cell Imaging Shared Resource at Vanderbilt University Medical Center.

Statistical analysis
Unpaired two-tailed t test was used to compare differences between two unpaired groups. One-way ANOVA with Bonferroni’s multiple comparisons test was used to compare multiple unpaired groups. One-way ANOVA with Dunnett’s multiple comparisons test was used to compare multiple groups against a single sham or control group. *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$ were considered significant. Results are reported as mean ± SEM.
Supplemental References

Online Figure I.

(A) Detection of Wnt10b (43 kDa) in neonatal rat ventricular myocytes by Western blot. β-Actin (42 kDa) used as loading control. (B) Localization of Wnt10b in WT left ventricle tissue sections 2 days after experimental myocardial infarction caused by permanent ligation of the left coronary artery (LCA). Wnt10b expression is confined to intercalated discs at this early time point after MI. INF=infarct tissue, BZ=border zone. Scale bar, 100 μm; inset, 30 μm.
Online Figure II.

Phenotypic analyses of αMHC-Wnt10b (TG) transgenic mice. (A) mRNA expression of Wnt10b gene in WT and TG ventricles. N=4 per group. Unpaired t test. * P< 0.05. (B) IF analysis with a Wnt10b-recognizing antibody in WT and TG cardiac tissue section. Low magnification (top) and high magnification (dotted inserts, bottom) images show intercalated disc localization of Wnt10b protein is preserved in TG mice. Sections were counter-stained with DAPI (blue) to mark cellular nuclei. Scale bar, 20 μm. (C) Images of opened chest cavity of adult WT (left) and TG (right) mouse hearts. The visible parts of the atria and left ventricle are outlined by yellow and blue lines, respectively. The solid white star indicates the approximate position of the left coronary artery (LCA). In TG mice, the open star marks the corresponding LCA site, which is hidden below the enlarged left atrium. LA=left atrium, RA=right atrium, LV=left ventricle, LCA=left coronary artery. (D) Whole mount images of WT (left) and TG (right) hearts. (E) H&E image of a sagittal section of the TG mouse heart. The left atrial tissue of the TG heart overhangs the left ventricle. RV=right ventricle. (F) H&E staining of left ventricular tissue from adult WT and TG mice indicate no apparent cellular abnormalities in TG ventricles. Scale bar, 20 μm. (G) Electron micrographs of atrial cardiomyocytes (top), ventricular cardiomyocytes (middle), and intercalated discs in ventricular cardiomyocytes (arrows, bottom) in adult WT and TG hearts. Scale bar, 2 μm.
Online Figure III.

Percentage population of (A) CD45+ immune cells, (B) CD45- non-immune cells, (C) CD3+CD45+ T lymphocytes, (D) CD11b+CD45+ myeloid cells, (E) CD31+CD45- endothelial cells and (F) CD31-CD45- stromal cells are comparable in the uninjured adult WT and TG ventricles. (G) Table includes cell numbers calculated. Data presented as means ± SEM. Unpaired t test. § Cells were analyzed within the viable (LIVE/DEAD stain negative) cell population. Mean values of total cell number were 0.86±0.13 and 0.78±0.21 x 10^6 cells per WT and TG ventricles respectively. NS, not significant.

<table>
<thead>
<tr>
<th>% of total cells§:</th>
<th>WT</th>
<th>TG</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD45- non-immune cells</td>
<td>89±5</td>
<td>92±4</td>
<td>NS</td>
</tr>
<tr>
<td>CD31+CD45+ Endothelial cells</td>
<td>54±6</td>
<td>59±4</td>
<td>NS</td>
</tr>
<tr>
<td>CD31+CD45+ Stromal cells</td>
<td>35±4</td>
<td>33±6</td>
<td>NS</td>
</tr>
<tr>
<td>CD45+ Immune cells</td>
<td>11±3</td>
<td>8±2</td>
<td>NS</td>
</tr>
<tr>
<td>CD3+CD45+ T lymphocytes</td>
<td>4.1±0.5</td>
<td>2.7±0.3</td>
<td>NS</td>
</tr>
<tr>
<td>CD11b+CD45+ myeloid cells</td>
<td>1.3±0.2</td>
<td>0.8±0.3</td>
<td>NS</td>
</tr>
</tbody>
</table>
Online Figure IV.
(A) IF analysis using Wnt10b and Actn2 antibodies shows Wnt10b induction in cardiomyocytes at the border zone (arrows) of WT ventricle 7 days post cryoinjury, similarly to its induction pattern following LAD ligation. Low magnification image (left) and high magnification images (right) are shown. INJ=Injured tissue, BZ=border zone, Non-INJ: Non-injured tissue. INJ and BZ areas are delineated. Scale bars, 100 μm. (B) qPCR analysis shows Wnt10b mRNA is induced in WT 7 days post cryoinjury (dpc), similarly to its induction pattern following LAD ligation. N=3-4 mice per group. * P<0.05; unpaired two-tailed t test.
Online Figure V.

Flow cytometry analysis of cell populations in WT and TG ventricles after cryoinjury. (A) Representative flow cytometry plots of non-cardiomyocyte primary cells isolated from WT and TG ventricles 5 days post cryoinjury (dpc). Quantification of viable cell populations (right) shows no significant difference in cell numbers between cryoinjured WT and TG ventricles (N=4-6 per group). Representative flow cytometry plots of: (B) CD31⁺αSMA⁻ endothelial cells (red boxed % number) and CD31⁻αSMA⁺ myofibroblasts (blue); (C) CD140a⁺CD31⁻ fibroblasts; and, (D) αSMA⁺Col1A⁺ myofibroblasts among CD45⁻ cells isolated from WT and TG ventricles 5 days after cryoinjury. (E) Representative flow cytometry plots of Ki-67⁺ cells among CD45⁻ non-immune cells isolated from WT and TG ventricles 5 days after cryoinjury, with isotype controls.
Online Figure VI.

(A) Representative outliers contour plots demonstrating percentages of CD31^+CD45^− cells before (pre-sort) and after (post-sort) immunomagnetic isolation (positive selection by CD31 antibody) of endothelial cells. Percentage of pure CD31^+CD45^− endothelial cells isolated from cell suspensions derived from WT and TG ventricles are comparable (right). Data represent means ± SEM from three independent experiments. (B) Representative outliers contour plots demonstrating percentage of CD31^+CD45^− cells after 6 days of culture at P1. Percentage of CD31^+CD45^− endothelial cells on day 6 of primary cell culture at P1 shown (right). WT and TG numbers are comparable. NS, not significant; unpaired two-tailed t tests.
Online Figure VII.
(A) Luciferase reporter assay for canonical Wnt signaling in MCEC-1 cells transfected with SuperTOPFlash plasmid and treated with increasing concentrations of Wnt10b. Wnt10b directly induces canonical Wnt signaling. N=3 per group. (B) Flow cytometry plots for primary cardiac CD31^+CD45^- endothelial cells isolated from 4 week-old C57Bl/6 mouse ventricles at isolation (day 0) or after 6 days in culture and PBS or 30 ng/ml Wnt10b treatment. Cell counting shows Wnt10b promotes growth of CD31^+CD45^- endothelial cells (right). * P<0.05; NS, not significant, unpaired two-tailed t test.
Online Figure VIII.

(A) Expression of Notch signaling pathway genes does not change in cardiac endothelial cells (MCEC-1) treated with 300 ng/ml Wnt10b. (B) Measurement of luciferase activity in pNF-κB-Luc plasmid transfected MCEC-1. MCEC-1 treated with PBS or 300 ng/ml Wnt10b were simultaneously given increasing concentration of TNFα. No synergistic effect in NF-κB signaling activation was observed between TNFα and Wnt10b. Data represent means ± SEM (n=3-4 per group). Unpaired two-tailed t test performed to compare control and Wnt10b-treated group in the respective TNFα concentration. ***p < 0.001; UND, undetectable.
Online Figure IX.
Representative flow cytometry plots of (A) CD45+ immune cells among total viable cells, and (B) CD11b+Ly6G+ neutrophils among CD45+ immune cells isolated from WT and TG ventricles 5 days after cryoinjury.
Online Figure X.

(A) IF using non-immune immunoglobulins (isotype controls, second column) of same species and same concentration as the corresponding primary antibodies used on transverse cryo-sections of mouse ventricle. Also shown is staining with respective secondary antibody-only staining of the sections in the absence of primary antibodies (third column). DAPI used to counter-stain cellular nuclei on the sections (first column). (B) Outline of initial gating strategy for primary, non-cardiomyocyte cells isolated from mouse ventricles in order to eliminate cell debris (left), auto-fluorescing particles (middle), non-singlet cells (right) before subjecting cells for analysis with specific lasers.
<table>
<thead>
<tr>
<th></th>
<th>Body Weight (g)</th>
<th>LV Mass (mg)</th>
<th>HR (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>24.74 ± 0.58</td>
<td>61.61 ± 4.53</td>
<td>692.2 ± 12.36</td>
</tr>
<tr>
<td>TG</td>
<td>24.78 ± 0.61</td>
<td>60.81 ± 3.90</td>
<td>651.1 ± 12.53</td>
</tr>
<tr>
<td>P value</td>
<td>NS</td>
<td>NS</td>
<td>* (P=0.03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IVS;d (mm)</th>
<th>IVS;s (mm)</th>
<th>LVPW;d (mm)</th>
<th>LVPW;s (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.764 ± 0.034</td>
<td>0.931 ± 0.039</td>
<td>0.722 ± 0.029</td>
<td>0.974 ± 0.037</td>
</tr>
<tr>
<td>TG</td>
<td>0.765 ± 0.024</td>
<td>0.951 ± 0.037</td>
<td>0.695 ± 0.024</td>
<td>0.958 ± 0.038</td>
</tr>
<tr>
<td>P value</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LVID;d (mm)</th>
<th>LVID;s (mm)</th>
<th>LV Vol;d (µl)</th>
<th>LV Vol;s (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>3.256 ± 0.067</td>
<td>1.731 ± 0.059</td>
<td>42.99 ± 2.12</td>
<td>8.958 ± 0.77</td>
</tr>
<tr>
<td>TG</td>
<td>3.288 ± 0.082</td>
<td>1.775 ± 0.050</td>
<td>44.15 ± 2.78</td>
<td>9.520 ± 0.70</td>
</tr>
<tr>
<td>P value</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>EF (%)</th>
<th>FS (%)</th>
<th>SV (µl)</th>
<th>CO (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>79.41 ± 1.04</td>
<td>46.95 ± 1.00</td>
<td>33.74 ± 1.51</td>
<td>23.28 ± 0.95</td>
</tr>
<tr>
<td>TG</td>
<td>78.52 ± 0.62</td>
<td>46.01 ± 0.61</td>
<td>34.02 ± 2.04</td>
<td>22.13 ± 1.38</td>
</tr>
<tr>
<td>P value</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Online Table I.

Left Ventricle wall and cavity dimensions and calculated functional parameters, measured by echocardiography, are comparable in WT and TG adult mouse hearts, except for the modest drop in heart rate. N=10-11 per group. Unpaired t test. * P <0.05; NS, not significant. HR=heart rate, IVS=interventricular septum, LVPW=left ventricle posterior wall, LVID=left ventricle internal dimension, Vol=volume, EF=ejection fraction, FS=fractional shortening, SV=stroke volume, CO=cardiac output, d=dystolic, s=systolic.