Cardiovascular sclerosis increasingly afflicts our aging, dysmetabolic population, and this hardening of our hearts and arteries has significant physiological consequences. Myocardial stiffening reduces diastolic ventricular filling and function necessary for robust cardiac output during systole. Arterial stiffening impairs Windkessel physiology—the rubbery elasticity of conduit vessels that ensures smooth distal tissue perfusion throughout the cardiac cycle. Thus, in addition to the diastolic heart failure associated with cardiac sclerosis, a type of diastolic perfusion failure occurs with arteriosclerotic conduit vessel stiffening. The inability to store kinetic energy as potential energy in elastic conduit vessels during systole reduces the sustained pressure differential necessary to drive smooth distal perfusion throughout diastole and is manifested by increased arterial pulse wave velocity during systole.1

One clinical consequence of diastolic vascular perfusion failure can be well appreciated in the central nervous system. In the Dallas Heart Study, increased aortic stiffness as quantified by pulse wave velocity strongly portends increased brain magnetic resonance imaging white matter hyperintensity volume,3 a signature of ischemic (not hemorrhagic) histology,4 independent of other cardiovascular risk factors, including systolic blood pressure.1 Cognitive decline is a clinical feature of conduit vessel stiffness5,6 and white matter hyperintensity volume.4 Large conduit artery biomechanics reflect the composite contributions of mural material properties, geometric properties, and dynamic endothelial and neuroendocrine inputs that control global and regional tissue perfusion.7 Arterial calcification, an active form of tissue biominerization, has emerged as one important pathogenic feature of conduit vessel stiffening.8,9 Over the past 2 decades, elegant work forthcoming from research teams at University of California, Los Angeles has identified that powerful signals provided by bone morphogenetic proteins (BMP) of the transforming growth factor-β superfamily play critically important roles in arterial calcification.10 Matrix Gla protein (MGP), a secreted calcium-binding protein that inhibits BMP function in a Gla-(γ-carboxylglutamate)-dependent fashion, functions as a vascular comorphogen and rate-limiting negative regulator of arterial mineral deposition in murine disease models.11,12 MGP-null mice die precociously with panarterial calcification and aortic rupture.13 MGP clearly affects the BMP-directed osteochondrogenic programming; however, results from other groups have highlighted that the spectrum of MGP-regulated vascular actions relevant to arterial calcification may in fact extend beyond BMP modulation to encompass elastin matrix signaling14 and osteogenic degradation products.15 Because undercarboxylated MGP tracks arterial stiffness in humans,16 a better understanding of MGP actions may yield novel therapeutic approaches to arteriosclerotic disease and its consequences.

In this issue of Circulation Research,17 Yao et al once again advance our understanding of MGP actions in arteriosclerotic disease.18 They identify that MGP serves to restrict expression and activities of vascular serine protease that promote the endothelial–mesenchymal transition (EndMT), a key contributor to the cells and signals that drive arterial calcium deposition. In response to metabolic insult, such as hyperglycemia, previous work from this group identified that MGP deficiency enabled endothelial cell phenotypic plasticity and subsequent osteogenic transdifferentiation, with concomitant induction of multiple Yamanaka factors, including Sox2.18 However, the regulatory circuits conveying this response were uncharacterized. Detailed vascular assessment by electron microscopy revealed early postnatal degradation of the remodeling arterial internal elastic lamina in MGP−/− mice with upregulation of Twist and Slug/snaI2, key markers and mediators of the EndMT.17 Implementing gene array analyses to interrogate for potential mediators, the team identified that mRNAs encoding a select cohort of 5 serine proteases—elastases 1 and 2 and kallikreins 1, 5, and 6—were markedly upregulated with MGP deficiency in aortic tissues. In vitro, treatment of human aortic endothelial cells with this 5-protease protein cocktail upregulated the expression of key markers of multipotency, including Sox2,17 along with the EndMT, thereby phenocopying the actions of MGP deficiency.18 RNAi targeting either the protease pentad or Sox2 abrogated osteogenic transdifferentiation of human aortic endothelial cells induced by MGP knockdown. Importantly, BMP4- and glucose-induced EndMT was abrogated by administration of serpinA1 (α-1 antitrypsin) or diisopropyllfluorophosphate—broad specificity serine protease inhibitors—and this inhibitory action was fully reversed by transduction with a Sox2-expressing lentivirus. In vivo, endothelial cell–specific deletion of Sox2 reduced arterial stiffening.
calcification in the global MGP-null background and administration of serine protease inhibitors, including serpinA1 reduced arterial calcification and delayed precocious cardiovascular death, in MGP-null mice. Thus, the authors (1) newly discover that a cadre of serine proteases participate in the EndMT and the Sox2-dependent phenotypic plasticity that drives arterial calcification in the absence of MGP, and (2) demonstrate that serine protease inhibition limits arteriosclerotic disease and demise in this enlightening vasculopathy model.17

The precise proteases driving arterial calcification as responsive to serine protease inhibition in vivo have yet to be unambiguously identified, and future studies will undoubtedly focus on this important aspect. However, it is intriguing to reflect on the responses to recombinant serpinA1 in MGP−/− mice and the significant implications. First, serpin-based biologics, for example, serpinA1 (aka α1-antitrypsin, AAT), C1 esterase inhibitor, have found important Food and Drug Administration–approved therapeutic niches in molecular medicine.19 Given the results of Yao et al., one can envision potential serpin-based strategies to reduce arteriosclerosis in high-risk states, such as chronic kidney disease and diabetes mellitus. Second, although AAT deficiency engenders neutrophil elastase–mediated emphysema in midlife that is responsive to AAT replacement (augmentation), the pharmacology of serpinA1/AAT is more complex.19 SerpinA1/AAT targets multiple proteases beyond neutrophil elastase, including certain kallikreins and cathepsins,20 that are involved with inflammation and vascular elastin matrix turnover. Considering the emerging role of kallikreins in the EndMT11 and those upregulated in MGP-null mice, it is probable that some aspect of the beneficial response to protease inhibition may accrue via modulation of protease-activated receptor signaling in addition to support of internal elastic lamina integrity and function. Finally, regardless of underlying mechanisms, the feed–forward reciprocal relationship between endothelial Sox2 and vascular protease expression discovered in MGP-null mice17 highlights the potential efficacy achieved by targeting this regulatory linchpin as strategy to preserve aortic endothelial phenotype and thus conduit vessel integrity, compliance, and function. As such, a new pharmacological pathway is blazed, wherein serpin therapy might help preserve vascular health and end organ function in our patients afflicted with arteriosclerotic disease.1

Sources of Funding
Dr Towler is supported by Grants HL069229 and HL114806 from the National Institutes of Health, the J.D. and Maggie E. Wilson Distinguished Chair in Biomedical Research, and the University of Texas.

Disclosures
Dr Towler previously consulted for Daiichi-Sankyo.

References


Key Words: Editorials • alpha 1-antitrypsin • arteriosclerosis • matrix Gla protein • serine proteinase inhibitors • Sox2 transcription factor
Arteriosclerotic Calcification: A Serpi(n)ginous Path to Cardiovascular Health?
Dwight A. Towler

Circ Res. 2015;117:744-746
doi: 10.1161/CIRCRESAHA.115.307407
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/117/9/744

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/