Translating GWAS Into the Flow-Regulated Modulation of Lipid Mediator Signaling

Ingrid Fleming

It is well accepted that the stimulation of endothelial cells by the blood flowing over them can alter the generation of endothelium-derived vasodilators, such as nitric oxide (NO), to fine tune vascular tone. The shear stress generated by the flowing blood can also affect endothelial cell signaling and while laminar shear stress, which has also been termed atheroprotective flow, generally activates anti-inflammatory signals, areas of the endothelium exposed to disturbed (turbulent or oscillatory) and low flow are characterized by an inflammatory footprint. The latter is typically associated with elevated nuclear factor \(\kappa B \) activation and adhesion molecule expression accompanied by the concomitant attenuated expression and activation of major protective factors, notably the endothelial NO synthase and Kruppel-like factors, KLF2 and KLF4.1

The opinions expressed in this article are not necessarily those of the editors of or the American Heart Association.

From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.

Correspondence to Ingrid Fleming, PhD, Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany. E-mail fleming@em.uni-frankfurt.de

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.115.307021
attributed to PPAP2B in endothelial cells and smooth muscle cells.\(^{11}\) Also this aspect was addressed by Wu et al.,\(^2\) who studied the genotypes of 147 donors and found that the risk allele was significantly associated with lower expression of PPAP2B. On top of that, the authors propose that the defect in PPAP2B expression is specific to endothelial cells as they determined that the single nucleotide polymorphisms in the risk locus were not associated with PPAP2B expression in other cell types, including whole blood, monocytes and macrophages, adipose tissue, or liver.

The article by Wu et al.,\(^2\) is a veritable tour de force in the generation of a chain of evidence ranging from observations of altered protein expression to the identification of the molecular mechanisms, underlying it and the consequences of the decreased expression on endothelial cell signaling—all linked in with convincing human genome-wide association studies data. However, it also raises interesting questions. For example, assuming that LPA is a major proinflammatory signal to which the endothelial cells layer is constantly exposed—where does it come from? In the cultured cells, it seems that the medium used was a source of LPA. The bulk of LPA found in the circulation is generated by the action of autotaxin, a circulating lysophospholipase D enzyme secreted in large amounts by the liver and activated platelets, as well as from adipocytes.\(^{12}\) This in itself is interesting because it may strengthen the link between platelet activation and increased fat mass with the accelerated development of cardiovascular disease. Thus, the findings by Wu et al.,\(^2\) add support to studies implicating the autotaxin-lipid phosphate phosphatase pathway as a risk factor for coronary artery disease.\(^{13}\)

Sources of Funding

This study was supported by the Deutsche Forschungsgemeinschaft (SFB834/A9 and SFB1039/A6).

References

Figure. Role of blood flow in the regulation of phosphatic acid phosphatase type 2B (PPAP2B) and endothelial cell signaling. A, In the circulation autotaxin (ATX) is secreted from platelets or adipocytes and binds vascular cell integrins, it also generates lysophosphatic acid (LPA) from lysophospholipid choline (LPC). Under conditions of laminar or atheroprotective flow and an intact mechanosensor complex, Kruppel-like factor (KLF) 2 levels are high, which in turn ensures the expression of its target PPAP2B. The latter is responsible for the dephosphorylation of LPA, thus decreasing its local concentration in the vicinity of the LPA receptor 1 (LPAR1) and attenuating receptor signaling. B, Disturbed or atherosusceptible flow is associated with increased miR-92a levels, which directly attenuate KLF2 and subsequently PPAP2B levels. The consequence being that local levels of LPA increase to enhance proinflammatory signaling through LPAR1. In parallel, an increase in the generation of LPA by activated platelets and an expanded adipose tissue may contribute to the phenomenon by generating greater amounts of LPA.

Translating GWAS Into the Flow-Regulated Modulation of Lipid Mediator Signaling
Ingrid Fleming

Circ Res. 2015;117:302-304
doi: 10.1161/CIRCRESAHA.115.307021

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/117/4/302

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/