The regenerative capability of the heart is clinically relevant, as it is the inability of adult heart to replace the lost cardiomyocytes after cardiac injury contributes to the ongoing encumbrance of heart failure. However, compared with adult mammals, lower organisms can regenerate their hearts after an injury, including frogs, newts, and zebrafish. Remarkably, neonatal mice can also regenerate their hearts for ≤ 7 days after their birth. In this perspective, a thorough understanding of the regulatory mechanisms in the neonatal hearts will help to unravel the obstacles in reactivating the hidden regenerative capability of adult hearts.

Several conserved mechanisms for cardiac regeneration have been put forward, such as cardiomyocyte proliferation, epicardial cell activation, monocye/macrophages, and angiogenesis. Further understanding on other potential factors that trigger the adult mammalian cardiac regeneration is of a key scientific and therapeutic importance. Along these lines, the study by White et al in this issue of Circulation Research provides a new avenue on the role of sympathetic nerves for neonatal cardiac regeneration.

For more than a century now, it has been reported that nerves make a crucial contribution to regeneration in various tissues in vertebrates and invertebrates. The seminal work by Toddy way back in 1820s first showed the inhibitory effects of denervation on hindlimb regeneration in newts, and further experiments on denervation of larval urodele limbs showed that limb regeneration is a nerve-dependent process (reviewed in Stocum). Another report suggested that denervation impairs regeneration of amputated zebrafish fins. It has also been shown that ocular denervation negatively regulates corneal stem/progenitor cell number and function in a mouse model of ocular denervation. A recent report demonstrated that ablation of parasympathetic branch of autonomic system by surgical vagotomy inhibits cardiac regeneration. However, the role of sympathetic nerves has not been studied and is the focus of the new report in Circulation Research.

The heart is extensively innervated via the autonomic nervous system comprising sympathetic and parasympathetic nerves. Sympathetic innervation density is tightly regulated in the heart and densely seen in the subepicardium and central conduct system. Intriguingly, cardiac innervation density is affected in cardiac pathologies, such as after myocardial infarction or heart failure, in which the cardiac nerves undergo Wallerian degeneration, and denervated myocardium leads to the generation of postinfarct arrhythmias. Given the clinical significance of sympathetic denervation in cardiac pathologies, addressing the activation of the sympathetic reinnervation might be a novel therapeutic target for adult mammalian cardiac regeneration.

In this issue of Circulation Research, White et al rigorously addressed the important role of sympathetic reinnervation in neonatal cardiac regeneration. They generated a Wnt1-Cre: tdTomato transgenic mice that allowed labeling of the neural crest cell lineages and peripheral autonomic nerves and for visualization by epifluorescence stereomicroscopy. Specific immunofluorescence was used to identify sympathetic nerves by staining for tyrosine hydroxylase and choline acetyltransferase. Co-localization of TH+ with only Wnt1-Cre+ fibers suggested the localization of sympathetic nerves in the subepicardium region. However, future studies should also focus on delineation of the role of the parasympathetic branch of autonomic nervous system in this process because other studies support the concept that both the sympathetic and parasympathetic branches function together to maintain normal function of the cardiovascular system. An interesting aspect of the new study is that, after apical resection of the ventricle, 14 days after injury, an area of heavy dendrite hyperinnervation at the injury border was seen, and varicose fibers were seen emerging from the border into the site of active regeneration, associated with a complete regeneration by day 21, as reported earlier. By day 21 postinjury, the apex completely regenerated and was reinnervated with fibers throughout the 4 chambers of the heart. Thus, using this transgenic model, White et al provide important new insights into the role of sympathetic nerves in neonatal cardiac regeneration.

To further strengthen their findings, White et al ablated sympathetic nerves using a chemical inhibitor, 6-hydroxydopamine hydrobromide, which resulted in robust denervation of subepicardial nerves in the neonate heart and, eventually, denervation-mediated myocardial injury and fibrosis. 6-Hydroxydopamine hydrobromide completely inhibited neonatal cardiac regeneration, emphasizing the significance of sympathetic nerves in this process.
Of note, a recent study suggested that vagotomy, mainly affecting parasympathetic nerves, impairs myocyte proliferation and cardiac regeneration in the neonatal heart. Interestingly, this study demonstrated that the hypoinnervation effect on cardiac regeneration was partially rescued by nerve growth factor proteins. Results from these studies strongly support the role of both sympathetic and parasympathetic nerves in neonatal cardiac regeneration. New studies will be required to understand the interaction of different branches of autonomic nervous system on cardiac regeneration.

In this transgenic Wnt1-Cre:tdTomato model, it would be interesting to see whether the observed reinnervation follows the neurotrophic hypothesis postulated by Singer et al that interesting to see whether the observed reinnervation follows nervous system on cardiac regeneration.

The role of both sympathetic and parasympathetic nerves in influences cardiac regeneration in the adult heart. Required to determine whether/how sympathetic innervation cardiac regeneration were not defined. Further work will be required to determine whether/how sympathetic innervation influences cardiac regeneration in the adult heart.

Sources of Funding

This work was supported in part by funding from the National Institutes of Health grants HL091983, HL105597, HL053534, HL108795, and HL26186 (R. Kishore). American Heart Postdoctoral grant 15POST22720022 (V.N.S. Garikipati), and American Heart Scientist and HL126186 (R. Kishore), American Heart Postdoctoral grant 14DG20480104 (S.K. Verma).

Disclosures

None.

References

Keywords: Editorial ▪ myocardial ▪ nervous system ▪ regeneration ▪ sympathetic
The Nervous Heart: Role of Sympathetic Reinnervation in Cardiac Regeneration
Venkata Naga Srikanth Garikipati, Suresh Kumar Verma and Raj Kishore

Circ Res. 2015;117:980-981
doi: 10.1161/CIRCRESAHA.115.307637

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/117/12/980

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/