Mechanotransduction in Cardiac Hypertrophy and Failure

Robert C. Lyon,* Fabian Zanella,* Jeffrey H. Omens, Farah Sheikh

Abstract: Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases. (Circ Res. 2015;116:1462-1476. DOI: 10.1161/CIRCRESAHA.116.304937.)

Key Words: cytoskeleton | heart | heart failure | intercellular junctions | mechanotransduction, cellular | myocardium | sarcolemma | sarcomeres

In cardiac muscle, several proteins have been proposed as key mechanosensors and mechanotransducers that directly sense and respond to mechanical loads (stress and strain) triggering structural, signaling, and functional alterations associated with various cellular processes. These processes can include regulation of electrophysiology via stretch-sensitive channels, myocardial material properties and fibrosis, contractile function and calcium regulation, and the important downstream effect of mechanical signaling: cardiac muscle growth via hypertrophy and atrophy. In addition to transducing a mechanical signal, proteins and complexes can act as structural transmission conduits for mechanical stress and strain (mechanotransmission). For example, transferring stress generated at the actin–myosin complex, through the sarcomere, Z-disc and cytoskeleton, to the sarcolemma. These structural proteins can thus be critical components of a mechanotransduction pathway. This review will summarize evidence for mechanotransduction at 3 key sites within the cardiac myocyte/cytoskeleton: the sarcomere, the intercalated disc, and the sarcolemma.
An abundance of evidence points to the sarcomere as a key site for mechanotransduction. The sarcomere is the basic contractile unit of cardiac muscle, and it is made up of a complex assembly of myofilament proteins. The interaction between myosin heads (thick filament) and actin thin filament proteins is the key process that drives force generation in cardiac muscle. In addition to their role in force generation, the direct connection of the cytoskeleton to the sarcomeric Z-disc and myosin’s stabilization by titin and other structural proteins suggest that forces can be transmitted in and out of the sarcomere, reinforcing the idea that sarcomeric proteins play a role in mechanotransduction.

Growing evidence points to specific complexes within the sarcomeric Z-disc as well as within the I band (linked to titin) in sensing and responding to mechanical loads, driving downstream events including those that regulate gene expression, protein synthesis, and degradation within cardiac muscle cells. Mechanical forces generated by the sarcomere are transmitted both longitudinally and laterally to the sarcolemma of the cardiac muscle cell, as there is evidence for directional-dependence of myocyte stress sensing; hence, there may be directional dependence of mechanotransduction within a myocyte. Such directional dependence in load sensing may be related to different modes of hypertrophic growth.

In addition to the complex protein structures within the sarcomere and intracellular cytoskeleton, the intercalated disc and sarcolemma at the outer boundaries of the cardiac myocyte are possible key sites for transduction of mechanical forces. Mechanical force or stress can be transmitted both outside-in and inside-out through the membrane components of a cell. Because the internal cytoskeleton is coupled via transmembrane proteins to the extracellular matrix (ECM) and hence the rest of the myocardium, membrane-associated protein complexes have been widely investigated as sites regulating mechanotransduction. In terms of lateral connections, the sarcomere connects to the sarcolemma by cytoskeletal components that link the Z-disc with the membrane-spanning integrin and dystroglycan complexes, which then bind to components of the ECM. The intermediate filament desmin also connects the Z-disc to the nucleus. On the other hand, longitudinal connections also take place between cytoskeletal actin and intermediate filaments with fascia adherens and desmosomal junctions, respectively, both of which are components of the specialized cardiac muscle cell–cell junction, the intercalated disc.

Although the mechanisms underlying mechanotransduction in cardiac muscle are not known, putative proteins and regional complexes have been suggested to be involved in this highly sensitive and critical regulatory pathway within the cardiac myocyte. These structural connections provide a conduit to further explore and uncover protein complexes and signals that affect the cellular response to mechanical cues involved in cardiac hypertrophy, as well as calcium/contractile function, regulation of fibroblasts and material properties, and electrophysiology. Dysregulation in these functional processes can lead to an altered cellular response to external forces and possibly the transition to heart disease.

Titin-Directed Mechanotransduction

Titin is a giant sarcomeric protein that spans from the Z-disc to the M-line. Multiple roles for titin have been established, which include functioning as a molecular ruler for sarcomere assembly, generating passive stiffness in the sarcomere during stretch, as well as serving as a signal transducer in response to mechanical overload. Unique regions within titin have been shown to serve as anchoring sites for a variety of cytoskeletal proteins that orchestrate and possibly transmit biomechanical stress responses during cardiac hypertrophy and failure. These proteins include MLP, titin-Cap (TCAP), calscardin-1, four-and-a half-LIM domain protein-1 (FHL1), and muscle-specific ankyrin repeat protein (MAR) family...
members that have all been implicated to play important roles in titin-directed mechanotransduction.

MLP–TCAP–Titin Complex

It has been proposed that the Z-disc MLP–TCAP–titin complex functions as a stretch sensor in cardiac muscle cells and that defects in the complex can lead to cardiomyopathy and heart failure development. MLP is composed of 2 LIM domains and is localized to the Z-disc through direct binding to α-actinin. Cardiac muscle cells deficient in MLP respond to treatment with the hypertrophic agent endothelin-1 with a characteristic upregulation of the fetal gene markers, including atrial natriuretic factor and brain natriuretic peptide. The absence of this fetal gene response in MLP-deficient cells exposed to mechanical stress suggests that MLP may play a specific role in mechanosensing and signaling.

MLP knockout mice display a severe dilated cardiomyopathy phenotype resulting in heart failure and premature death. A common dilated cardiomyopathy-associated polymorphism found in human MLP (W4R-MLP) resides within the TCAP-binding region of MLP and has been shown to abolish binding of TCAP to MLP. It has been proposed that loss of this MLP–TCAP interaction induces abnormal intrinsic elastic properties of titin resulting in the inability of cardiac muscle cells to properly sense mechanical stress. In support of this concept, a MLPW4R/W4R knock-in mouse model generated by Knöll et al. displayed hypertrophic cardiomyopathy and developed a heart failure phenotype. The observation of ventricular hypertrophy in these mice in the absence of pressure overload suggests that the W4R-MLP polymorphism impairs mechanotransduction signaling in response to basal levels of load. Mutant hearts displayed reduced MLP mRNA and protein levels, as well as increased nuclear localization of W4R-MLP. Furthermore, in vitro studies demonstrated reduced binding of TCAP to W4R-MLP, which could suggest a plausible mechanism for the translocation of W4R-MLP from the Z-disc into the nucleus. However, the role of MLP within the nucleus of cardiac muscle cells has yet to be clearly defined. MLP does not have the ability to bind DNA directly, but after the discovery of cysteine-rich protein 2, a protein closely related to MLP (MLP is also known as cysteine-rich protein 3), which could enhance gene expression in smooth muscle cells through binding to GATA and serum response factor transcription factors, there reigns the possibility that MLP may have the ability to bind and modulate important cardiac transcription factors, such as GATA-4 and serum response factor in cardiac muscle cells in response to mechanical stimulation. The discovery that the potassium channel β-subunit minK interacts with TCAP at the sarcomere suggests that TCAP may also serve to link myofibrillar components to the sarcolemma. Although not fully explored, it has been proposed that this interaction could potentially connect titin deformation with potassium influx in

Figure 1. A schematic representation of the specific protein complexes linked to sarcomere-mediated mechanotransduction and mechanotransmission in cardiac muscle. CnA indicates calcineurin A; CS-1, calsarcin-1; ECM, extracellular matrix; ERK2, extracellular signal-regulated kinase-2; FHL1, four-and-a-half LIM domain protein 1; MARPs, muscle-specific ankyrin repeat proteins; MEK2, mitogen-activated protein kinase kinase-2; MLP, muscle-specific LIM domain protein; MURFs, muscle-specific RING-finger proteins; NBR1 indicates neighbor to BRCA1; N-RAP, nebulin-related anchoring protein; p62/SQSTM1, p62/sequestosome-1; PICOT, protein kinase C-interacting cousin of thioredoxin; RAF1, rapid accelerated fibrosarcoma-1; and TCAP, titin Cap (illustration credit: Ben Smith).
cardiac muscle.28 Equally as important, with the emergence of evidence suggesting that MLP has a predominantly cytosolic localization26 and studies demonstrating that the titin–TCAP complex is a rigid superstable complex at the Z-disc that is optimized to resist applied loads,39 is the need for further research to assess whether MLP–TCAP is in fact a direct mechanosensor complex that has the required capacity to undergo conformational changes under physiological forces.

MARP–Titin Complex

MARP family members, which include 3 members, cardiac ankyrin repeat protein (CARP), ankyrin repeat domain protein 2 (ANKRD2), and diabetes mellitus–related ankyrin repeat protein, have all been shown to interact at the N2A region of titin and proposed to serve as a stress response signalosome.31 Miller et al31 demonstrated that rat cardiac muscle cells respond to passive stretch by initiating both an increase in and redistribution of MARP proteins, which included translocation of CARP and diabetes mellitus–related ankyrin repeat protein into the nucleus. Given the fact that CARP has been shown to act as a negative regulator of cardiac gene expression,32 the authors proposed that this redistribution of MARPs into the nucleus in response to myofibrillar stress/strain is an example of stretch-based sensing and signaling.31 In support of the concept of increased MARPs in response to stress, it was found that CARP and ANKRD2 gene expression is increased in response to a single bout of eccentric contractions in the mouse.33 CARP has been shown to be upregulated in heart failure,34,35 hypertrophy,36 and mutations in the ANKRD1 gene encoding CARP have been shown to be causative for human dilated and hypertrophic cardiomyopathy.37–39 The latter of these studies showed in rat embryonic myocardial cells in vitro that human ANKRD1 mutations can lead to differential stretch–induced gene expression when compared with controls,39 providing further evidence for a role for CARP in stretch sensing. However, recently generated MARP triple knockout mice have cast doubt on the importance of MARP proteins for cardiac function.40 Under basal conditions and in response to biomechanical stress induced by mechanical pressure overload for 14 days, the mice were found to be viable with normal cardiac function,40 suggesting that compensatory mechanisms may counteract the global loss of MARPs. Therefore, it would be interesting to examine the effects of cardiac-specific loss of MARPs at postnatal stages in response to biomechanical stress. Other potential reasons for these contrasting results could arise from both species differences (rat versus mouse) or the mode of stimulation used (cyclic stretch versus TAC). Hence, it would be interesting to examine whether MARP triple knockout mice display a cardiac phenotype after extended periods of TAC (>14 days) or in response to other cardiac stress and injuries (eg, myocardial infarction). Recent studies have also highlighted a role for MARP proteins in signaling pathways relating to protein kinase C and protein kinase A; thus, looking at mouse models deficient in these signaling proteins under mechanical stress may be a useful research avenue to explore.31

FHL1–Titin Complex

The titin N2B region resides within the extensible I band region of titin, which contributes to the myofibrillar passive/diastolic tension generated on stretch.42 FHL1 has been shown to bind to titin at this region43 and has been shown to be upregulated in mouse models in response to both pressure overload–induced hypertrophy and treatment with hypertrophic agents.44,45 This upregulation has also been shown to occur in the hearts of human patients exhibiting hypertrophic cardiomyopathy,46–48 together suggesting that FHL1 may play an important role in biomechanical stress responses in cardiac hypertrophy and heart failure. In support of, and extending on this idea, we showed FHL1 to be part of a biochemical stress-sensing signalosome that scaffolds components of the mitogen-activated protein kinase signaling pathway (rapid accelerated fibrosarcoma-1/mitogen-activated protein kinase kinase-2/extracellular regulated kinase-2 [ERK2]), specifically at the N2B stretch sensor domain of titin.49 These studies showed that mouse hearts devoid of FHL1 did not develop a basal cardiac phenotype but demonstrated a blunted hypertrophic response and preserved left ventricular function in response to pressure overload, which was associated with the loss of ERK2 phosphorylation.49 Interestingly, FHL1-deficient cardiac muscles also exhibited an increase in cardiac muscle compliance, consistent with the loss of function of the titin N2B stretch sensor domain.49 Given the importance of Gq signaling pathways (Gq) in pressure overload–induced hypertrophy,46 we further sought to cross FHL1-deficient mice with the transgenic mouse model harboring constitutively active Gq overexpression.48 The results suggest a direct link between FHL1-mediated mechanotransduction pathways and Gq signaling pathways as FHL1 deficiency was shown to prevent the cardiomyopathy and pathological ERK2 phosphorylation caused by constitutively active Gq overexpression.43 Recent studies showed that FHL1-deficient mice crossed with a hypertrophic cardiomyopathy mouse model (MHC403/+) resulted in increased cardiac hypertrophy,49 suggesting that there may be distinct stress-induced hypertrophic signaling cascades mediated by FHL1. Further mechanistic studies revealed that FHL1 is a negative regulator of titin N2B phosphorylation.51 We recently showed that titin N2B is a novel substrate of ERK2 and FHL1 and directly interferes with ERK2-mediated titin N2B phosphorylation.51 Together, our results suggest the working hypothesis that FHL1 restricts titin-based cardiac muscle compliance by masking/interfering with kinases (ERK2) that bind to titin N2B to limit titin N2B phosphorylation and compliance to physiological ranges with stretch.51 It may also act as a scaffold for mitogen-activated protein kinase–mediated hypertrophic signaling.51 However, the loss of FHL1 may render titin N2B sites open to kinases that bind titin N2B resulting in increased titin N2B phosphorylation and compliance beyond physiological ranges, which then destabilize the mitogen-activated protein kinase scaffold to inactivate hypertrophic signaling.51

Titin Kinase

The M-line–associated region of titin contains a protein kinase domain52 that has been proposed to play a role in mechanosensation.53 Using single-molecule analytic techniques,
Puchner et al54 demonstrated that physiological levels of mechanical stress can initiate the catalytic activity of titin kinase by releasing its active site to allow binding of its cofactor, adenosine triphosphate. Mechanically induced titin kinase interacts with a protein complex composed of the autophagosomal receptors, NBR1 (neighbor of BRC\textsubscript{A}1) and p62, also called sequestosome-1 (SQSTM\textsubscript{1}), and the E3-ubiquitin ligase, muscle-specific RING finger-2 (MURF\textsubscript{2}).55 In vitro studies in cardiac muscle cells demonstrated dissociation of this signalosome in response to mechanical inactivity induced by hyperkalemic depolarization, leading to translocation of MURF\textsubscript{2} to the nucleus.55 Within the nucleus, MURF\textsubscript{2} induces both downregulation and nuclear export of serum response factor, suggesting that MURF\textsubscript{2} acts as a repressor of serum response factor–dependent gene expression in response to a loss of mechanical loading.55 Conversely, a more recent study has emerged that suggests the kinase domain of titin is in fact a pseudokinase with undetectable levels of catalysis.56 The authors propose that the titin pseudokinase functions as a scaffold that supports the recruitment of proteins to the sarcomeric M-line. This finding, coupled with the fact that MURF\textsubscript{2} knockout mice do not display a detectable basal cardiac phenotype,57 highlights the need for additional studies to establish whether the mechanooactivation of titin kinase and subsequent phosphorylation of downstream targets coupled with the NBR1/SQSTM\textsubscript{1}/MURF pathway regulates cardiac mechanosensing or whether any potential signaling function of titin via NBR1/SQSTM\textsubscript{1}/MURF is solely because of a scaffolding role performed by the kinase domain.

An increasing body of literature suggests that SQSTM\textsubscript{1} and NBR1 also serve to provide a link between protein ubiquitination and the process of selective autophagy, which is responsible for the regulated removal of proteins and organelles.58 SQSTM\textsubscript{1} and NBR1 mediate direct interactions between polyubiquitinated proteins and microtubule-associated protein light chain 3-II, which is required for autophagosome recruitment.59 Recent evidence suggests an emerging role for autophagy in the clearance of signaling proteins,59,60 which raises the possibility that changes in SQSTM\textsubscript{1}/NBR1 localization in response to mechanical stimuli could directly influence autophagic protein turnover and cardiac muscle cell signal transduction pathways. Support for the importance of titin kinase in the regulation of protein turnover via SQSTM\textsubscript{1}/NBR1 was provided in a human patient with a point mutation in the \ensuremath{\alpha}R1 helix, R279W (Arg34091Trp) of titin kinase, which abrogates binding to NBR1.60 This mutation was originally associated with herediity myopathy with early respiratory failure, that is characterized by focal myofibrillar breakdown,61 as well as aberrant localization and aggregation of SQSTM\textsubscript{1}.58 More recently, titin domain A150/Fn3 119 has emerged as a hotspot for mutations causing heredity myopathy with early respiratory failure.62 Indeed, patients harboring the originally identified R279W mutation in the kinase domain were also found to contain a missense mutation (Pro30091Leu) in A150/Fn3 119 in cis.63 The controversy whether either one or both mutations are causative of the hereditary myopathy63–65 and the underlying molecular mechanisms contributing to disease pathology remains to be further analyzed. However, a recently identified titin kinase-W260R (p.Trp34072Arg) mutation that causes early-onset cardiomyopathy may support the importance of titin kinase for proper muscle function. Indeed, this mutation was also found to abrogate NBR1 binding, thereby further implicating defects in titin kinase to aberrant protein turnover and the development of myopathies.56

MLP–Calcineurin–Nuclear Factor of Activated T-Cells

MLP has also been shown to be essential for anchoring the Ca2+–activated phosphatase, calcineurin at the Z-disc.64 In response to activation, calcineurin dephosphorylates the NFAT (nuclear factor of activated T-cells) family of transcription factors, leading to their translocation into the nucleus and the activation of a pro-hypertrophic gene program.67,68 Studies using MLP heterozygous–deficient mice have shown that mislocalization of calcineurin in response to reduced MLP levels is associated with reduced NFAT signaling, pronounced left ventricular dilatation, and cardiac dysfunction after myocardial infarction.53 These findings suggest that MLP has the ability to transduce biochemical stress to the nucleus via calcineurin–NFAT activation and that reduced MLP–calcineurin signaling can lead to adverse remodeling in response to myocardial infarction.

MLP–Protein Kinase C–Interacting Cousin of Thioredoxin

Protein kinase C–interacting cousin of thioredoxin is a protein found at the Z-disc that can inhibit calcineurin–NFAT hypertrophic signaling in response to hypertrophy induction by phenylephrine.69 Protein kinase C–interacting cousin of thioredoxin localizes to the Z-disc through an interaction with MLP, which in turn abrogates the binding of calcineurin to MLP, leading to its displacement from the Z-disc. The displacement of calcineurin from the Z-disc has been shown to prevent calcineurin–NFAT activation and thus inhibit cardiac hypertrophy.69 This mechanism has also been postulated to protect against pressure overload–induced cardiac hypertrophy, with NFAT gene upregulation shown to be significantly diminished in the hearts of Protein kinase C–interacting cousin of thioredoxin–overexpressing transgenic mice exposed to pressure overload.69 However, it has yet to be established whether protein kinase C–interacting cousin of thioredoxin binding to MLP at the Z-disc prevents any nuclear translocation events in response to mechanical stimulation.

Calsarcin-1

Calsarcin-1 is an additional Z-disc–localized protein that interacts with and negatively regulates calcineurin activity. Calsarcin-1 knockout mice display enhanced calcineurin activation and develop both increased cardiac hypertrophy and an exacerbated cardiomyopathy in response to pressure overload.70 Mutations in calsarcin-1 have been linked in humans to a form of hypertrophic cardiomyopathy characterized by early onset and cardiac arrhythmias.71

Intercalated Disc–Mediated Mechanotransduction

Force developed within the sarcomere is transmitted longitudinally to interdigitated distal ends of the cardiac muscle at
specialized junctions known as the intercalated discs that play a key role in maintaining mechanical and electric coupling between cardiomyocytes. A study performed in rabbit hearts undergoing cyclic volume overload and unload revealed that the intercalated disc undergoes dynamic ultrastructural changes associated with sarcomere assembly/disassembly in response to volume overload, supporting a role for the intercalated disc as a site of mechanotransduction, which is associated with cardiac muscle cell growth and hypertrophic responses.

The 2 most prominent structures within the intercalated disc that are thought to sense and process mechanical stress are the fascia adherens and desmosomal junctions, based on their integral links and mechanotransmission to cytoskeletal actin and intermediate filaments, respectively (Figure 2).

Fascia Adherens Junctions

Fascia adherens junctions are anchoring junctions between cells that connect the membrane-bound cadherins that span the extracellular space at the junction to cytoskeletal actin filaments to provide strong adhesion between neighboring cells. In the heart, the proteins bound to the fascia adherens junctional complex include (i) transmembrane proteins that are mainly composed of N-cadherin (N-CAD), which are calcium-dependent, but also include coxsackievirus and adenovirus receptor (CAR) and lysosomal integral protein 2, which are then intracellularly linked to (ii) catenins (α [α-CAT], β [β-CAT], and γ [plakoglobin, JUP]), which regulate cadherin-based activity, as well as (ii) catenin-binding proteins, such as muscle-specific mouse Xin-α, vinculin/metagvinculin, and α-actinin, which modulate catenin activity or act to link the fascia adherens junction to cytoskeletal actin. Thus, by scaffolding multimolecular complexes that include components with known signaling roles (eg, β-CAT) and anchoring the actin cytoskeleton, it is thought that several aspects of mechanotransduction converge at the fascia adherens junction.

A mechanotransduction role has been postulated for N-CAD within the fascia adherens junction complex. N-CAD is upregulated in response to applied mechanical stretch, and N-CAD–catenin complexes have been shown to transmit mechanical forces by forming attachment sites between adjacent cardiac myofibrils. Elegant in vitro studies performed by Chopra et al revealed a direct role for N-CAD in cardiac muscle mechanotransduction. Specifically, by exploiting cardiomyocytes on a N-CAD substrate, their studies revealed

Figure 2. A schematic representation of the specific protein complexes linked to cell–cell junction and sarcolemma-mediated mechanotransduction and mechanotransmission in cardiac muscle. Dotted arrows highlight cross-talk between integrin and caveolin, as well as integrin and the dystroglycan complex. α-CAT indicates α-catenin; β-CAT, β-catenin; CAR, coxsackievirus-associated receptor; CAS, p130 CRK-associated substrate; CAV3, caveolin-3; DSC2 indicates desmocollin-2; DSG2, desmoglein-2; DSP, desmoplakin; ECM, extracellular matrix; FAK, focal adhesion kinase; ILK, integrin-linked kinase; JUP, plakoglobin; N-CAD, N-cadherin; PAX, paxillin; PKP2, plakophilin-2; and VIN, vinculin (illustration credit: Ben Smith).
that N-CAD–mediated adhesions were capable of eliciting a cytoskeletal-mediated mechanical remodeling response, which included changes in cardiomyocyte shape, myofibrillar organization, and function (as measured by traction forces and cortical stiffness), suggesting the importance of adhesion-contraction balance in cardiac myocyte growth.76 These findings were reinforced when inhibitors of myosin contractility were shown to lower N-CAD–mediated effects on cardiomyocyte stiffness, highlighting an adaptive response of the cardiomyocyte cytoskeleton to changes in mechanical stimuli.76 Interestingly, the spreading and stiffness adaptations of cardiac muscle cells were more enhanced when N-CAD was engaged as opposed to integrin-based substrates, further suggesting that different adhesion systems may mediate differential cytoskeletal adaptive responses based on the perceived forces.76 These concepts may also have implications in cardiac disease settings where differential cardiomyocyte cell growth responses are observed (eg, dilated cardiomyopathy axial cell lengthening [eccentric] versus hypertrophic cardiomyopathy transverse [concentric] cell growth).76 Potential evidence to support this comes from studies focused on the specific contribution of N-CAD in the adult heart, which exploited a cardiac-specific and inducible N-CAD knockout mouse model.77 Loss of N-CAD in adult mouse cardiomyocytes resulted in the complete absence of identifiable intercalated disc structures (loss of fascia adherens and desmosomal junctions, as well as reduction in levels of the gap junction protein, connxin 43), culminating in cardiac morphological and functional defects, associated with a modest form of dilated cardiomyopathy.77 However, unlike typical dilated cardiomyopathy that reveals an enlargement of left ventricular chambers in the short axis, the enlargement was more pronounced in the long axis,77 highlighting an in vivo switch in cardiomyocyte growth response that may be consistent with the loss of a mechanotransductive role for N-CAD. Interestingly, adult N-CAD knockout mice also displayed ventricular arrhythmias leading to sudden death.77 N-CAD knockout hearts also displayed decreased sarcomere length and wider but less dense Z-discs, consistent with the loss of muscle function because of the absence of N-CAD and anchoring of myofibrils to the plasma membrane,77 which highlights that alterations in cardiomyocyte cell–cell mechanosensing can directly affect sarcomere alignment and protein assembly. Interestingly, increased β-1 integrin levels were also observed in adult N-CAD knockout hearts,77 further highlighting the engagement of a differential cytoskeletal adaptive response associated with integrin-based function. Although a role for N-CAD in human cardiac disease remains to be clarified, these studies suggest a contributing role for N-CAD in multiple mechanotransductive pathways in cardiac muscle.

α-Catenins (α-CAT) are key molecules that link the cytoplasmic domain of cadherin to the actin cytoskeleton.78 Recent studies have also implicated a role for α-CAT as a force transducer that is important for mechanotransduction at cadherin-based junctions.79 Specifically, in vitro studies by Yonemura et al79 showed that α-CAT recruits vinculin, another main actin-binding protein of the fascia adherens junction, through force-dependent changes in α-CAT conformation that unmask the vinculin-binding sites to promote adherens junction development. Interestingly, our group has also demonstrated that α-E-catenin is required for vinculin localization to the fascia adherens junction in cardiomyocytes in vivo.80 Specifically, we showed that adult cardiomyocytes from cardiac-specific α-E-catenin knockout mice exhibited a specific loss of vinculin at the intercalated disc but not the costamere, highlighting a requirement for the cadherin–catenin–vinculin complex at the fascia adherens junction.80 In vivo studies focused on the cardiac-specific α-E-catenin knockout mice further revealed that the loss of α-E-catenin and resulting vinculin loss lead to defects in cardiac intercalated disc structure, morphology, and function, associated with a progressive form of dilated cardiomyopathy that encompassed right ventricular wall thinning.80 We also showed that cardiac-specific α-E-catenin knockout mice exhibited an increased propensity to ventricular wall rupture and decreased survival after myocardial infarction at stages before disease manifestation,80 highlighting a loss in the cardiomyocyte’s ability to adapt to mechanical load with α-E-catenin deficiency. Similar observations related to increased vulnerability to infarct rupture were observed in transgenic mice harboring a C-terminal–truncated α-E-catenin.81 Interestingly, defective expression and localization of α-E-catenin at the intercalated disc are features of the human patients prone to ventricular rupture after myocardial infarction,81 highlighting the relevance of these mechanotransduction-associated pathways in human cardiac disease. Given the molecular crosstalk between α-E-catenin and vinculin at the fascia adherens junction, it is also important to note that cardiac-specific and heterozygous conventional vinculin knockout mice also exhibit cardiac-intercalated disc and functional abnormalities either at baseline, which were associated with dilated cardiomyopathy or after hemodynamic stress associated with increased susceptibility to pressure (mechanical) overload, respectively.25,83 Human dilated cardiomyopathy patients with metavinculin mutations also exhibited similar intercalated disc defects to the cardiac-specific α-E-catenin knockout mice,80,84 highlighting that the α-E-catenin–vinculin protein complex harbors signals important in maintaining the structural and functional integrity of the intercalated disc and heart, respectively, that also translate to human disease settings. These studies focused on uncovering a mechanistic link between the cellular alterations and functional deficits associated with vinculin deficiency in mice and uncovered a novel mechanism linked to the role of vinculin at the costamere,7 which will be discussed in more detail in the Sarcolemma-Mediated Mechanotransduction section.

Biochemistry-based studies have also associated a role for the striated muscle–specific protein, nebulin-related anchoring protein (N-RAP), in cardiac muscle mechanotransduction at sites that intersect between the fascia adherens junction and sarcomere.55,56 Part of this evidence comes from studies that have identified N-RAP to contain a C-terminal actin-binding domain and N-terminal LIM domain, which highlight mecha-nosignaling domains within N-RAP.86 A physical association between N-RAP and fascia adherens junctions was revealed when N-RAP was shown to copurify with actin-based intercalated disc components and the fascia adherens junction fragments positively staining for N-RAP and vinculin.86
Interestingly, detergent-stripped intercalated disc fractions, which rendered the fraction devoid of actin and vinculin, still showed an association between cellular N-RAP within the intercalated disc fraction (containing N-CAD, α-actinin, desmin, and connexin 43), highlighting that N-RAP’s association with the fascia adherens junction is mediated by cadherins. Gel overlay assays also revealed an association between N-RAP and α-actinin. Although a role for N-RAP has not been determined in cardiac muscle in vivo, N-RAP expression was found to be highly upregulated and abnormally distributed in MLP knockout hearts, raising the possibility that N-RAP functions may also intersect with the sarcomere via MLP-related mechanotransduction pathways associated with heart failure.

Desmosomes

Desmosomes are anchoring junctions that serve to mechanically couple cells in tissues that undergo constant mechanical stress, such as the heart. They tether the cytoskeletal intermediate filament network between cardiomyocytes. In cardiac muscle, these organized, disc-shaped, electron-dense structures are composed of extracellular transmembrane-based cadherins, desmocollin-2 and desmoglein-2, which provide a platform via their cytoplasmic tails to members of the armadillo family, JUP and plakophilin-2, that are then in turn bound to the plakin family member, desmoplakin, which is the central cytoplasmic link to the load-bearing intermediate filament network composed of desmin. A role for desmosomes in cardiac mechanotransduction and long-range force transmission across cells stems from its association with the desmin intermediate filaments that were originally termed as mechanical integrators of cellular space because of connections to various parts of the cell, including the nucleus, mitochondria, desmosome, and sarcomeric Z-disc. Desmosomes could also be downstream mechanical transducers of fascia adherens junctions as desmosomal assembly and function were shown to be dependent on N-CAD in the adult heart. Studies have also identified hybrid junctions known as the area composita that are composed of proteins from both the fascia adherens and desmosomal junctions, highlighting a convergence of pathways. However, desmosomal proteins seem to have a distinct and robust role in intermediate filament–based mechanotransduction, based on growing evidence from genetic data that point to a distinct cardiomyocyte remodeling response associated with desmosomal deficiencies and mutations (separate from the fascia adherens junction), that link to the human cardiac disease, arrhythmogenic right ventricular cardiomyopathy (ARVC).

ARVC is a genetic-based cardiac disease tightly associated with desmosomal abnormalities. Recent studies have also highlighted that mutations in the spring element of titin (IG10) cause an ARVC-like disease. A connection between titin and the desmosome was recently highlighted as titin filaments have been shown to connect to a new subcellular domain of the intercalated disc, termed the transitional junction, highlighting a potential for titin-based sarcomere pathways to intersect with the desmosome and ARVC. Further studies, possibly through the generation of knock-in mouse models, will be required to determine the direct role for these mutations in ARVC and whether these pathways directly intersect with the desmosome. Hallmarks of ARVC include life-threatening arrhythmias, cardiac dilation, and dysplasia of one or both ventricles that are worsened by strenuous exercise, as well as cardiomyocyte death and replacement of myocardial tissue with fibro-fatty infiltration. Ventricle contractility is compromised in ARVC hearts with late-stage ARVC culminating into heart failure. Mutations in desmosomal components can account for ≤58% of ARVC cases. Several studies have exploited genetic mouse models to reveal an important role for desmosomes in transducing mechanical cues into a wide variety of cellular responses important for cardiac structure, function, and disease features reminiscent of human ARVC. Mutations in the desmosomal cadherins, desmocollin-2 and desmoglein-2, are associated with human ARVC. Studies performed in transgenic mice expressing the human ARVC–associated desmoglein-2 mutation (N266S) revealed that within 2 weeks after birth, transgenic mice developed spontaneous ventricular arrhythmias, conduction slowing, ventricular dilation and aneurysms, fibrosis, and calcification, leading to sudden death, which was reminiscent of a biventricular form of ARVC. Supporting this study, targeted deletion in mice of the extracellular domain of desmoglein-2, which is a domain likely capable of sensing mechanical loads and known to be important in desmosomal adhesive activity as well as signaling, also leads to a biventricular form of ARVC encompassing upregulation of heart failure markers, fibrosis, biventricular dilatation and dysfunction, and spontaneous death. At the ultrastructural level, mouse hearts displayed an enlargement of the intercellular gap at the intercalated disc associated with the loss of desmosomal structure, which seemed to coincide with visible heart lesions at the macroscopical level. These studies together highlight a key role for desmosomal cadherins in sensing and responding to mechanical stresses associated with cardiac muscle contraction.

An important cytoplasmic intermediary that interconnects the desmosomal junction to the cytoskeletal-based intermediate filament system is desmoplakin. We and others have revealed, through the generation of various genetic mouse models harboring mutations in, or loss of desmoplakin, that desmoplakin is critical for maintaining cardiac desmosomal cell–cell adhesion (intercalated disc) integrity and function. Cardiac-specific loss of desmoplakin in mice in vivo (using a ventricular myosin light chain-2 Cre recombinase mouse line) resulted in early ultrastructural defects that were associated with the loss of desmosomal but not N-CAD–based junctional proteins. Furthermore, these mice recapitulated the postnatal onset of human ARVC at the histological (cardiomyocyte death, fibrosis, and fatty infiltration), physiological (biventricular dysfunction and heart failure), and electrophysiological (arrhythmias and premature death) levels that were also observed in an ARVC patient harboring a recessive desmoplakin mutation. Desmoplakin knockout mice (using ventricular myosin light chain-2 Cre recombinase) also exhibited sarcomeric defects including loss and widened Z-discs, consistent with the loss of muscle function, revealing that alterations in desmosomal cell–cell mechanosensing (load) and adhesion can directly affect sarcomere structure.
Interestingly, cardiac-specific transgenic mouse models harboring a human desmoplakin mutation that affected its binding to intermediate filaments also resulted in a cardiac disease reminiscent of ARVC, further highlighting that intermediate filament–based mechanotransduction associated with the desmosome may be linked to the cardiac disease, ARVC.

Several studies have also probed for signaling targets at the desmosome that contribute to the various hallmarks of ARVC. We and others have highlighted that developmental signals that elicit transdifferentiation of cardiac muscle to adipocytes play a contributory role toward the fibrofatty infiltration associated with ARVC. Although the mechanisms have not been fully elucidated, loss of JUP from the desmosomal cell–cell junction and resulting loss in Wnt/β-CAT signaling (because of the presence of nuclear JUP or pathogenic Hippo signaling) have been postulated as a hallmark of ARVC and thought to play a role in promoting adipogenic and fibrogenic gene expression in ARVC, respectively. A recent study has highlighted a potential direct link between JUP and plakophilin-2 in cardiac muscle shear stress responses. Specifically, this study revealed that shear stress can trigger cardiomyocyte junctional remodeling and that neonatal rat ventricular cardiomyocytes overexpressing JUP and plakophilin-2 in cardiac muscle shear stress responses. This study revealed that shear stress can trigger cardiomyocyte junctional remodeling and that neonatal rat ventricular cardiomyocytes overexpressing JUP and plakophilin-2 in cardiac muscle shear stress responses. Specifically, this study revealed that shear stress can trigger cardiomyocyte junctional remodeling and that neonatal rat ventricular cardiomyocytes overexpressing JUP and plakophilin-2 in cardiac muscle shear stress responses.

Cardiac-specific transgenic mouse models, 108,109 which have been similarly observed between cardiac-specific desmoplakin–deficient mouse models, requiring further evaluation. Nonetheless, these studies altogether highlight that an absence of JUP and desmosomes renders cardiomyocytes unable to properly respond to high mechanical stress resulting in myocyte dissociation and a cellular remodeling response uniquely associated with ARVC. Because increased β-CAT was observed and proposed to be a compensatory response to the loss of JUP in cardiac-specific JUP–deficient mice, double cardiac-specific JUP (α-MHC-Cre and β-CAT (using α-MHC-Mer-Cre-Mer inducible mouse) knockout mice were generated. JUP and β-CAT double knockout mice caused a loss of fascia adherens and desmosomal junctional proteins resulting in mice exhibiting cardiomypathy, fibrous replacement of the myocardium, and strong arrhythmogenic phenotypes, with 100% of them succumbing to sudden death within 3 to 5 months after tamoxifen injection. Interestingly, transgenic mouse models overexpressing JUP (wild-type or mutant associated with ARVC) also exhibited fibrofatty replacement of the ventricle and higher prevalence of sudden death. Thus, it has been suggested that even small levels of JUP overexpression are sufficient to disrupt the mechanical and signaling functions of JUP in cardiac muscle.

Loss of the intermediate filament protein desmin in mice in vivo also leads to skeletal and cardiac muscle abnormalities. Specific to the heart, desmin null mice exhibited cardiomyocyte ultrastructural defects (intercalated disc and sarcomere) and cardiomyocyte death resulting in fibrosis and calcification preferentially in the interventricular septum and right ventricle, which lead to cardiomyocyte hypertrophy, ventricular dilatation, and systolic dysfunction, reminiscent of ARVC. Human mutations in desmin are also associated with familial forms of skeletal and cardiac myopathies, including ARVC. Recent studies have revealed that some of these severe disease altering mutations may directly affect the force bearing properties of desmin filaments (eg, overstretching at low forces or premature stiffening at low deformations) resulting in defects in the mechanosensing and transduction abilities of desmin.

Sarcolemma-Mediated Mechanotransduction

Besides the intercalated discs at the ends of cardiac myocytes, sarcolemma-associated proteins and complexes along the lateral surfaces of elongated myocytes have been described as foci of force transmission and mechanotransduction. Equivalent to nonmuscle focal adhesions, costameres are crucial in the lateral transmission of force from the Z-disc of the sarcomere to the sarcolemma and ECM. By forming a connection between the ECM and the contractile apparatus, costameric structures facilitate the maintenance of mechanical integrity of the sarcolemma. A complex network of cytoskeletal and signaling proteins converge at these specialized cell junctions, and therefore, costameres are likely key mediators of mechanical-related signaling and possibly involved with transducing mechanical signals bidirectionally between the extracellular space and intracellular signaling networks (Figure 1).
Integrins

Communication between the ECM and the intracellular portion of cardiac costameres is facilitated by transmembrane integrin receptors attached in the extracellular space to ECM ligands and intracellularly to the cytoskeleton by proteins, such as talin, vinculin, and α-actinin.121,122 Integrin receptors are dimers of α and β subunits, and different combinations of these subunits confer the receptor specificity for ECM ligands.123 The patterns of expression of specific integrin subunits in cardiac muscle cells can be altered and resemble fetal patterns under specific pathological conditions.124 Specifically, α5 and α7 subunits can be significantly upregulated in ischemia or after myocardial infarction,125 whereas α1, α5, α7, and β1D subunits are increased in response to pressure overload,126 suggesting that the myocardium may respond to mechanical stress through the modulation of integrin-related signaling molecules. In support of this, dilated cardiomyopathy with extensive myocardial fibrosis and reduced tolerance to loading was observed in a mouse model with excision of β1 integrin using the ventricular myosin light chain-2 Cre recombinase mouse line.127 Furthermore, reduction of β1 integrin in adult mouse cardiomyocytes resulted in impaired hypertrophic response to pressure overload as a result of modified adrenergic-mediated signaling downstream of the hypertrophic stress.128 Integrins are also fundamental nodal points of key signaling pathways related to mechanotransduction. Integrin-linked kinase (ILK) is an important transducer of integrin signaling. Mutations in ILK have been reported in human dilated cardiomyopathy,129 and tetralogy of Fallot.130 Mice bearing a cardiac knockout of ILK develop dilated cardiomyopathy and spontaneous heart failure.131 Studies performed in human-induced pluripotent cardiomyocyte–derived cardiac muscle cells indicated that ILK mediate the response to mechanical stress in the heart and that a reduction of talin-1 expression and targeting to the costameres is increased in response to cardiac hypertrophy induced by pressure overload.119 Furthermore, it was demonstrated that cardiomyocyte-specific knockout of talin-1 in mice leads to a blunted hypertrophy response and preserved cardiac function in response to pressure overload when compared with littermate controls.119 The results suggested that talin-1 mediates the hypertrophy response to mechanical stress in the heart and that a reduction of talin-1 expression in cardiac muscle cells can lead to improved cardiac remodeling after pressure overload.

In addition to a role at the costameres, FAK and its C-terminal binding partners p130 CRK-associated substrate and paxillin also redistribute to the Z-disc with hypertrophic stress. FAK has been shown to mediate integrin signaling leading to hypertrophy, while also being activated by α1 adrenergic stimulation.136 Furthermore, in neonatal cardiomyocytes, tyrosine phosphorylation of FAK and p130 CRK-associated substrate has been shown to increase on endothelin-1 stimulation (a hypertrophic agonist), which also promotes redistribution of FAK, Cas, and paxillin to sarcomeric Z-discs.137 Cas alone or in cooperation with Src nonreceptor tyrosine kinase modulates basal and endothelin-1–stimulated atrial natriuretic factor gene expression. Interaction of Cas with FAK, as well as their localization to Z-discs, seems critical for sarcomeric assembly in cardiac myocytes. Therefore, the assembly of signaling complexes that include the focal adhesion proteins, Cas, FAK, and paxillin at Z-discs in the cardiac myocytes may regulate, either directly or indirectly, both cytoskeletal organization and gene expression associated with cardiac myocyte hypertrophy.137 Further work indicated that expression of different Cas mutants leads to severe sarcomeric disarray in cardiomyocytes.138 Expression of the C-terminal focal adhesion targeting domain of FAK disrupted sarcomeric organization and mislocalization of endogenous Cas to Z-discs, suggesting that the association of FAK and Cas, as well as preservation of multiple protein interaction motifs of Cas, was required for proper sarcomeric assembly in cardiac myocytes.138 Interestingly, in skeletal muscle, changes in the expression of FAK levels and signaling were also associated with sarcomeric reorganization in response to overload.139

Vinculin–Talin–Integrin Complex

Vinculin is a cytoskeletal actin-binding protein that links the actin cytoskeleton to the sarcolemma. Vinculin is specifically tethered at the costamere, where it binds to integrins via talin. Mutations in the muscle-specific isoform of vinculin and metavinculin were found in patients with both dilated and hypertrophic cardiomyopathy, highlighting its importance for normal cardiac function.14 The presence of vinculin at the intercalated disc, which is another important site of mechanical coupling, has made it difficult to precisely dissect specific vinculin functions between these 2 cellular regions.124,133 However, studies in mouse models have demonstrated that vinculin is essential for mediating the response to mechanical stress in the heart. Homozygous global loss of vinculin in mice leads to embryonic lethality (at embryonic day 10).134 However, mice with heterozygous loss of vinculin display normal basal cardiac function, but they are more susceptible to cardiac dysfunction and display increased mortality in response to mechanically mediated dysfunction induced by pressure overload of the left ventricle.82

Talin is a cytoskeletal protein that links integrins to the actin cytoskeleton through the cytoplasmic domain of the β-integrin subunit, and it modulates integrin activation and ligand binding.126 Talin mediates the recruitment of key signal transduction partners, such as focal adhesion kinase (FAK) and phosphatidylinositol-4-phosphate-5 kinase type 1γ to the costameres.135 Studies performed in mice have revealed that talin-1 protein expression and targeting to the costameres is increased in response to cardiac hypertrophy induced by pressure overload.119 Furthermore, it was demonstrated that cardiomyocyte-specific knockout of talin-1 in mice leads to a blunted hypertrophy response and preserved cardiac function in response to pressure overload when compared with littermate controls.119 The results suggested that talin-1 mediates the hypertrophy response to mechanical stress in the heart and that a reduction of talin-1 expression in cardiac muscle cells can lead to improved cardiac remodeling after pressure overload.

In addition to a role at the costameres, FAK and its C-terminal binding partners p130 CRK-associated substrate and paxillin also redistribute to the Z-disc with hypertrophic stress. FAK has been shown to mediate integrin signaling leading to hypertrophy, while also being activated by α1 adrenergic stimulation.136 Furthermore, in neonatal cardiomyocytes, tyrosine phosphorylation of FAK and p130 CRK-associated substrate has been shown to increase on endothelin-1 stimulation (a hypertrophic agonist), which also promotes redistribution of FAK, Cas, and paxillin to sarcomeric Z-discs.137 Cas alone or in cooperation with Src nonreceptor tyrosine kinase modulates basal and endothelin-1–stimulated atrial natriuretic factor gene expression. Interaction of Cas with FAK, as well as their localization to Z-discs, seems critical for sarcomeric assembly in cardiac myocytes. Therefore, the assembly of signaling complexes that include the focal adhesion proteins, Cas, FAK, and paxillin at Z-discs in the cardiac myocytes may regulate, either directly or indirectly, both cytoskeletal organization and gene expression associated with cardiac myocyte hypertrophy.137 Further work indicated that expression of different Cas mutants leads to severe sarcomeric disarray in cardiomyocytes.138 Expression of the C-terminal focal adhesion targeting domain of FAK disrupted sarcomeric organization and mislocalization of endogenous Cas to Z-discs, suggesting that the association of FAK and Cas, as well as preservation of multiple protein interaction motifs of Cas, was required for proper sarcomeric assembly in cardiac myocytes.138 Interestingly, in skeletal muscle, changes in the expression of FAK levels and signaling were also associated with sarcomeric reorganization in response to overload.139

Caveolin-3

Integrin signaling in response to mechanical load can also be regulated by caveolin-3.140 Caveolin-3 is highly expressed in cardiac muscle cells, where it can be found both at the focal adhesion complex,141 or as a component of lipid raft microdomains, termed caveolae,142 that can regulate signal transduction by compartmentalizing receptors and their ligands.143 Loss of caveolin-3 in cardiac muscle cells has been shown to
lead to reduced β1 integrin expression leading to perturbed basal and stretch mediated signaling responses.140

Dystroglycan

The dystroglycan complex also serves as an ECM receptor in cardiac muscle cells. β-Dystroglycan interacts with α-dystroglycan on the cell surface, which facilitates interactions, with the ECM protein laminin.141 β-Dystroglycan also tethers the actin-binding protein dystrophin within the cytosol.145 Mutations in dystrophin have shown to lead to Duchene muscular dystrophy, which is characterized by muscle (skeletal and cardiac) degeneration,146,147 highlighting the importance of dystrophin as a linker between the ECM and the cytoskeleton. Combinatorial loss of dystrophin with β1-integrin has been shown to exacerbate the cardiomyopathic changes observed with the loss of dystrophin and integrins alone in response to isoproterenol treatment, suggesting the crosstalk between these 2 complexes in response to cardiac stress.148

Conclusions/Future Directions

Force transmission and sensing within the cardiac myocyte is a complex process, and a multitude of proteins and protein complexes have been implicated in the mechanisms of both stress transmission and stress transduction. The putative mechanotransduction-related proteins exist at many different locations within the cell, from the outer sarcolemmal membrane down to the force-generating sarcomere and associated structures. It seems likely that multiple structural pathways may be involved with the overall processes of load-mediated remodeling of cardiac myocytes, with redundant or overlapping function.

It is intriguing to consider modulation of a mechanosensing pathway to alter the downstream effects, for example, adverse remodeling in myocardium could be controlled at the force-sensing level, altering the downstream molecular signals and improving long-term outcomes in cardiac disease. Mediating the molecular signals associated with a specific mechanotransduction pathway could also be a way of modifying downstream remodeling outcomes, without directly changing the structural properties of the force transmission pathways. For example, as described above, several of the hypertrophy-inducing pathways in cardiomyocytes are, at least in part, calcium-dependent: among others, calcium–calmodulin kinase II and calcineurin are activated by increased local calcium concentrations. These calcium-mediated signaling pathways have been investigated as mediators of sarcomeric force generation and are clearly described. Thus, small-molecule modulations of these well-described pathways are underway and represent a promising direction for therapeutic applications for cardiac hypertrophy and failure.149,150 Inhibitors of calcium–calmodulin kinase II have proven excellent research tools, and some have been investigated in early clinical trials.151 Among those, the calcium–calmodulin kinase IIIN peptide has shown minimal off-target effects but has yet to be tested in patients.151 Calcineurin inhibitors cyclosporin A (CsA) and FK506 were shown to prevent the phenotypic manifestations of hypertrophic cardiomyopathy in mice overexpressing troponomodulin or fetal β-tropomyosin.152,153 Partial or complete inhibition of cardiac hypertrophy has been achieved with CsA and FK506 after pressure overload in rats and mice,154–156 although it has also been reported that under specific settings, a significant rescue could not be achieved.154–157 Studies in rats indicated that CsA prevented exercise-induced cardiac hypertrophy, attenuated hypertrophy, and histopathology in double transgenic transgenic mice overexpressing human renin and angiotensinogen,158 as well as attenuated myocardial infarction–induced cardiac hypertrophy.152,159 CsA also reduced cardiac hypertrophy in constitutively activated Gq transgenic mice.160 Nevertheless, the known side effects of CsA and FK506 in humans have prevented further exploration of these small molecules.152 A similar approach could be used for other signaling kinases implicated in mechanotransduction pathways, such as ILK, which mediates force transduction in cardiomyocytes by modulating sarcomplasmic/endoplasmic reticulum Ca2+ ATPase isoform 2a/phospholamban function.132 The R211A mutation in ILK has been shown to promote enhanced cardiomyocyte contractility compared with its wild-type counterpart, including increased releasable sarcoplasmic reticulum calcium content. Such positive effects were proposed to stem from higher expression levels of ILK and sarcomplasmic/endoplasmic reticulum Ca2+ ATPase isoform 2a compared with that resulting from ILK wild-type overexpression in vitro and in transgenic mice in vivo. Thus, gene therapy with ILK R211A has been proposed as a possible future management strategy for dilated cardiomyopathy.132

Sources of Funding

R.C. Lyon was supported by a National Institutes of Health (NIH) T32 training grant. F. Zanella is a recipient of an American Heart Association Postdoctoral Fellowship. F. Sheikh was supported by NIH/National Heart, Lung, and Blood Institute (HL097810) and American Heart Association (GRNT22940045) grants. J.H. Omens was supported by NIH grants HL103566 and HL105242.

Disclosures

None.

References

Mechanotransduction in Cardiac Hypertrophy and Failure
Robert C. Lyon, Fabian Zanella, Jeffrey H. Omens and Farah Sheikh

doi: 10.1161/CIRCRESAHA.116.304937

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/116/8/1462

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/