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specialized junctions known as the intercalated discs that play 
a key role in maintaining mechanical and electric coupling be-
tween cardiomyocytes.11 A study performed in rabbit hearts 
undergoing cyclic volume overload and unload revealed 
that the intercalated disc undergoes dynamic ultrastructural 
changes associated with sarcomere assembly/disassembly in 
response to volume overload, supporting a role for the interca-
lated disc as a site of mechanotransduction, which is associated 
with cardiac muscle cell growth and hypertrophic responses.72 
The 2 most prominent structures within the intercalated disc 
that are thought to sense and process mechanical stress are 
the fascia adherens and desmosomal junctions, based on their 
integral links and mechanotransmission to cytoskeletal actin 
and intermediate filaments, respectively22 (Figure 2).

Fascia Adherens Junctions
Fascia adherens junctions are anchoring junctions between 
cells that connect the membrane-bound cadherins that span 
the extracellular space at the junction to cytoskeletal actin fila-
ments to provide strong adhesion between neighboring cells.73 
In the heart, the proteins bound to the fascia adherens junction-
al complex include (i) transmembrane proteins that are mainly 

composed of N-cadherin (N-CAD), which are calcium-depen-
dent, but also include coxsackievirus and adenovirus receptor 
(CAR) and lysosomal integral protein 2, which are then intra-
cellularly linked to (ii) catenins (α [α-CAT], β [β-CAT], and 
γ [plakoglobin, JUP]), which regulate cadherin-based activity, 
as well as (ii) catenin-binding proteins, such as muscle-specif-
ic mouse Xin-α, vinculin/metavinculin, and α-actinin, which 
modulate catenin activity or act to link the fascia adherens 
junction to cytoskeletal actin.73,74 Thus, by scaffolding mul-
timolecular complexes that include components with known 
signaling roles (eg, β-CAT) and anchoring the actin cytoskel-
eton, it is thought that several aspects of mechanotransduction 
converge at the fascia adherens junction.74,75

A mechanotransduction role has been postulated for 
N-CAD within the fascia adherens junction complex. N-CAD 
is upregulated in response to applied mechanical stretch,76 
and N-CAD–catenin complexes have been shown to transmit 
mechanical forces by forming attachment sites between adja-
cent cardiac myofibrils.74 Elegant in vitro studies performed 
by Chopra et al76 revealed a direct role for N-CAD in car-
diac muscle mechanotransduction. Specifically, by exploiting 
cardiomyocytes on a N-CAD substrate, their studies revealed 

Figure 2. A schematic representation of the speci�c protein complexes linked to cell–cell junction and sarcolemma-mediated 
mechanotransduction and mechanotransmission in cardiac muscle. Dotted arrows highlight cross-talk between integrin and 
caveolin, as well as integrin and the dystroglycan complex. α-CAT indicates α-catenin; β-CAT, β-catenin; CAR, coxsackievirus-
associated receptor; CAS, p130 CRK-associated substrate; CAV3, caveolin-3; DSC2 indicates desmocollin-2; DSG2, desmoglein-2; DSP, 
desmoplakin; ECM, extracellullar matrix; FAK, focal adhesion kinase; ILK, integrin-linked kinase; JUP, plakoglobin; N-CAD, N-cadherin; 
PAX, paxilin; PKP2, plakophillin-2; and VIN, vinculin (illustration credit: Ben Smith).
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that N-CAD–mediated adhesions were capable of eliciting 
a cytoskeletal-mediated mechanical remodeling response, 
which included changes in cardiomyocyte shape, myofibril-
lar organization, and function (as measured by traction forces 
and cortical stiffness), suggesting the importance of adhesion-
contractile balance in cardiac myocyte growth.76 These find-
ings were reinforced when inhibitors of myosin contractility 
were shown to lower N-CAD–mediated effects on cardio-
myocyte stiffness, highlighting an adaptive response of the 
cardiomyocyte cytoskeleton to changes in mechanical stim-
uli.76 Interestingly, the spreading and stiffness adaptations of 
cardiac muscle cells were more enhanced when N-CAD was 
engaged as opposed to integrin-based substrates, further sug-
gesting that different adhesion systems may mediate differ-
ential cytoskeletal adaptive responses based on the perceived 
forces.76 These concepts may also have implications in cardiac 
disease settings where differential cardiomyocyte cell growth 
responses are observed (eg, dilated cardiomyopathy axial cell 
lengthening [eccentric] versus hypertrophic cardiomyopathy 
transverse [concentric] cell growth).76 Potential evidence to 
support this comes from studies focused on the specific con-
tribution of N-CAD in the adult heart, which exploited a car-
diac-specific and inducible N-CAD knockout mouse model.77 
Loss of N-CAD in adult mouse cardiomyocytes resulted in the 
complete absence of identifiable intercalated disc structures 
(loss of fascia adherens and desmosomal junctions, as well as 
reduction in levels of the gap junction protein, connexin43), 
culminating in cardiac morphological and functional defects, 
associated with a modest form of dilated cardiomyopathy.77 
However, unlike typical dilated cardiomyopathy that reveals 
an enlargement of left ventricular chambers in the short axis, 
the enlargement was more pronounced in the long axis,77 high-
lighting an in vivo switch in cardiomyocyte growth response 
that may be consistent with the loss of a mechanotransduc-
tive role for N-CAD. Interestingly, adult N-CAD knockout 
mice also displayed ventricular arrhythmias leading to sudden 
death.77 N-CAD knockout hearts also displayed decreased sar-
comere length and wider but less dense Z-discs, consistent with 
the loss of muscle function because of the absence of N-CAD 
and anchoring of myofibrils to the plasma membrane,77 which 
highlights that alterations in cardiomyocyte cell–cell mecha-
nosensing can directly affect sarcomere alignment and protein 
assembly. Interestingly, increased β-1 integrin levels were 
also observed in adult N-CAD knockout hearts,77 further high-
lighting the engagement of a differential cytoskeletal adaptive 
response associated with integrin-based function. Although a 
role for N-CAD in human cardiac disease remains to be clari-
fied, these studies suggest a contributing role for N-CAD in 
multiple mechanotransductive pathways in cardiac muscle.

α-Catenins (α-CAT) are key molecules that link the cy-
toplasmic domain of cadherin to the actin cytoskeleton.78 
Recent studies have also implicated a role for α-CAT as a 
force transducer that is important for mechanotransduction 
at cadherin-based junctions.79 Specifically, in vitro studies 
by Yonemura et al79 showed that α-CAT recruits vinculin, 
another main actin-binding protein of the fascia adherens 
junction, through force-dependent changes in α-CAT con-
formation that unmask the vinculin-binding sites to promote 

adherens junction development. Interestingly, our group has 
also demonstrated that α-E-catenin is required for vinculin lo-
calization to the fascia adherens junction in cardiomyocytes 
in vivo.80 Specifically, we showed that adult cardiomyocytes 
from cardiac-specific α-E-catenin knockout mice exhibited 
a specific loss of vinculin at the intercalated disc but not 
the costamere, highlighting a requirement for the cadherin–
catenin–vinculin complex at the fascia adherens junction.80 
In vivo studies focused on the cardiac-specific α-E-catenin 
knockout mice further revealed that the loss of α-E-catenin 
and resulting vinculin loss lead to defects in cardiac inter-
calated disc structure, morphology, and function, associated 
with a progressive form of dilated cardiomyopathy that en-
compassed right ventricular wall thinning.80 We also showed 
that cardiac-specific α-E-catenin knockout mice exhibited an 
increased propensity to ventricular wall rupture and decreased 
survival after myocardial infarction at stages before disease 
manifestation,80 highlighting a loss in the cardiomyocyte’s 
ability to adapt to mechanical load with α-E-catenin defi-
ciency. Similar observations related to increased vulnerability 
to infarct rupture were observed in transgenic mice harboring 
a C-terminal–truncated α-E-catenin.81 Interestingly, defective 
expression and localization of α-E-catenin at the intercalated 
disc are features of the human patients prone to ventricular 
rupture after myocardial infarction,81 highlighting the rel-
evance of these mechanotransduction-associated pathways in 
human cardiac disease. Given the molecular crosstalk between 
α-E-catenin and vinculin at the fascia adherens junction, it is 
also important to note that cardiac-specific and heterozygous 
conventional vinculin knockout mice also exhibit cardiac-in-
tercalated disc and functional abnormalities either at baseline, 
which were associated with dilated cardiomyopathy or after 
hemodynamic stress associated with increased susceptibility 
to pressure (mechanical) overload, respectively.82,83 Human 
dilated cardiomyopathy patients with metavinculin mutations 
also exhibited similar intercalated disc defects to the cardiac-
specific α-E-catenin knockout mice,80,84 highlighting that the 
α-E-catenin–vinculin protein complex harbors signals impor-
tant in maintaining the structural and functional integrity of 
the intercalated disc and heart, respectively, that also translate 
to human disease settings. These studies focused on uncov-
ering a mechanistic link between the cellular alterations and 
functional deficits associated with vinculin deficiency in mice 
and uncovered a novel mechanism linked to the role of vincu-
lin at the costamere,5 which will be discussed in more detail in 
the Sarcolemma-Mediated Mechanotransduction section.

Biochemistry-based studies have also associated a role for 
the striated muscle–specific protein, nebulin-related anchor-
ing protein (N-RAP), in cardiac muscle mechanotransduction 
at sites that intersect between the fascia adherens junction and 
sarcomere.85,86 Part of this evidence comes from studies that 
have identified N-RAP to contain a C-terminal actin-binding 
domain and N-terminal LIM domain, which highlight mecha-
nosignaling domains within N-RAP.86 A physical association 
between N-RAP and fascia adherens junctions was revealed 
when N-RAP was shown to copurify with actin-based in-
tercalated disc components and the fascia adherens junc-
tion fragments positively staining for N-RAP and vinculin.86 
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Interestingly, detergent-stripped intercalated disc fractions, 
which rendered the fraction devoid of actin and vinculin, 
still showed an association between cellular N-RAP within 
the intercalated disc fraction (containing N-CAD, α-actinin, 
desmin, and connexin 43), highlighting that N-RAP’s associa-
tion with the fascia adherens junction is mediated by cadher-
ins.86 Gel overlay assays also revealed an association between 
N-RAP and α-actinin.86 Although a role for N-RAP has not 
been determined in cardiac muscle in vivo, N-RAP expres-
sion was found to be highly upregulated and abnormally dis-
tributed in MLP knockout hearts,85 raising the possibility that 
N-RAP functions may also intersect with the sarcomere via 
MLP-related mechanotransduction pathways associated with 
heart failure.

Desmosomes
Desmosomes are anchoring junctions that serve to mechani-
cally couple cells in tissues that undergo constant mechani-
cal stress, such as the heart.11 They tether the cytoskeletal 
intermediate filament network between cardiomyocytes.11 In 
cardiac muscle, these organized, disc-shaped, electron-dense 
structures are composed of extracellular transmembrane–
based cadherins, desmocollin-2 and desmoglein-2, which pro-
vide a platform via their cytoplasmic tails to members of the 
armadillo family, JUP and plakophilin-2, that are then in turn 
bound to the plakin family member, desmoplakin, which is 
the central cytoplasmic link to the load-bearing intermediate 
filament network composed of desmin.11,73 A role for desmo-
somes in cardiac mechanotransduction and long-range force 
transmission across cells stems from its association with the 
desmin intermediate filaments that were originally termed as 
mechanical integrators of cellular space because of connec-
tions to various parts of the cell, including the nucleus, mito-
chondria, desmosome, and sarcomeric Z-disc.10 Desmosomes 
could also be downstream mechanical transducers of fascia 
adherens junctions as desmosomal assembly and function 
were shown to be dependent on N-CAD in the adult heart.77 
Studies have also identified hybrid junctions known as the area 
composita that are composed of proteins from both the fascia 
adherens and desmosomal junctions, highlighting a conver-
gence of pathways.87 However, desmosomal proteins seem to 
have a distinct and robust role in intermediate filament–based 
mechanotransduction, based on growing evidence from ge-
netic data that point to a distinct cardiomyocyte remodeling 
response associated with desmosomal deficiencies and muta-
tions (separate from the fascia adherens junction), that link to 
the human cardiac disease, arrhythmogenic right ventricular 
cardiomyopathy (ARVC).11

ARVC is a genetic-based cardiac disease tightly associ-
ated with desmosomal abnormalities.88 Recent studies have 
also highlighted that mutations in the spring element of ti-
tin (IG10) cause an ARVC-like disease.89 A connection be-
tween titin and the desmosome was recently highlighted as 
titin filaments have been shown to connect to a new subcel-
lular domain of the intercalated disc, termed the transitional 
junction,90 highlighting a potential for titin-based sarcomere 
pathways to intersect with the desmosome and ARVC. Further 
studies, possibly through the generation of knock-in mouse 
models, will be required to determine the direct role for these 

mutations in ARVC and whether these pathways directly in-
tersect with the desmosome. Hallmarks of ARVC include life-
threatening arrhythmias, cardiac dilation, and dysplasia of one 
or both ventricles that are worsened by strenuous exercise, as 
well as cardiomyocyte death and replacement of myocardial 
tissue with fibro-fatty infiltration. Ventricle contractility is 
compromised in ARVC hearts with late-stage ARVC culmi-
nating into heart failure.88 Mutations in desmosomal compo-
nents can account for ≤58% of ARVC cases.91 Several studies 
have exploited genetic mouse models to reveal an important 
role for desmosomes in transducing mechanical cues into a 
wide variety of cellular responses important for cardiac struc-
ture, function, and disease features reminiscent of human 
ARVC. Mutations in the desmosomal cadherins, desmocol-
lin-2 and desmoglein-2, are associated with human ARVC.11,92 
Studies performed in transgenic mice expressing the human 
ARVC–associated desmoglein-2 mutation (N266S) revealed 
that within 2 weeks after birth, transgenic mice developed 
spontaneous ventricular arrhythmias, conduction slowing, 
ventricular dilation and aneurysms, fibrosis, and calcifica-
tion, leading to sudden death,93 which was reminiscent of a 
biventricular form of ARVC. Supporting this study, targeted 
deletion in mice of the extracellular domain of desmoglein-2, 
which is a domain likely capable of sensing mechanical loads 
and known to be important in desmosomal adhesive activity as 
well as signaling, also leads to a biventricular form of ARVC 
encompassing upregulation of heart failure markers, fibrosis, 
biventricular dilatation and dysfunction, and spontaneous 
death.94 At the ultrastructural level, mouse hearts displayed an 
enlargement of the intercellular gap at the intercalated disc as-
sociated with the loss of desmosomal structure, which seemed 
to coincide with visible heart lesions at the macroscopical 
level.95 These studies together highlight a key role for des-
mosomal cadherins in sensing and responding to mechanical 
stresses associated with cardiac muscle contraction.

An important cytoplasmic intermediary that interconnects 
the desmosomal junction to the cytoskeletal-based interme-
diate filament system is desmoplakin.11 We and others have 
revealed, through the generation of various genetic mouse 
models harboring mutations in, or loss of desmoplakin,96–98 
that desmoplakin is critical for maintaining cardiac desmo-
somal cell–cell adhesion (intercalated disc) integrity and 
function. Cardiac-specific loss of desmoplakin in mice in 
vivo (using a ventricular myosin light chain-2 Cre recombi-
nase mouse line) resulted in early ultrastructural defects that 
were associated with the loss of desmosomal but not N-CAD–
based junctional proteins.98 Furthermore, these mice recapitu-
lated the postnatal onset of human ARVC at the histological 
(cardiomyocyte death, fibrosis, and fatty infiltration), physi-
ological (biventricular dysfunction and heart failure), and 
electrophysiological (arrhythmias and premature death) levels 
that were also observed in an ARVC patient harboring a reces-
sive desmoplakin mutation.98,99 Desmoplakin knockout mice 
(using ventricular myosin light chain-2 Cre recombinase) 
also exhibited sarcomeric defects including loss and widened 
Z-discs, consistent with the loss of muscle function,98 reveal-
ing that alterations in desmosomal cell–cell mechanosensing 
(load) and adhesion can directly affect sarcomere structure. 
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Interestingly, cardiac-specific transgenic mouse models har-
boring a human desmoplakin mutation that affected its bind-
ing to intermediate filaments also resulted in a cardiac disease 
reminiscent of ARVC,97 further highlighting that intermediate 
filament–based mechanotransduction associated with the des-
mosome may be linked to the cardiac disease, ARVC.

Several studies have also probed for signaling targets at the 
desmosome that contribute to the various hallmarks of ARVC. 
We and others have highlighted that developmental signals 
that elicit transdifferentiation of cardiac muscle to adipocytes 
play a contributory role toward the fibrofatty infiltration as-
sociated with ARVC.98,100 Although the mechanisms have 
not been fully elucidated, loss of JUP from the desmosomal 
cell–cell junction and resulting loss in Wnt/β-CAT signaling 
(because of the presence of nuclear JUP or pathogenic Hippo 
signaling) have been postulated as a hallmark of ARVC101 
and thought to play a role in promoting adipogenic and fi-
brogenic gene expression in ARVC, respectively.102,103 A re-
cent study has highlighted a potential direct link between JUP 
and plakophilin-2 in cardiac muscle shear stress responses.104 
Specifically, this study revealed that shear stress can trig-
ger cardiomyocyte junctional remodeling and that neonatal 
rat ventricular cardiomyocytes overexpressing JUP and pla-
kophilin-2 mutations associated with ARVC displayed an 
abnormal response to shear stress.104 Expression of the JUP 
mutant 2057del2 also displayed an increased propensity for 
cardiomyocyte apoptosis in response to shear stress,104 which 
was also observed with cyclic stretch.105 Interestingly, stress 
responses could be reversed by treatment with the glycogen 
synthase kinase-3 β inhibitor, SB216763,104,105 highlighting 
the convergence between mechanical and signaling responses 
at the desmosome. Studies in genetic mouse models have also 
revealed a role for JUP in stabilizing the mechanical proper-
ties of cardiac muscle in vivo, which include a distinct desmo-
somal cellular remodeling response associated with features 
associated with ARVC. Aged global heterozygous JUP knock-
out mice exhibited right ventricular enlargement and slowed 
conduction associated with spontaneous arrhythmias that 
were exacerbated with exercise.106 Interestingly, the exercise 
training–induced ARVC exhibited by these mice could be 
rescued with load-reducing therapy (loop diuretic furosemide 
and nitrates) that reduced cardiac ventricular pressure and vol-
ume overload.107 Cardiac-specific JUP knockout mediated by 
α-myosin heavy chain (MHC) Cre largely recapitulated the 
features of a biventricular form of ARVC, which included 
progressive biventricular dilation and dysfunction associated 
with fibrotic replacement of the myocardium, cardiomyocyte 
death, and spontaneous arrhythmias resulting in sudden death 
in mice as early as 2 months of age.108 Although sarcomeric 
structure, fascia adherens junctions, and gap junctions were 
preserved, desmosomal structures were absent from the inter-
calated disc of JUP knockout hearts.108 Independent studies 
generating a cardiac-specific plakoglobin knockout model 
(using tamoxifen inducible α-MHC-Mer-Cre-Mer inducible 
mouse) highlighted similar findings except that no cardiac 
arrhythmias were observed despite gap junction remodeling 
and that mice survived longer.109 Interestingly, discrepancies 
in links to β-CAT signaling were also reported between both 

cardiac-specific JUP–deficient mouse models,108,109 which 
have been similarly observed between cardiac-specific des-
moplakin–deficient mouse models,96,98 requiring further evalu-
ation. Nonetheless, these studies altogether highlight that an 
absence of JUP and desmosomes renders cardiomyocytes un-
able to properly respond to high mechanical stress resulting 
in myocyte dissociation and a cellular remodeling response 
uniquely associated with ARVC. Because increased β-CAT 
was observed and proposed to be a compensatory response 
to the loss of JUP in cardiac-specific JUP–deficient mice,108 
double cardiac-specific JUP (α-MHC-Cre) and β-CAT (us-
ing α-MHC-Mer-Cre-Mer inducible mouse) knockout mice 
were generated.110 JUP and β-CAT double knockout mice 
caused a loss of fascia adherens and desmosomal junctional 
proteins resulting in mice exhibiting cardiomyopathy, fibrous 
replacement of the myocardium, and strong arrhythmogenic 
phenotypes, with 100% of them succumbing to sudden death 
within 3 to 5 months after tamoxifen injection.110 Interestingly, 
transgenic mouse models overexpressing JUP (wild-type or 
mutant associated with ARVC) also exhibited fibrofatty re-
placement of the ventricle and higher prevalence of sudden 
death.102 Thus, it has been suggested that even small levels of 
JUP overexpression are sufficient to disrupt the mechanical 
and signaling functions of JUP in cardiac muscle.111

Loss of the intermediate filament protein desmin in mice 
in vivo also leads to skeletal and cardiac muscle abnormali-
ties.112,113 Specific to the heart, desmin null mice exhibited 
cardiomyocyte ultrastructural defects (intercalated disc and 
sarcomere) and cardiomyoycte death resulting in fibrosis and 
calcification preferentially in the interventricular septum and 
right ventricle, which lead to cardiomyocyte hypertrophy, 
ventricular dilatation, and systolic dysfunction,113,114 reminis-
cent of ARVC. Human mutations in desmin are also associ-
ated with familial forms of skeletal and cardiac myopathies,115 
including ARVC.116 Recent studies have revealed that some of 
these severe disease altering mutations may directly affect the 
force bearing properties of desmin filaments (eg, overstretch-
ing at low forces or premature stiffening at low deformations) 
resulting in defects in the mechanosensing and transduction 
abilities of desmin.117

Sarcolemma-Mediated Mechanotransduction
Besides the intercalated discs at the ends of cardiac myocytes, 
sarcolemma-associated proteins and complexes along the 
lateral surfaces of elongated myocytes have been described 
as foci of force transmission and mechanotransduction.118 
Equivalent to nonmuscle focal adhesions, costameres are cru-
cial in the lateral transmission of force from the Z-disc of the 
sarcomere to the sarcolemma and ECM.118,119 By forming a 
connection between the ECM and the contractile apparatus, 
costameric structures facilitate the maintenance of mechanical 
integrity of the sarcolemma.119,120 A complex network of cyto-
skeletal and signaling proteins converge at these specialized 
cell junctions, and therefore, costameres are likely key me-
diators of mechanical-related signaling and possibly involved 
with transducing mechanical signals bidirectionally between 
the extracellular space and intracellular signaling networks119 
(Figure 1).
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Integrins
Communication between the ECM and the intracellular por-
tion of cardiac costameres is facilitated by transmembrane 
integrin receptors attached in the extracellular space to ECM 
ligands and intracellularly to the cytoskeleton by proteins, such 
as talin, vinculin, and α-actinin.121,122 Integrin receptors are di-
mers of α and β subunits, and different combinations of these 
subunits confer the receptor specificity for ECM ligands.123 
The patterns of expression of specific integrin subunits in car-
diac muscle cells can be altered and resemble fetal patterns 
under specific pathological conditions.124 Specifically, α5 and 
α7 subunits can be significantly upregulated in ischemia or 
after myocardial infarction,125 whereas α1, α5, α7, and β1D 
subunits are increased in response to pressure overload,126 sug-
gesting that the myocardium may respond to mechanical stress 
through the modulation of integrin-related signaling mole-
cules. In support of this, dilated cardiomoyopathy with exten-
sive myocardial fibrosis and reduced tolerance to loading was 
observed in a mouse model with excision of β1 integrin using 
the ventricular myosin light chain-2 Cre recombinase mouse 
line.127 Furthermore, reduction of β1 integrin in adult mouse 
cardiomyocytes resulted in impaired hypertrophic response to 
pressure overload as a result of modified adrenergic-mediated 
signaling downstream of the hypertrophic stress.128 Integrins 
are also fundamental nodal points of key signaling pathways 
related to mechanotransduction. Integrin-linked kinase (ILK) 
is an important transducer of integrin signaling. Mutations in 
ILK have been reported in human dilated cardiomyopathy129 
and tetralogy of Fallot.130 Mice bearing a cardiac knockout of 
ILK develop dilated cardiomyopathy and spontaneous heart 
failure.131 Studies performed in human-induced pluripotent 
stem cell–derived cardiomyocytes indicated that ILK mediat-
ed cardiomyocyte force transduction via regulation of the sar-
coplasmic/endoplasmic reticulum Ca(2+)ATPase isoform 2a 
and phosphorylation of phospholamban in the human heart.132 
Thus, ILK links mechanoreception to the dynamic modulation 
of cardiac contractility by interacting with the functional sar-
coplasmic/endoplasmic reticulum Ca(2+)ATPase isoform 2a/
phospholamban axis.

Vinculin–Talin–Integrin Complex
Vinculin is a cytoskeletal actin-binding protein that links the 
actin cytoskeleton to the sarcolemma. Vinculin is specifically 
tethered at the costamere, where it binds to integrins via talin. 
Mutations in the muscle-specific isoform of vinculin and meta-
vinculin were found in patients with both dilated and hypertro-
phic cardiomyopathy, highlighting its importance for normal 
cardiac function.84 The presence of vinculin at the intercalated 
disc, which is another important site of mechanical coupling, 
has made it difficult to precisely dissect specific vinculin func-
tions between these 2 cellular regions.124,133 However, studies 
in mouse models have demonstrated that vinculin is essential 
for mediating the response to mechanical stress in the heart. 
Homozygous global loss of vinculin in mice leads to embry-
onic lethality (at embryonic day 10).134 However, mice with 
heterozygous loss of vinculin display normal basal cardiac 
function, but they are more susceptible to cardiac dysfunction 
and display increased mortality in response to mechanically 

mediated dysfunction induced by pressure overload of the left 
ventricle.82

Talin is a cytoskeletal protein that links integrins to the actin 
cytoskeleton through the cytoplasmic domain of the β-integrin 
subunit, and it modulates integrin activation and ligand bind-
ing.124 Talin mediates the recruitment of key signal transduction 
partners, such as focal adhesion kinase (FAK) and phosphati-
dylinositol-4-phosphate-5 kinase type Iγ to the costameres.135 
Studies performed in mice have revealed that talin-1 protein 
expression and targeting to the costameres is increased in re-
sponse to cardiac hypertrophy induced by pressure overload.119 
Furthermore, it was demonstrated that cardiomyocyte-specific 
knockout of talin-1 in mice leads to a blunted hypertrophy re-
sponse and preserved cardiac function in response to pressure 
overload when compared with littermate controls.119 The re-
sults suggested that talin-1 mediates the hypertrophy response 
to mechanical stress in the heart and that a reduction of talin-1 
expression in cardiac muscle cells can lead to improved cardiac 
remodeling after pressure overload.

In addition to a role at the costameres, FAK and its C-terminal 
binding partners p130 CRK-associated substrate and paxillin 
also redistribute to the Z-disc with hypertrophic stress. FAK 
has been shown to mediate integrin signaling leading to hy-
pertrophy, while also being activated by α-1 adrenergic stimu-
lation.136 Furthermore, in neonatal cardiomyocytes, tyrosine 
phosphorylation of FAK and p130 CRK-associated substrate 
has been shown to increase on endothelin-1 stimulation (a 
hypertrophic agonist), which also promotes redistribution of 
FAK, Cas, and paxillin to sarcomeric Z-discs.137 Cas alone or 
in cooperation with Src nonreceptor tyrosine kinase modulat-
ed basal and endothelin-1–stimulated atrial natriuretic factor 
gene expression. Interaction of Cas with FAK, as well as their 
localization to Z-discs, seems critical for sarcomeric assem-
bly in cardiac myocytes. Therefore, the assembly of signaling 
complexes that include the focal adhesion proteins, Cas, FAK, 
and paxillin at Z-discs in the cardiac myocytes may regulate, 
either directly or indirectly, both cytoskeletal organization 
and gene expression associated with cardiac myocyte hyper-
trophy.137 Further work indicated that expression of different 
Cas mutants leads to severe sarcomeric disarray in cardiomyo-
cytes.138 Expression of the C-terminal focal adhesion targeting 
domain of FAK disrupted sarcomeric organization and mislo-
calization of endogenous Cas to Z-discs, suggesting that the 
association of FAK and Cas, as well as preservation of mul-
tiple protein interaction motifs of Cas, was required for proper 
sarcomeric assembly in cardiac myocytes.138 Interestingly, in 
skeletal muscle, changes in the expression of FAK levels and 
signaling were also associated with sarcomeric reorganization 
in response to overload.139

Caveolin-3
Integrin signaling in response to mechanical load can also be 
regulated by caveolin-3.140 Caveolin-3 is highly expressed in 
cardiac muscle cells, where it can be found both at the focal 
adhesion complex,141 or as a component of lipid raft micro-
domains, termed caveolae,142 that can regulate signal trans-
duction by compartmentalizing receptors and their ligands.143 
Loss of caveolin-3 in cardiac muscle cells has been shown to 
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lead to reduced β1 integrin expression leading to perturbed 
basal and stretch mediated signaling responses.140

Dystroglycan
The dystroglycan complex also serves as an ECM receptor 
in cardiac muscle cells. β-Dystroglycan interacts with α-
dystroglycan on the cell surface, which facilitates interactions, 
with the ECM protein laminin.144 β-Dystroglycan also teth-
ers the actin-binding protein dystrophin within the cytosol.145 
Mutations in dystrophin have been shown to lead to Duchene 
muscular dystrophy, which is characterized by muscle (skeletal 
and cardiac) degeneration,146,147 highlighting the importance of 
dystrophin as a linker between the ECM and the cytoskeleton. 
Combinatorial loss of dystrophin with β1-integrin has been 
shown to exacerbate the cardiomyopathic changes observed 
with the loss of dystrophin and integrins alone in response 
to isoproterenol treatment, suggesting the crosstalk between 
these 2 complexes in response to cardiac stress.148

Conclusions/Future Directions
Force transmission and sensing within the cardiac myocyte 
is a complex process, and a multitude of proteins and pro-
tein complexes have been implicated in the mechanisms of 
both stress transmission and stress transduction. The putative 
mechanotransduction-related proteins exist at many different 
locations within the cell, from the outer sarcolemmal mem-
brane down to the force-generating sarcomere and associated 
structures. It seems likely that multiple structural pathways 
may be involved with the overall processes of load-mediated 
remodeling of cardiac myocytes, with redundant or overlap-
ping function.

It is intriguing to consider modulation of a mechanosensing 
pathway to alter the downstream effects, for example, adverse 
remodeling in myocardium could be controlled at the force-
sensing level, altering the downstream molecular signals and 
improving long-term outcomes in cardiac disease. Mediating 
the molecular signals associated with a specific mechano-
transduction pathway could also be a way of modifying 
downstream remodeling outcomes, without directly changing 
the structural properties of the force transmission pathways. 
For example, as described above, several of the hypertrophy-
inducing pathways in cardiomyocytes are, at least in part, cal-
cium-dependent: among others, calcium–calmodulin kinase II 
and calcineurin are activated by increased local calcium con-
centrations. These calcium-mediated signaling pathways have 
been investigated as mediators of sarcomeric force generation 
and are clearly described. Thus, small-molecule modulations 
of these well-described pathways are underway and represent 
a promising direction for therapeutic applications for cardiac 
hypertrophy and failure.149,150 Inhibitors of calcium–calmodu-
lin kinase II have proven excellent research tools, and some 
have been investigated in early clinical trials.151 Among those, 
the calcium–calmodulin kinase IIN peptide has shown mini-
mal off-target effects but has yet to be tested in patients.151 
Calcineurin inhibitors cyclosporin A (CsA) and FK506 were 
shown to prevent the phenotypic manifestations of hypertro-
phic cardiomyopathy in mice overexpressing tropomodulin 
or fetal β-tropomyosin.152,153 Partial or complete inhibition of 
cardiac hypertrophy has been achieved with CsA and FK506 

after pressure overload in rats and mice,154–156 although it has 
also been reported that under specific settings, a significant 
rescue could not be achieved.154–157 Studies in rats indicated 
that CsA prevented exercise-induced cardiac hypertrophy, at-
tenuated hypertrophy, and histopathology in double transgenic 
transgenic mice overexpressing human renin and angioten-
sinogen,158 as well as attenuated myocardial infarction–in-
duced cardiac hypertrophy.152,159 CsA also reduced cardiac 
hypertrophy in constitutively activated Gq transgenic mice.160 
Nevertheless, the known side effects of CsA and FK506 in hu-
mans have prevented further exploration of these small mol-
ecules.152 A similar approach could be used for other signaling 
kinases implicated in mechanotransduction pathways, such as 
ILK, which mediates force transduction in cardiomyocytes by 
modulating sarcoplasmic/endoplasmic reticulum Ca2+ATPase 
isoform 2a/phospholamban function.132 The R211A mutation 
in ILK has been shown to promote enhanced cardiomyocyte 
contractility compared with its wild-type counterpart, includ-
ing increased releasable sarcoplasmic reticulum calcium con-
tent. Such positive effects were proposed to stem from higher 
expression levels of ILK and sarcoplasmic/endoplasmic re-
ticulum Ca2+ATPase isoform 2a compared with that resulting 
from ILK wild-type overexpression in vitro and in transgenic 
mice in vivo. Thus, gene therapy with ILK R211A has been 
proposed as a possible future management strategy for dilated 
cardiomyopathy.132
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