Small RNAs Make Big Impact in Cardiac Repair

Markus Krane, Marcus-André Deutsch, Stefanie Doppler, Rüdiger Lange, Sean M. Wu

During the past few decades, there has been enormous progress made in understanding and treating cardiovascular diseases. However, heart failure remains a progressive and debilitating condition with generally poor clinical outcomes and high socio-economic burden. The most common cause of heart failure is caused by loss of functional cardiomyocytes from myocardial infarction and subsequent fibrosis, leading to adverse remodeling, reduced contractile function, and hemodynamic compromise. Given the dire need for better heart failure treatment, investigators have actively explored strategies to improve cardiac function via numerous approaches, including cell transplantation, mechanical device support, or whole organ replacement. Although a detailed comparison of the merit of each of these approaches is beyond the scope of this article, one strategy that has captured tremendous interest in recent years is the use of highly potent transcription factors to reprogram cells into an alternative fate. The remarkable finding of Yamanaka and colleagues to revert a combination of transcript factors brought forth widespread interest in recent years is the use of highly potent transcription factors to reprogram cells into an alternative fate. The editors or of the American Heart Association.

From the Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany (M.K., M.-A.D., S.D., R.L.); DZHK (German Center for Cardiovascular Research)–partner site Munich Heart Alliance, Munich, Germany. E-mail markuskrane@gmx.de; or Marcus-André Deutsch, MD, Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany. E-mail deutsch@dhm.mhn.de; or Sean M. Wu, MD, PhD, Lokey Stem Cell Building, G1120A, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (S.M.W.).

Correspondence to Markus Krane, MD, Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany. E-mail markuskrane@gmx.de; or Marcus-André Deutsch, MD, Department of Cardiovascular Surgery, Division of Experimental Surgery, German Heart Center Munich, Technische Universität München, D-80636 Munich, Germany. E-mail deutsch@dhm.mhn.de; or Sean M. Wu, MD, PhD, Lokey Stem Cell Building, G1120A, Stanford Cardiovascular Institute, 265 Campus Dr, Stanford, CA 94305. E-mail smwu@stanford.edu (Circ Res. 2015;116:393-395. DOI: 10.1161/CIRCRESAHA.114.305676.) © 2015 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org DOI: 10.1161/CIRCRESAHA.114.305676

This new study by Jayawardena et al raises the exciting prospect that direct overexpression of microRNA can be used to effect an alternative cell phenotype in vivo when delivered by lentiviral vector into injured hearts. The findings here, nevertheless, should be considered in the context of prior studies using direct cardiac transcription factor overexpression in vitro as well as in vivo. Earlier study by Protze et al. reported that the 3-factor combination of myocardin (Myocd), Mef2c, and Tbx5 led to higher expression levels of cardiomyocyte.
genes when compared with GMT alone, but that none of the reprogrammed cells generated were considered functional cardiomyocytes because of their lack of spontaneous beating and inconsistent sarcomeric protein gene expression. Likewise, Christoforou et al.14 reported a significant induction of endogenous TropT but almost no α-MHC expression by singular GMT overexpression in murine embryonic fibroblasts. However, these authors showed enhancement of reprogramming efficiency by adding Myocd, SRF, Mesp1, and the chromatin remodeling factor Smarcd3 (BAF60c). Using a fluorescent calcium indicator GCaMP driven by a cardiomyocyte-specific TropT promoter, Addis and colleagues15 reported a reprogramming efficiency of 0.03% by treating murine embryonic fibroblasts with GMT alone. With the addition of Hand2 and Nkx2.5, they were able to increase this efficiency ≤1.6%. The efficiency of cardiomyocyte gene induction in these studies are in line with our previous study using GMT16 and suggest that significant improvement in the methodology of reprogramming or the reprogramming factors used is needed to raise the in vitro reprogramming efficiency to the ranges of 20% or 30% as seen with neuronal reprogramming in vitro.17

Although the reprogramming work in murine cells have raised significant promise for this approach to generate new patient- or disease-specific cardiomyocytes, the translation of this approach to reprogram human fibroblasts seem to be complex. Several groups have reported that GMT alone or GMT with Hand2 were inefficient to induce cardiomyocyte gene expression in human fibroblasts to generate iCMs. However, the introduction of different modifications to the reprogramming cocktail (eg, different or more transcription factors, addition of small molecules, coculturing with murine beating cardiomyocytes) has enabled these investigators to generate significant improvement in cardiomyocyte phenotype in reprogrammed fibroblasts.18–20

Summary/Perspectives

Recent advances in cell lineage reprogramming has open a new era of biology that involves direct cell fate conversion from overexpression of potent transcription factors or in combination with small molecules. (Figure) Along this line, Jayawardena and colleagues makes an important contribution here to show the conversion of cardiac fibroblasts into mature cardiomyocytes in vivo using a combination of microRNAs instead of transcription factors. Assuming that the fibroblast marker FSP1-Cre reliably marks only fibroblasts after myocardial injury, the results here suggests that there may be some conversion of fibroblast to cardiomyocyte at baseline because negmiR injection was able to generate a cardiomyocyte phenotype in 4% of the FSP1-Cre labeled fibroblasts. With the addition of miR combo, this efficiency improved 3-fold to 12%. These results suggest that direct lineage reprogramming may be remarkably easier in vivo than in vitro and raise the prospect that the identification of the key factor(s) in the heart that helps to improve cardiomyocyte reprogramming should be a major research priority.

Beyond the issue of reprogramming efficiency, several translational challenges need to be overcome before direct cardiomyocyte reprogramming can be applied clinically. First, the use of lentiviruses as delivery vehicles to target cardiac fibroblasts is problematic from a regulatory standpoint given the

Figure. Direct reprogramming strategies for the induction of cardiomyocyte-like cells (iCMs) from different sources of mouse and human fibroblasts. CFs indicates cardiac fibroblasts; CHIR, CHIR99021; MEFs, murine embryonic fibroblasts; SB, SB431542; and TTFs, tail tip fibroblasts.
known oncogenic potential of these viruses when integrated into the genome. Second, lentiviruses are not specific for fibroblasts, and it is unclear whether the generation of induced cardiomyocytes from coronary endothelial or smooth muscle cells or other cardiac cells would lead adverse consequences. Third, it remains unclear whether the presence of iCMs with heterogeneous phenotypes after direct reprogramming can lead to arrhythmia. Recent finding that the transplantation of human embryonic stem cell–derived cardiomyocytes into primate heart can generate transient ventricular fibrillation/tachycardia raises the possibility that the presence of immature and heterogeneous but electrically coupled cardiomyocytes in the diseased heart may be problematic. Finally, we need demonstration of successful direct cardiomyocyte reprogramming and improved in vivo cardiac function in a relevant large animal model. The lack of an identical (or highly overlapping) set of reprogramming factors that works for both mouse and human fibroblasts raises concerns that new factors may need to be discovered de novo for reprogramming of fibroblasts in large animals.

Nevertheless, the prospect for cellular reprogramming to revolutionize cardiac regenerative therapy is exceptionally promising. By acquiring a greater understanding of the epigenetic landscape that regulates cardiomyocyte gene expression and function and the key factors that induces and maintains this landscape, we may one day be able to devise the most optimal strategy to treat damaged hearts in patients with heart failure.

Acknowledgments

We thank the members of the Krane and Wu laboratories for article critique.

Sources of Funding

M.-A. Deutsch is supported by Dr Rusche Forschungsprojekt (2014) Deutsche Stiftung für Herzforschung and Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie; M. Krane is supported by Deutsche Stiftung für Herzforschung (F37/11), Deutsches Zentrum für Herz Kreislauf Forschung (DZHK B 13-050A; DZHK B 14-013SE) and Deutsche Forschungsgemeinschaft (KR3770/7-1; KR3770/9-1); S.M. Wu is supported by National Institutes of Health (NIH) U01 HL099776, NIH Director’s Pioneer Award (DP1 LM012179-01), American Heart Association Grant-in-Aid (14GRNT18630016), and an Endowed Faculty Scholar Award from the Lucile Packard Foundation for Children and Child Health Research Institute at Stanford.

References

Small RNAs Make Big Impact in Cardiac Repair
Markus Krane, Marcus-André Deutsch, Stefanie Doppler, Rüdiger Lange and Sean M. Wu

Circ Res. 2015;116:393-395
doi: 10.1161/CIRCRESAHA.114.305676
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/116/3/393

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/