Mitochondrial fission and fusion proteins are highly expressed in myocardium. However, mitochondrial fission and fusion are rare, and mitochondrial networks are absent, in adult cardiomyocytes, obviating a need for morphometric mitochondrial remodeling. The critical role of mitochondrial dynamics factors in hearts, therefore, remains to be determined. In this issue of Circulation Research, Ikeda et al describe a central function for the mitochondrial fission protein, Dynamin-related protein 1 (Drp-1), in macroautophagy and mitochondrial autophagy. Together with two other recent reports that cardiomyocyte-specific deletion of Drp1 perturbs mitophagy, these findings point to modulation of targeted mitochondrial elimination as a major quality control function for Drp1, and possibly other mitochondrial dynamism factors, in the heart.

**Article, see p 264**

Conventional wisdom is that mitochondria continuously undergo cyclic fission and fusion, collectively termed mitochondrial dynamism. Although observable in cells having filamentous mitochondria, mitochondrial dynamism is less evident in adult cardiac myocytes. Indeed, cardiomyocyte mitochondria seem inherently fragmented, that is, stubby/ovoid rather than elongated/filamentous in shape. In nonmyocytes, fragmentation of filamentous mitochondria is observed when the balance between mitochondrial fission and fusion is shifted in favor of fission, as during apoptosis. Accordingly, inhibition of mitochondrial fission mediated by the fission-promoting protein Drp1 limits postischemic cardiac injury, in which mitochondrial fragmentation of filamentous mitochondria is observed when the balance between mitochondrial fission and fusion is shifted in favor of fission, as during apoptosis.1 Accordingly, inhibition of mitochondrial fission mediated by the fission-promoting protein Drp1 limits postischemic cardiac injury,2,3 in which programmed cardiomyocyte cell death is thought to contribute to long-term heart dysfunction.4 Although these findings support a role for Drp1-mediated mitochondrial fission in cardiac injury, the normal homeostatic function of Drp1 in the comparatively static mitochondria of the adult heart has not been evaluated... until now. Three nearly simultaneous descriptions of cardiac-specific Drp1 gene deletion mice, one of which is published in this edition of Circulation Research,5 have revealed not only that Drp1 is essential for normal cardiac function but also that its primary effect may be on autophagy/mitophagy rather than on structural mitochondrial remodeling.

Gone Fission...

**Diverse Consequences of Cardiac Drp1 Deficiency**

Gerald W. Dorn II

Drp1 is a member of the dynamin family of GTPases. It is recruited to and, via head-to-tail oligomerization and constriction, mediates the fission of mitochondria.6 Thus, deletion of Drp1 prevents mitochondrial fission; hence, the title of this editorial: Gone Fission. In the 1997, motion picture with the same homonymous name, Gone Fishin (cowritten by young J.J. Abrams), Joe Pesci and Danny Glover enter a contest and win a free fishing trip, but multiple catastrophes ensue. Pretty much the same thing can be said of Gone Fission provoked by cardiac Drp1 deletion.

In a magnum opus of studies defining the consequences of Drp1 insufficiency in cardiomyocytes, Ikeda et al first examined neonatal rat ventricular cardiomyocytes (NRCM) 96 hours after ≈75% suppression of Drp1 by adenoviral expression of Drp1 shRNA. The expected consequence of inhibiting Drp1-mediated mitochondrial fission is mitochondrial elongation (from unopposed fusion) and, although quantitative mitochondrial morphometry was not performed, increased numbers of cells having atypically large mitochondria were indeed observed. It is widely thought that suppressing fission will be beneficial by promoting fusion-mediated complementation and interrupting apoptosis7,8 (although there are exceptions).9,10 Unexpectedly, Ikeda et al found the opposite: suppressing mitochondrial fission impaired mitochondrial health and increased metrics of apoptosis and mitochondrial permeability transition pore opening. These abnormalities occurred at baseline, and were exaggerated in response to the macroautophagic stimulus of nutrient deprivation. The researchers linked mitochondrial abnormalities induced by Drp1 deficiency to increased mitochondrial content and impaired autophagy, including decreased autophagic mitochondrial clearance. The investigators were careful to draw a clear distinction between mitochondrial involvement in macroautophagy and mitophagy mediated by the canonical PINK-Parkin mechanism,8 which they did not specifically interrogate.

Ikeda et al11 translated their in vitro observations to the in vivo heart using Cre-mediated cardiomyocyte-specific Drp1 gene ablation. They observed no viable cardiac Drp1 mice after combining homozygous floxed Drp1 alleles (Drp1 fl/fl) with standard myh6-Cre (designed to induce late embryonic/early postnatal cardiomyocyte-specific Drp1 gene deletion). Thus, they performed their studies in an adult conditional model: tamoxifen-induced activation of myh6-MER-Cre-Mer X Drp1 fl/fl mice; Drp1 ablation was induced at 15 weeks of age. The number of mice and the timepoints studied were limited, but conditional cardiac Drp1 knockout mice developed mitochondrial abnormalities similar to Drp1-suppressed neonatal rat ventricular cardiomyocytes, that is, elongated mitochondria, increased mitochondrial content, and mitochondrial dysfunction. The cardiac phenotype was hypertrophy with...
impaired contractility and diastolic noncompliance. Cardiac Drp1 knockout mice all died with evidence of left heart failure between 8 and 13 weeks after Drp1 deletion; the most detailed cardiac phenotyping was performed 4 weeks after gene deletion, which reflects developing abnormalities rather than the terminal effects of Drp1 deficiency. As in the NRCM, autophagy was decreased, and markers of apoptosis and mitochondrial permeability transition pore opening were increased. Ikeda et al. conclude that absence of Drp1 impairs autophagy (including autophagic mitochondrial clearance), thus promoting accumulation of abnormal mitochondria, which is ultimately associated with increased cardiomyocyte death from apoptosis or necrosis. This work, therefore, functionally links mitochondrial fission, autophagic mitochondrial quality control, and programmed cell death in the heart.

A second article described the consequences of cardiac Drp1 ablation in myh6-Cre X Drp1 floxed/floxed (flo/fl) mice. This is the same genetic approach that Ikeda et al. attempted without obtaining viable homozygous Drp1 knockout mice. The Kageyama cardiac Drp1 knockout mice were born at a frequency consistent with Mendelian predictions (suggesting no prenatal lethality), but homozygous knockout mice then died between 7 and 9 days thereafter. Perhaps because there were few Drp1 knockout mice for study, the cardiac phenotype was not characterized in great depth: Drp1 knockout mouse hearts were modestly hypotensive and bradycardic, with diminished P-wave amplitude. Studies of isolated mitochondria were not performed, but mitochondrial respiratory enzyme activity was diminished and autophagic mitochondrial clearance, which reflects developing abnormalities rather than the terminal effects of Drp1 deficiency, was decreased, and markers of apoptosis and mitochondrial permeability transition pore opening were increased.

Kageyama et al. observed ultrastructural mitochondrial enlargement with increased branching and connectivity in Drp1 knockout neonatal hearts. Greater numbers of structures resembling mitochondria-containing autophagosomes were observed and mitophagy markers (mitochondrial-associated p62 and ubiquitin) were increased, consistent with accelerated early mitophagy. However, mitochondrial delivery to lysosomes (measured as colocalization of mitochondrial pyruvate dehydrogenase, ubiquitin, and lysosomal Lamp1) seemed impaired. Intriguingly, crossing the cardiac Drp1 knockout mice with Parkin knockout mice (which manifest few cardiac abnormalities until aging unmask accelerated senescence) provoked even greater contractile dysfunction and bradycardia in 3 double knockout mice. The authors conclude that Drp1 deficiency promotes mitochondrial connectivity and interrupts mitophagy at the point where mitochondria are delivered to lysosomes.

In the third article (from our laboratory), Song et al. also describe early lethality (≈5 weeks) with postnatal myh6-turbo Cre-mediated Drp1 deletion, analogous to the Kageyama cardiac Drp1 knockout; this model was not studied further because of the potential for confounding compensatory influences. Instead, Song et al. produced conditional, tamoxifen-induced Drp1 deletion in myh6-MER-Cre-MER+Drp1 floxed/floxed (flo/fl) mice, analogous to the Ikeda et al. conditional cardiac Drp1 knockout. Drp1 was deleted in 8-week-old mice and dilated cardiomyopathy developed that proved lethal 6 to 8 weeks thereafter. As in the other two studies, Drp1 deletion produced mitochondrial enlargement. Although myocardial TUNEL staining was positive, other apoptosis markers were not. Instead, focal complement activation, increased cardiomyocyte membrane permeability, and partial phenotypic reversal with mitochondrial permeability transition pore inhibition suggested that myocardial fibrosis was attributable to programmed cardiomyocyte necrosis. Mitochondrial-associated p62 and LC3 were increased.

### Table. Comparative Findings of Cardiac-Specific Drp1 KO Mice

<table>
<thead>
<tr>
<th>Drp1 KO model</th>
<th>Ikeda et al.</th>
<th>Kageyama et al.</th>
<th>Song et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethality</td>
<td>Adult (15 wk) cardiac KO</td>
<td>Postnatal cardiac KO</td>
<td>Postnatal cardiac KO</td>
</tr>
<tr>
<td>Heart size</td>
<td>Hypertrophy</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>Decreased</td>
<td>Decreased</td>
<td>n.r.</td>
</tr>
<tr>
<td>Histology</td>
<td>Fibrosis</td>
<td>n.r.</td>
<td>Normal</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Yes</td>
<td>No</td>
<td>n.r.</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Yes</td>
<td>n.r.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mitochondrial phenotype</th>
<th>Mito size</th>
<th>Mito content</th>
<th>Respiration</th>
<th>Respiratory complexes</th>
<th>Oxidative stress</th>
<th>Mitochondrial biogenesis</th>
<th>MPTP</th>
<th>Autophagy/mitophagy phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enlarged/elongated</td>
<td>Increased</td>
<td>Decreased (cells)</td>
<td>Selectively decreased</td>
<td>Increased</td>
<td>Unchanged</td>
<td>Increased opening</td>
<td>Decreased</td>
</tr>
<tr>
<td></td>
<td>Branched/connected</td>
<td>Increased</td>
<td>Decreased (cells)</td>
<td>Selectively decreased</td>
<td>Increased</td>
<td>n.r.</td>
<td>n.r.</td>
<td>Increased opening</td>
</tr>
<tr>
<td></td>
<td>n.r.</td>
<td>n.r.</td>
<td>n.r.</td>
<td>n.r.</td>
<td>n.r.</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
</tbody>
</table>

Results as characterized in the articles without consideration of experimental methodology or alternate interpretation. LVEF indicates left ventricular ejection fraction; MPTP, mitochondrial permeability transition pore; n.r., not reported; KO, knockout; ¯KO, time after knockout.
and mitophagosomes were abundant, suggesting accelerated mitophagy. Likewise, Cre-mediated Drp1 deletion in cultured murine fibroblasts increased mitophagy (measured as Parkin translocation to mitochondria and mitochondrial-lysosomal colocalization) in a time-dependent and mitochondrial permeability transition pore-dependent manner. Mitochondrial content was modestly decreased by multiple quantitative metrics in both conditional Drp1-deficient fibroblasts and hearts; studies of isolated mitochondria showed no loss of polarization, impairment of substrate-stimulated respiration, or increase in reactive oxygen species production. Song et al\textsuperscript{13} concluded that loss of Drp1 impairs quality control through the normal asymmetrical fission mechanism. Because overall mitochondrial fitness is progressively challenged, however, cell-wide mitophagy is increasingly induced that ultimately promotes generalized mitochondrial depletion.\textsuperscript{13}

The major cardiac findings from the 3 studies are compared in Table. Each study has strengths and weaknesses: for example, quantitative assays of individual mitochondrial morphometry and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

What can we learn about the functioning of Drp1 in hearts from these studies? Many questions are raised and the need is clear for additional experimentation, especially to distinguish between respiratory dysfunction at the cellular and organelle levels. However, it seems safe to conclude the following: (1) Drp1 is absolutely essential for normal homeostatic function and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

What can we learn about the functioning of Drp1 in hearts from these studies? Many questions are raised and the need is clear for additional experimentation, especially to distinguish between respiratory dysfunction at the cellular and organelle levels. However, it seems safe to conclude the following: (1) Drp1 is absolutely essential for normal homeostatic function and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

What can we learn about the functioning of Drp1 in hearts from these studies? Many questions are raised and the need is clear for additional experimentation, especially to distinguish between respiratory dysfunction at the cellular and organelle levels. However, it seems safe to conclude the following: (1) Drp1 is absolutely essential for normal homeostatic function and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

What can we learn about the functioning of Drp1 in hearts from these studies? Many questions are raised and the need is clear for additional experimentation, especially to distinguish between respiratory dysfunction at the cellular and organelle levels. However, it seems safe to conclude the following: (1) Drp1 is absolutely essential for normal homeostatic function and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

What can we learn about the functioning of Drp1 in hearts from these studies? Many questions are raised and the need is clear for additional experimentation, especially to distinguish between respiratory dysfunction at the cellular and organelle levels. However, it seems safe to conclude the following: (1) Drp1 is absolutely essential for normal homeostatic function and more detailed functional studies, especially of isolated mitochondria, might have provided additional insight in the study by Ikeda et al.\textsuperscript{5} For the Kageyama article,\textsuperscript{11} the influence of postnatal cardiac development on stress related to mitochondrial dynamism,\textsuperscript{14} absence of detailed studies of isolated mitochondria, and the limited number of study animals are limitations. It would also have been preferable to assess Parkin involvement in Drp1-modulated mitochondrial autophagy directly, rather than infer Parkin’s role based on crossing with the germ-line Parkin knockout mouse; there is a solid evidence that opportunistic compensation in this mouse makes it a knockout that is not necessarily a complete or specific loss-of-function model.\textsuperscript{10,15} Finally, Song et al\textsuperscript{13} focused exclusively on Parkin-mediated mitophagy without evaluating alterations in macroautophagy or any altered response to stress that may be provoked by Drp1 deletion\textsuperscript{12}; if the Song et al\textsuperscript{13} hypothesis is correct, then mitochondrial loss in Drp1-deficient hearts should provoke a metabolic crisis, and interruption of Parkin-mediated mitophagy should improve it. Neither of these aspects were directly evaluated.

Figure. Mechanistic paradigm to explain different cardiac Drp1 knockout findings. The normal role of Drp1-mediated asymmetrical fission is shown in upper right (red background), as envisioned by Twig et al.\textsuperscript{16} Impaired/senescent mitochondria undergo asymmetrical fission to produce a healthy, fusion competent daughter (green) that is retained, and a depolarized daughter (yellow) that is removed by mitophagy. As described by Ikeda et al,\textsuperscript{8} an early consequence of Drp1 deletion is intervention of asymmetrical fission, retaining impaired mitochondria that fuse with similarly impaired partners (blue background). With more time after Drp1 deletion, absence of the normal asymmetrical fission quality control pathway ultimately produces widespread activation of mitophagy (yellow background), which Song et al\textsuperscript{13} indicate is intact in adult hearts and evokes mitochondrial loss. In neonatal hearts, Kageyama et al\textsuperscript{11} suggest that prototypical Parkin-mediated mitophagy does not play a major role in mitochondrial removal after asymmetrical fission. Drp1 deletion in this context stimulates mitophagy that is interrupted before lysosomal incorporation (green background).
Drp1 knockout mice as the cardiac phenotype progresses, with and without an intact Parkin mechanism, possibly by combining conditional cardiac ablation of Parkin and Drp1. These are early days and there is much to learn.

Acknowledgments
This study was supported in part by National Institutes of Health HL59888.

Disclosures
None.

References

**Key Words:** Editorial ■ autophagy ■ mitochondria
Gone Fission…: Diverse Consequences of Cardiac Drp1 Deficiency
Gerald W. Dorn II

Circ Res. 2015;116:225-228
doi: 10.1161/CIRCRESAHA.114.305672

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/116/2/225

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/