Letter by Villa Abrille et al Regarding Article, “Hyperactive Adverse Mechanical Stress Responses in Dystrophic Heart Are Coupled to Transient Receptor Potential Canonical 6 and Blocked by cGMP-Protein Kinase G Modulation”

To the Editor:

The recent article by Seo et al., published in *Circulation Research*, presented many interesting aspects of the myocardium from mice lacking transient receptor potential canonical channels TRPC3 or TRPC6, from dystrophic animals, and their interaction with cGMP. These authors measured the muscle response to stretch, widely known as slow force response (SFR).

We would like to comment only on one aspect of this study that, although it might sound trivial at first glance, it unnecessar-
ylly confuses a well-established mechanical response. The authors arbitrarily changed the widely accepted denomination of SFR to the term stress-stimulated contractility without any explana-
tion to justify the change.

The SFR or Anrep effect was described by Glen von Anrep in 1912 in a whole heart preparation and later on found in isolated cardiac preparations by Parmley and Chuck,10 Lakatta and Jewell,11 who called this mechanism slow increase in develop tension, and by the term slow increase in stretch-stimulated contractility without any explana-
tion to justify the change.


We are sure that the authors from this prestigious University would like to comment only on one aspect of this study that, although it might sound trivial at first glance, it unnecessar-
ylly confuses a well-established mechanical response. The authors arbitrarily changed the widely accepted denomination of SFR to the term stress-stimulated contractility without any explana-
tion to justify the change.

The SFR or Anrep effect was described by Glen von Anrep in 1912 in a whole heart preparation and later on found in isolated cardiac preparations by Parmley and Chuck,10 Lakatta and Jewell,11 who called this mechanism slow increase in develop tension, and by the term slow increase in stretch-stimulated contractility without any explana-
tion to justify the change.


We are sure that the authors from this prestigious University would like to comment only on one aspect of this study that, although it might sound trivial at first glance, it unnecessar-
ylly confuses a well-established mechanical response. The authors arbitrarily changed the widely accepted denomination of SFR to the term stress-stimulated contractility without any explana-
tion to justify the change.

The SFR or Anrep effect was described by Glen von Anrep in 1912 in a whole heart preparation and later on found in isolated cardiac preparations by Parmley and Chuck,10 Lakatta and Jewell,11 who called this mechanism slow increase in develop tension, and by the term slow increase in stretch-stimulated contractility without any explana-
tion to justify the change.


We are sure that the authors from this prestigious University would like to comment only on one aspect of this study that, although it might sound trivial at first glance, it unnecessar-
ylly confuses a well-established mechanical response. The authors arbitrarily changed the widely accepted denomination of SFR to the term stress-stimulated contractility without any explana-
tion to justify the change.

The SFR or Anrep effect was described by Glen von Anrep in 1912 in a whole heart preparation and later on found in isolated cardiac preparations by Parmley and Chuck,10 Lakatta and Jewell,11 who called this mechanism slow increase in develop tension, and by the term slow increase in stretch-stimulated contractility without any explana-
tion to justify the change.


Letter by Villa Abrille et al Regarding Article, "Hyperactive Adverse Mechanical Stress Responses in Dystrophic Heart Are Coupled to Transient Receptor Potential Canonical 6 and Blocked by cGMP-Protein Kinase G Modulation"

María Celeste Villa-Abrille, Néstor Gustavo Pérez and Horacio Eugenio Cingolani

Circ Res. 2015;116:e11
doi: 10.1161/CIRCRESAHA.114.305543

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/116/1/e11

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/