Pulmonary arterial hypertension (PAH) is a rare but progressive and deadly disease caused by functional and structural changes in the pulmonary vasculature, which lead to an increase in pulmonary vascular resistance. Regardless of the initial pathogenic trigger, the major causes of increased pulmonary vascular resistance in patients with PAH are sustained pulmonary vasconstriction, pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular wall stiffness. Despite expanding research into the diagnosis and treatment of pulmonary hypertension, death rates from pulmonary hypertension have continued to increase over the past decade. Patients with PAH, if untreated, die from the development of pulmonary hypertension, an initial adaptive response of the RV to the increased afterload is to increase its wall thickness and contractility with varying degrees of RV hypertrophy. However, with disease progression, sustained long-term pressure overload of the RV can lead to progressive contractile dysfunction and eventually cause RV failure with further RV dilation. Little is known about the molecular and cellular mechanisms, which underlie the development of RV failure. The mechanism that determines the transition of RV function from compensated hypertrophy to decompensated failure is also uncertain. The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

MicroRNAs (miRNAs), as crucial regulators of cardiovascular development and cardiac remodeling, have attracted increasing interest in recent years. Drake et al. compared the gene expression patterns between RV hypertrophy in hypoxia-induced moderate pulmonary hypertension and RV failure in hypoxia/SU5416-induced severe pulmonary hypertension. A global increase in the expression of miRNA (miR) was found in the failing RV, whereas a specific decrease of the expression of miR133a was found in the hypoxia/SU5416 and pulmonary artery banding/Cu²⁺ depletion pulmonary hypertension models. Another group investigated dynamic miRNA expression during the transition from RV hypertrophy to failure using the pulmonary artery constriction model. During the stage of hypertrophy, there was dysregulated expression of miRNAs, including miR199a-3p, miRLet-7, miR223, miR143/145, miR181a, and miR30. During RV failure, miR208b increased and miR208a decreased, which are associated with an increase in the expression of β-myosin heavy chain and a decrease in α-myosin heavy chain, respectively. These studies suggest that differential expression of miRNAs contribute to alteration in genes in RV hypertrophy and the progression to RV failure. Continued efforts in elucidating the role of miRNA in regulating target genes that are involved in the development of RV failure may lead to novel RV-specific therapies.

In this issue of Circulation Research, Paulin et al. propose a novel approach in which the miR208 and myocyte enhancer factor 2 (Mef2) are targeted in monocrotaline-rat animal models of pulmonary hypertension. The authors show that the stage of RV hypertrophy in a rat model of monocrotaline-mediated pulmonary hypertension can be divided into either compensated or decompensated according to hemodynamic and structural differences. Using this information, as well as several in vitro assays with fetal and adult cardiomyocytes, the authors then sought to determine a molecular signature of the RV tissue during these different stages. They focused on expression of the cardiogenic transcription factor, Mef2, which has been implicated in cardiomyocyte differentiation, proliferation, morphogenesis, and contractility by regulating the expression of several miRNAs and genes. The authors found that these stages have a distinct molecular pattern, with miR208 being downregulated as RV failure progressed, and Mef2 expression increasing in the compensatory stage but decreasing in the decompensatory stage. Furthermore, the authors found that the expression levels of MED13 and NCoR1 are increased in RV decompensatory stage. MED13, a regulatory subunit of the Mediator complex, is a direct target of miR208 in the heart and the modulation of MED13 expression in the heart by miR208a controls systemic metabolic homeostasis and energy expenditure in mice. The data of this study suggest that the downregulation of miR208 triggers the MED13/NCoR1 pathway, providing a negative feedback mechanism for Mef2 that drives the RV toward decompensation (Figure). Although the first trigger for RV adaptation in patients with pulmonary hypertension is the increased afterload,

Haiyang Tang, Ruby A. Fernandez, Jason X.-J. Yuan

Editorial

miRNA208/Mef2 and TNF-α in Right Ventricular Dysfunction

The Transition From Hypertrophy to Failure

Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.114.305446

Copyright © 2015 American Heart Association, Inc.

Circulation Research® is a registered trademark, and all rights are reserved to the American Heart Association.
inflammation may also contribute to the development of RV failure. Many studies have demonstrated the elevated expression levels of tumor necrosis factor (TNF)-α in cardiomyocytes and increased plasma concentrations of TNF-α in patients with end-stage heart failure. Notably, one study on the expression of TNF-α in donor myocardium and the subsequent development of RV failure early after transplantation indicated that TNF-α expression in the donor heart is an important predictor of the development of right heart failure. Experimental animal studies also showed that TNF-α plays a pivotal role in adverse myocardial remodeling and inhibition of TNF-α with its antagonist, etanercept, attenuated the progression to heart failure in experimental volume-overload model. Cardiac-specific overexpression of TNF-α results in the development of a dilated cardiomyopathy with ventricular hypertrophy, ventricular dilation, and other cardiomyopathy-like phenotype. The Michalakis team also demonstrated in their study that the treatment with TNF-α increased the expression of MED13 in RV, but not in left ventricular cardiomyocytes that were associated with an increase of NCoR1 expression in RV cardiomyocytes. The authors proposed that TNF-α may also serve as a second hit for the RV failure. This is an another important finding of their study. As the authors mentioned, TNF-α as a further trigger for RV dysfunction, in combination with the decreasing miR208, may potentially explain why, when the RV is exposed to strong inflammatory environments, it is much more prone to decompensation.

This study advances our understanding of the molecular signatures, which are present in the stages of RV failure after monocrotaline-induced pulmonary hypertension in rats. It would be interesting to determine whether a similar concept can be applied to other pulmonary hypertension models, such as hypoxia/SU5416-induced pulmonary hypertension models, where the initial trigger for RV failure is still unknown. There are no data presented in this study to show the importance of modulating the miR208/Mef2 axis in vivo. Especially, the inhibition of miR208a by systemic delivery of locked nucleic acid–modified antisense oligonucleotides has been shown to prevent cardiac remodeling and improve cardiac function, overall health, and survival in rat model of LV failure. Furthermore, it has been suggested that the inhibition of miR208a has been shown to improve LV dysfunction in vivo in LV failure-rodent models, concurrently, it may be of interest to simulate this response with miR208 and apply it to RV failure. In addition, human tissue or plasma measurements from patients with PAH would also dramatically strengthen the conclusions drawn in their study, especially with the authors suggesting that these findings could be useful as potential biomarkers. Therefore, additional studies are needed to provide better understanding of the progression of RV failure, which has distinct functional and molecular patterns in different stages, and which could be promising in the generation of stage-specific, novel biomarkers or therapeutic targets for this severe condition in the patient with PAH.

Sources of Funding

This work was supported, in part, by grants from the National Heart, Lung, and Blood Institute of the National Institutes of Health (HL066012, HL115014, HL125208, and HL098053).

Disclosures

None.

References

Key Words: Editorials ■ hypertension, pulmonary ■ microRNAs ■ ventricular dysfunction, right
miRNA208/Mef2 and TNF-α in Right Ventricular Dysfunction: The Transition From Hypertrophy to Failure
Haiyang Tang, Ruby A. Fernandez and Jason X.-J. Yuan

Circ Res. 2015;116:6-8
doi: 10.1161/CIRCRESAHA.114.305446

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/116/1/6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/