Muscling Up the Heart

A Preadolescent Cardiomyocyte Proliferation Contributes to Heart Growth

Cheng-Hai Zhang, Bernhard Kühn

A Proliferative Burst During Preadolescence Establishes the Final Cardiomyocyte Number
Naqvi et al

A recent study from Naqvi et al1 in Cell shows that in mice during preadolescence, cardiomyocytes undergo a burst of proliferation that is related to a thyroid hormone surge. This study challenges the conventional model of the timing of terminal differentiation and provides a direction for further mechanistic research on cardiomyocyte proliferation and differentiation.

In mice and rats, cardiomyocytes transition from the mono- to the binucleated phenotype in the first week of life.2,3 It is commonly thought that this indicates the transition from the proliferative state to permanent cell cycle exit. However, the precise molecular-genetic mechanisms of terminal differentiation are unknown. Reversing this process and stimulating the proliferation of terminally differentiated cardiomyocytes is a century-old challenge and considered by many scientists as a Holy Grail. It has been thought that heart growth after birth is exclusively through enlargement (hypertrophy) but not proliferation of cardiomyocytes.4 However, several lines of evidence challenge the absoluteness of the notion that new cardiomyocytes are not generated after birth. First, Poss et al5 found that adult zebrafish can completely regenerate heart cardiomyocytes are not generated after birth. First, Poss et al5 found that adult zebrafish can completely regenerate heart cardiomyocytes.6 Second, we have demonstrated that neuregulin-stimulated cell cycle re-entry happens predominantly in the mononucleated portion.9 The causative connection between endogenous cardiomyocyte proliferation and myocardial regeneration was established in zebrafish6 and neonatal mice,2 although part of the latter has been challenged recently.13 Several reports indicate that stimulating cardiomyocyte proliferation in adult mammals improves myocardial repair.10,11 Thus, controlling postnatal cardiomyocyte proliferation holds great promise for heart regeneration but requires a mechanistic understanding. The report by Naqvi et al1 in the May 8, 2014, issue of Cell offers a new cellular mechanism of postnatal cardiomyocyte proliferation.

Naqvi et al reported that mice show a burst of cardiomyocyte proliferation during preadolescent development, between 13 and 18 days of life. The authors demonstrate that the final cardiomyocyte number present in adult mice is established by this burst of proliferation, which is regulated by the thyroid hormone/insulin-like growth factor (IGF)-1/IGF-1-receptor/Akt pathway. Furthermore, the authors show that this burst is associated with improved myocardial repair and heart function after cardiac injury.

Naqvi et al first compared heart weight and cardiomyocyte cell size between early preadolescent (P10) and young adult (P35) mice. They found that cardiomyocyte cell volume increased 2-fold between P10 and P35, which was largely driven by an increase of cell length. This cardiomyocyte enlargement alone cannot account for the 3.5-fold increase of heart weight between P10 and P35, and overproliferation of noncardiomyocytes seems unlikely. The discrepancy prompted the authors to quantify the number of cardiomyocytes. By enzymatic disaggregation and counting with a hemocytometer, they identified 2 postnatal periods of rapid cardiomyocyte proliferation: a 40% increase between P1 and P4 and a further 40% increase (≈500,000 cardiomyocytes) between P14 and P18. The first period of increase of cardiomyocyte numbers is consistent with the findings of Li et al.1 The discovery of the second window is unanticipated and extends the period of endogenous cardiomyocyte proliferation and thereby represents an opportunity for advancing the cellular model of postnatal heart growth. The cardiomyocyte numbers in mice from P18 to 1 year did not change, which means that the final number of cardiomyocytes present in the adult heart is established in mice by 18 days of age.

To define the timing of the proliferative burst, the authors checked cell cycle markers and analyzed uptake of the thymi- d ine analog bromodeoxyuridine. Their results showed that the burst begins with some cardiomyocytes re-entering the cell...
cycle late on P14. By 9 o’clock in the morning of P15, ≈14% to 34% of cardiomyocyte nuclei were positive for Aurora B kinase, a chromosomal passenger protein that is present from M-phase to cytokinesis. This represents a 36-fold increase of cardiomyocyte mitosis and cytokinesis in the left ventricle. This proliferative burst has not only a specific temporal pattern but also spatially restricted to the left ventricle and much more pronounced in the subendocardial zone.

What is the cellular origin of this proliferative burst? In P15 mouse hearts, ≈10% of cardiomyocytes are mononucleated and ≈90% are binucleated, which raises the question whether both cardiomyocyte phenotypes contribute to the proliferative burst. On the afternoon of P15, there was a 2-fold increase of the percentage of mononucleated cardiomyocytes, pointing to the possibility that this phenotype shows preferential proliferation. However, when Naqvi et al compared the cell cycle activity between the mono- and binucleated fraction, they found in both phenotypes ≈30% mitotic cardiomyocytes, detected by nuclear Aurora B kinase staining. This led to the interpretation that, because of their high prevalence, binucleated cardiomyocytes make a major contribution to the proliferative burst. Based on their imaging results, the authors propose a model in which binucleated cardiomyocytes, previously thought to be a terminally differentiated and nonproliferative phenotype, can re-enter the cell cycle, duplicate their DNA, divide their nuclei to become quadruplenuucleated, then assemble 2 cleavage furrows around the 2 spindles, and finally divide. This unique cell cycle produces 2 mononucleated and 1 binucleated daughter. Because this cell cycle requires the coordinated formation of 2 cleavage furrows in a binucleated cardiomyocyte, it is different from the cell cycle of binucleated hepatocytes, which assemble the condensed chromosomes from 2 nuclei in 1 metaphase plate. A complementary interpretation is also offered, in which the binucleated cardiomyocytes found in M-phase are on the way to becoming multinucleated. Future work should be directed at characterizing these unique cell cycles further.

At P15, 14.5±2.6% of cardiomyocyte nuclei in the left ventricle were Aurora B kinase positive, indicating that they were in prophase or advanced phases of the cell cycle. It is known that cardiomyocyte mitosis is accompanied by sarcomere disassembly, and Naqvi et al appropriately tested whether global heart function may be affected during this phase of sarcomere disassembly. Because they found that myocardial function was not reduced, this raises the interesting cell biological question of how a large portion of cardiomyocytes can disassemble their sarcomeres without affecting global myocardial contractility.

Besides advancing the cellular model of postnatal myocardial growth, what are the implications of this study? Because of the aforementioned connection between the activation of cardiomyocyte proliferation and myocardial regeneration, Naqvi et al appropriately tested to what degree the response to myocardial injury may differ before and after the proliferative burst. They used as injury model ligation of the left anterior descending coronary artery to induce myocardial injury at P2, P15, and P21. Although the initial injury size was similar at all 3 time points, injury at P15 and P21 induced transmural scars, but not at P2. The relative scar size was significantly smaller at P15 compared with P21. Cardiomyocyte cell cycle activity was highest at P2 and decreased with age. Myocardial injury did not induce an additional increase compared with sham-operated mice, in contrast to an increase of mitotic cardiomyocytes at 7 days post injury as previously reported. Recovery of myocardial function was complete after P2 injury, partial after P15, and absent after P21 injury. In summary, the extent of repair after myocardial injury induced at P15, that is, during the cardiomyocyte proliferative burst, was at an intermediate position between injury at P2 and injury at P21. The interpretation of the results involving relative scar sizes is challenging in this situation because myocardial growth happens at the same time as scar formation and compaction. Future research should examine the causative relationship between the burst of cardiomyocyte proliferation and myocardial repair more deeply. For this, the molecular mechanisms controlling the proliferative burst have to be elucidated to an extent that enables disruption of the burst with molecular-genetic tools.

What are the molecular mechanisms controlling the proliferative burst? Naqvi et al noticed an accelerated growth of the heart between P11 and P18, which was accompanied by an increase in the ratio of mRNA encoding the sarcomeric proteins α- and β-myosin heavy chain. The control of these genes by the thyroid hormone T3 is well established, and serum T3 levels increased 3.6-fold between P4 and P12. To examine a potential causative relationship, Naqvi et al applied the clinically used drug propylthiouracil to inhibit T3 biosynthesis. Treatment with propylthiouracil beginning at P7 inhibited the accelerated heart growth and lowered the number of cardiomyocytes. These results implied thyroid hormone in triggering the proliferative burst, but raised the question of whether this is a direct or indirect effect. IGF-1 is a well established molecular control mechanism of cardiomyocyte size and proliferation. IGF-1 mRNA and myocardial tissue levels increased between P10 and P15. This was paralleled by an increase of the expression of the IGF-1 receptor and activation of the downstream kinase Akt, and addition of propylthiouracil abolished this effect. In summary, the Naqvi et al study offers a molecular model involving thyroid hormone and the IGF-1/Akt pathway. The proposed molecular mechanisms prompt the question about the observed local regulation of cardiomyocyte proliferation during the burst in the subendocardial zone and in the left ventricle.

How does the Naqvi et al model of a preadolescent burst of cardiomyocyte proliferation compare with prior reports? We have reported that cardiomyocyte proliferation contributes to myocardial growth in humans during the first 20 years of life. Although our measurements showed a 3.4-fold increase in the number of cardiomyocytes during this period, we did not detect a distinct burst of cardiomyocyte proliferation in preadolescent humans. This may be because of the higher variation of human data and the inherent limitations of analyzing a larger number of appropriate human hearts. Another recent article proposed that the exposure to relatively higher ambient oxygen on birth induces DNA damage and terminal differentiation of cardiomyocytes in mice. This model is seemingly at odds with the model of Naqvi et al; however, these 2 models
may be reconciled if mechanistic analyses of specific cardiomyocyte phenotypes, which may undergo permanent cell cycle withdrawal at different times, reveal different mechanisms.

In conclusion, this study represents an important advance in the elucidation of postnatal myocardial growth mechanisms as it raises the possibility to regenerate myocardium in young humans through manipulating this burst. Further elucidation of the controlling molecular-genetic mechanisms should provide a handle to achieve this and to address the associated mechanistic questions using mouse genetics. Future research should define the precise cellular mechanisms of division of binucleated cardiomyocytes.

Sources of Funding
Our research is supported by the Department of Cardiology and the Translational Research Program (Boston Children’s Hospital) and the National Institutes of Health (R01HL106302, U01 MH098953, and K08 HL085143).

Disclosures
None.

References
Muscling Up the Heart: A Preadolescent Cardiomyocyte Proliferation Contributes to Heart Growth
Cheng-Hai Zhang and Bernhard Kühn

Circ Res. 2014;115:690-692
doi: 10.1161/CIRCRESAHA.114.304632

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/8/690

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/