“Going Long”: Long Non-Coding RNAs as Biomarkers

Philipp Skroblin, Manuel Mayr

Protein-coding sequences constitute <2% of the human genome. The majority of the remaining 98% was long assumed to be nonfunctional junk DNA but there is increasing evidence that ≤85% of the human genome is transcribed into RNA.1 Noncoding sequences in the genome increase proportionally with the complexity of the organism, implying a need for additional transcriptional regulation in the evolution of eukaryotic organisms. Thus, the vast majority of the human transcriptome is noncoding RNA, which is divided into short noncoding RNAs (<200 nucleotides: comprising rRNA, miRNA, snRNA, snoRNA, siRNA, and piRNA) and long noncoding RNA (lncRNA, >200 nucleotides). Since their discovery in 2001, miRNAs have been studied extensively and fundamental insights have been obtained about their synthesis, their repression of target genes, and their involvement in disease processes. Indeed, miRNA therapeutics are already tested in clinical trials.

After the explosion of interest in miRNAs, the attention is now shifting to lncRNAs. lncRNAs have emerged as another important layer of gene regulation. On the basis of their genomic loci, lncRNAs can be classified into 5 categories (Figure): (1) sense lncRNAs are transcribed from a locus overlapping with a protein-coding gene; (2) antisense lncRNAs loci overlap with the antisense strand of protein-coding gene; (3) bidirectional lncRNAs are located on the antisense strand of a protein-coding gene whose start codon is <1000 base pairs away; (4) intronic lncRNAs are transcribed from introns of protein-coding genes; and (5) long intergenic (or intervening) noncoding RNAs loci are not in the proximity of a protein-coding gene at all. Most lncRNAs are located in the nucleus where they can modify transcription by recruiting or sequestering proteins, such as transcription factors or histone-modifying enzymes to and from target loci located in cis or trans.2 Other lncRNAs exert their function in the cytoplasm and regulate protein localization, mRNA translation, and stability.3 The structural and functional diversity of lncRNAs, as well as their sheer number, make their characterization challenging: the NONCODE database, version 4, contains 95 135 human lncRNA transcripts.3 At present, little is known about the function of most lncRNAs, especially their role in cardiovascular development, physiology, and disease. Their poor evolutionary conservation may further hamper the translation of findings from animal models to patients. For example, Braveheart, a lncRNA essential for cardiomyocyte differentiation in mice, does not have a known human ortholog.4 Antisense noncoding RNA in the INK4 locus (ANRIL), which spans the entire region of association with coronary artery disease on the chromosome 9p21 locus, is expressed in humans but not in mouse.5

lncRNAs display high organ and cell specificity and are involved in maintaining cell integrity. Previous analyses of cardiovascular lncRNAs were performed in cultured cells,6-8 animal models,9,10 and human heart biopsies.10,11 Circulating lncRNAs have been suggested as potential biomarkers for cancer, but few studies have explored lncRNAs as biomarkers in the context of cardiovascular disease. Recently, Kumarswamy et al12 reported a screen for lncRNAs in plasma of patients with myocardial infarction (MI). The vast majority of lncRNAs was undetectable. The few lncRNAs that were differentially expressed between patients with and without cardiac remodeling after MI were encoded by mitochondrial DNA. One of these mitochondrial lncRNAs, named long intergenic noncoding RNA predicting cardiac remodeling, was associated with cardiac remodeling and cardiovascular mortality in patients with heart failure. However, the source of long intergenic noncoding RNA predicting cardiac remodeling remained unclear, and the amount of lncRNAs in plasma is low. Unlike short noncoding RNAs, such as miRNAs, most lncRNAs are not detectable in plasma by standard methods, such as microarrays or quantitative polymerase chain reaction.

In this issue of Circulation Research, Vausort et al13 have published the first analysis of lncRNA in full blood of patients with MI. Full blood is a more reliable source of lncRNAs. The underlying hypothesis was that changes in cardiac function ensuing acute MI affect the transcriptome of peripheral blood cells. Inflammation is supposed to play a central role in cardiac remodeling after MI. Five lncRNAs of different types and mechanisms of actions were assessed in 84 healthy volunteers and in 414 patients with MI, selected based on their relevance for cardiovascular disease (Figure): (1) antisense hypoxia inducible factor 1α is induced by hypoxia and upregulated in heart failure; (2) ANRIL is within the most replicated risk allele for coronary heart disease; (3) KCNQ1 overlapping transcript 1 (KCNQ1OT1) regulates the expression of the potassium channel KCNQ1, whose deficiency causes long-QT syndrome; (4) MI-associated transcript (MIAT) contains a single-nucleotide polymorphism in its locus that confers susceptibility to MI; (5) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a highly abundant lncRNA implicated in alternative splicing. Other lncRNAs, such as long intergenic noncoding
RNA predicting cardiac remodeling. HLA complex group 22, smooth muscle and endothelial cell-enriched migration/differentiation-associated long noncoding RNA, cardiac hypertrophy–related factor, and cardiac apoptosis-related lncRNA, were only recently implicated in cardiovascular function and were not included in this study.

With the exception of MIAT, all analyzed lncRNAs were differentially expressed in patients with MI: antisense hypoxia inducible factor 1α, KCNQ1OT1 and MALAT1 were upregulated, whereas ANRIL was downregulated. MALAT1 and antisense hypoxia inducible factor 1α are known to be induced under hypoxia. In agreement with previous observations in healthy donors, lymphocytes were the main source of ANRIL in patients with MI. Comparing non–ST-segment–elevation MI and ST-segment–elevation MI, ANRIL, KCNQ1OT1, MIAT, and MALAT1 were downregulated in patients with MI and ST-segment elevation after adjustment for white blood cell count. This feasibility study demonstrates that acute MI affects the expression of lncRNAs in peripheral blood cells, but none of the selected lncRNAs emerged as particularly promising biomarker.

The authors should be applauded for measuring lncRNAs in a relatively large patient cohort. The mechanisms how lncRNAs in blood are affected by acute MI and the functional consequences are currently unclear. Importantly, >20 linear and several circular isoforms of ANRIL have been identified in noncardiac tissues. This lack of cardiac specificity questions their usefulness as predictors of cardiac dysfunction. At best, measuring lncRNA expression in full blood might reflect inflammation at the site of MI.

lncRNA research is still in its infancy and a better characterization of the lncRNA transcriptome, advances in the understanding of lncRNA function and improved analytic tools will allow to replicate and extend the findings presented by such early studies. Of the high number of different lncRNAs, next-generation sequencing methods will be instrumental in exploring lncRNAs in health and disease. Whether lncRNAs are better predictive biomarkers than existing cardiovascular biomarkers or other noncoding RNAs, such as miRNAs, awaits confirmation in future studies.

Sources of Funding
M. Mayr is a Senior Fellow of the British Heart Foundation and member of a network on MicroRNA-based Therapeutic Strategies in Vascular Disease funded by the Foundation Leducq. The research was funded/supported by the National Institute of Health Research Biomedical Research Centre based at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London in partnership with King’s College Hospital.

Disclosures
None.

References
5. He S, Gu W, Li Y, Zhu H. ANRIL/CDKN2B-AS shows two-stage clade-
specific evolution and becomes conserved after transposon insertions in

Han Y, Spector DL, Zheng D, Miano JM. Identification and initial func-
tional characterization of a human vascular cell-enriched long noncoding

Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hy-

CARL IncRNA inhibits anoxia-induced mitochondrial fission and apop-
tosis in cardiomyocytes by impairing miR-539-dependent PHB2 down-

9. Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR,
Devaux Y. Identification of candidate long non-coding RNAs in response

the cardiac transcriptome after myocardial infarction identifies novel
heart-specific long non-coding RNAs [published online ahead of print

11. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH,
Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals
dynamic regulation of myocardial noncoding RNAs in failing human
heart and remodeling with mechanical circulatory support. *Circulation*.

A, Lemesle G, de Groote F, Pinet F, Thun T. Circulating long noncoding

13. Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients

T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S.
Long noncoding RNA MALAT1 regulates endothelial cell function and

15. Meder B, Rühle F, Weis T, et al. A genome-wide association study iden-


17. Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulat-
ing microRNAs and risk of myocardial infarction. *J Am Coll Cardiol*.
2012;60:290–299.

Key Words: Editorials ■ biomarkers ■ RNA, untranslated
"Going Long": Long Non-Coding RNAs as Biomarkers
Philipp Skroblin and Manuel Mayr

doi: 10.1161/CIRCRESAHA.114.304839
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/7/607

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/