Macrophage Functions in Atherosclerosis

Iris Zeller, Sanjay Srivastava

Atherosclerosis is a chronic inflammatory disease of the arterial wall instigated by the excessive accumulation of lipoproteins; monocyte recruitment and their differentiation into macrophages in the subendothelial space. Repeated failure of innate immune responses to clear subintimal low-density lipoprotein (LDL), results in the deposition of lipid-laden macrophages or foam cells. Foam cells secrete proinflammatory mediators that facilitate lipoprotein retention and maintain vascular inflammation.

Advancement of lesion is characterized by the apoptosis of these macrophages in the lipid core. Macrophage apoptosis plays a dual role in atherosclerosis. In early fatty streaks lesions, efferocytosis removes apoptotic cells and prevents lesion development, whereas in the advanced lesions, efferocytosis is not efficient to clear the apoptotic debris, leading to the formation of necrotic core which further enhances inflammation and atherogenesis.

Accumulating indirect evidence suggests that the antiatherogenic role of high density lipoprotein (HDL) could at least in part, be due to its ability to stimulate cholesterol efflux from macrophages by ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1). Complementing this notion, recent studies by Westerterp et al show that macrophage deficiency of ABCA1/G1 enhances lipid accumulation in macrophages, atherosclerosis and lesion inflammation. These authors observed that macrophage foam cells in spleen facilitate monocyte apoptosis which is inhibited by ABCA1/G1 and high levels of HDL. Studies by Ramirez et al demonstrate that activation of liver X receptor (LXR) augments the transcription of microRNA 144 (miR144) and inhibition of miR144 in macrophages upregulates ABCA1 expression and cholesterol efflux. In vivo, supplementation of mice with miR144 suppresses ABCA1 expression in the liver and reduces plasma HDL levels. Silencing of miR144 enhances ABCA1 expression and plasma HDL concentration. Activation of nuclear receptor farnesoid X receptor (FXR) also increases the expression of miR144 in the liver, which in turn downregulates ABCA1 protein and decreases plasma HDL. Conversely, silencing of miR144 in mice upregulates hepatic ABCA1 and increases plasma HDL levels. Together, these studies provide further evidence that ABCA1 is a critical regulator of cholesterol efflux and miR144 could be a potential therapeutic target for increasing the circulating levels of HDL.

Although, it is well recognized that macrophages play a critical role in all stages of atherosclerosis, sources of lesion macrophages and mechanisms of accumulation of macrophages in atherosclerotic lesions have been a matter of debate. Monocytes are widely recognized as critical players in chronic inflammatory disease like atherosclerosis. At least two distinct monocyte subsets with differential migratory properties have been characterized in humans and mice. Murine Ly6Chigh monocytes express high levels of CCR2, are inflammatory and functionally similar to CD16 CD14+ monocytes in humans. In hypercholesterolemic mice, macrophages in early lesions are predominantly derived from Ly6Chigh monocytes recruited in the intima. The Ly6Clow “patrolling” monocytes do not express CCR2 and are similar to CD14dim CD16+ “patrolling” monocytes in humans. The Ly6Clow monocytes patrol the vasculature and are recruited in atherosclerotic lesions less frequently. Orphan receptor Nur 77 has been suggested to be a critical regulator of differentiation and survival of Ly6Clow monocytes. Recent studies show that the absence of Nur 77 in hematopoietic cells enhances atherosclerosis in western diet-fed LDLR-KO mice. Deficiency of Nur 77 in monocytes and macrophages increased TLR4 signaling and polarization of macrophages toward proinflammatory M1 phenotype in NF-kB dependent manner. Nur 77 therefore could be a potential target for modulating inflammation in atherosclerotic plaque.
Mitochondrial oxidation in lesional cells is well documented in experimental animals and humans. However, it is unclear whether mitochondrial oxidative stress is causally involved in the pathogenesis of atherosclerosis and if so, what are the underlying mechanisms? Recently, Wang et al reported that mitochondria-targeted expression of catalase in macrophages suppresses mitochondrial oxidative stress in lesional macrophages, decreases atherosclerosis and prevents the recruitment of Ly6C^{hi} cells in the lesions. Mechanistic studies showed that mitochondrial oxidative stress augments monocyte infiltration through the activation of IKKβ-RelA(NF-κB) which enhances the expression of monocyte chemotactic protein-1. Lingrel et al observed that myeloid cells specific deficiency of the zinc finger transcription factor, kruppel like factor 2 (KLF2), augments atherosclerosis and enhances the recruitment of neutrophils and macrophages to atherosclerotic lesions due to their increased adhesion to endothelial cells. This was accompanied by increased oxidative stress in the lesion. These recent findings complement earlier studies which showed that global hemizygous deficiency of KLF2 exacerbates atherosclerosis in hypercholesterolemic mice.

Rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has also been suggested to reduce inflammation and prevent atherosclerosis. Recent studies by Ai et al showed that ablation of Raptor gene in macrophages decreases mTOR activity, atherosclerosis, macrophage accumulation and chemokine gene expression in atherosclerotic lesions. In vitro studies showed that upon treatment of macrophages with minimally oxidized LDL, mTORC1 activity enhanced the induction of chemokines by increasing IL6 signaling. Driscoll et al reported that in mice, deficiency of transmembrane protease ADAM17 augments macrophage dependent efferocytosis which enhances anti-inflammatory response.

Folco et al have probed the association between hypoxia, prevalent in atherosclerotic plaques, and inflammation. Their studies show that exposure of lipopolysaccharide-primed human macrophages to moderate level of hypoxia impedes the autophagic degradation resulting in increased intracellular accumulation of IL-1β, induction of NLRP3 and activation of inflammasome, and augmented caspase-1 activity. In human carotid artery lesions, IL-1β colocalized with macrophage inflammasome, and augmented caspase-1 activity. In human carotid artery lesions, IL-1β colocalized with macrophage inflammasome, and augmented caspase-1 activity. In human carotid artery lesions, IL-1β colocalized with macrophage inflammasome, and augmented caspase-1 activity.

Recent studies have also suggested that influenced by the microenvironment, lesional macrophages proliferate in atherosclerotic lesions. Sayin et al observed that deficiency of zinc finger protein 148 (Zfp148) enhances p53 activity and prevents atherosclerosis by blocking the proliferation of lesional macrophages.

Although monocyte derived macrophages play a key role in atherosclerosis, vascular smooth muscle cells (SMC) can also migrate from tunica media to the intima, where they engulf lipoproteins to form foam cells. Using linear tracing experiments, Feil et al showed that in atherosclerosis, SMC can undergo clonal expansion and transdifferentiate into macrophage like cells. Authors claim that these SMC-derived macrophages are a major component of advanced lesions. Moreover, since these cells no longer express the markers of SMC such as α-smooth muscle actin, it is plausible that previous immunostaining studies underestimated the abundance of SMC-derived macrophages in atherosclerotic plaques.

Stem progenitor cells (SPC) have been suggested to be another source of SMC and monocyte/macrophages in atherosclerotic lesion formation and progression. In atherosclerotic lesions, SPC can either be recruited from the bone marrow via blood circulation or from the vessel wall. Recent studies by Xiao et al show that matrix metalloproteinase 8 (MMP8) plays a pivotal role in SMC migration and recruitment to atherosclerotic plaque. Authors showed that deficiency of MMP8 in apoE-KO mice decreases the abundance of SPC in atherosclerotic lesions; apoE-KO/MMP8-KO mice transplanted with MMP8 deficient SMC displayed smaller lesions than apoE-KO/MMP8-KO mice which received SMC from wild type mice; and deficiency of MMP8 in SPC diminished their ability to migrate through the endothelium or extracellular matrix; or into the arterial lesions.

Together, recent work reinforces the idea that macrophages play a central role in all stages of atherosclerosis and targeted inhibition of lesional macrophage inflammation could be beneficial in protecting against atherosclerotic lesion formation.

Acknowledgments

This work was supported in parts by NIH grants HL95593, ES17260, and GM103492.

References

Macrophage Functions in Atherosclerosis
Iris Zeller and Sanjay Srivastava

Circ Res. 2014;115:e83-e85
doi: 10.1161/CIRCRESAHA.114.305641
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/12/e83

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.
Reprints: Information about reprints can be found online at: http://www.lww.com/reprints
Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/