Ca^{2+} Nanosparks

Shining Light on the Dyadic Cleft But Missing the Intensity of Its Signal

Yan-Ting Zhao, Héctor H. Valdivia

Since the classical, many years ignored, and by current standards haphazard experiments of Sidney Ringer on isolated rat hearts, we have come a long way in understanding the role of Ca^{2+} in the contraction of cardiac muscle. Ringer found that suspending the hearts in a saline solution prepared with tap water (which contained high amounts of calcium carbonate from limestone) sustained robust contractions for a long time; but in an attempt to professionalize his art, Ringer replaced tap water for distilled water, only to observe that in this clean medium, heart contractions declined quickly after only a few beats. By systematically adding different salts to the distilled saline medium, Ringer discovered that calcium, until then considered exclusively a structural element of bones and teeth, was essential for cardiac muscle contraction. Since this serendipitous discovery, many others, in smaller or greater scale, kept adding to the inescapable notion that calcium ions (Ca^{2+}) play a critical role as a relay signal (a messenger) in many biological processes not only of cardiac myocytes, but also of virtually every living cell.

Continuing with the story of Ca^{2+} in the heart, technically challenging experiments by Alexander Fabiato defined, almost single-handedly, the process of Ca^{2+}-induced Ca^{2+} release in cardiac cells, whereby a small amount of Ca^{2+} (in his case injected by a microsyringe on skinned cardiac tissue) caused a much larger release of Ca^{2+} from the sarcoplasmic reticulum (SR), inducing vigorous contractions. Fabiato’s experiments, therefore, set the basis for a functional coupling between the sarcolemma (and its invaginations, the t-tubules) which injected Ca^{2+} by the voltage-induced opening of L-type Ca^{2+} channels (dihydropyridine receptors [DHPRs]) and the SR, which elicited massive Ca^{2+} release on binding of the incoming Ca^{2+} to ryanodine receptors (RyRs). Electron microscopy analysis of frozen skeletal and cardiac microsections, mainly the work of Franzini-Armstrong et al., painstakingly reconstructed the structural arrangement of DHPRs and RyRs and helped define the microarchitecture of triads in skeletal muscle (SR–t-tubule–SR apposition) and dyads in cardiac muscle (SR separated from t-tubule by a tiny gap of ≈15–20 nm) in a mesoscopic scale. The concept of couplon was logically derived from these functional and structural interactions and reaffirmed the association of voltage sensors in t-tubules (DHPRs) with Ca^{2+} release channels in the junctional SR (RyRs) in an inseparable functional unit. Thus, in an interesting saga from tap water to couplons (and many other intermediate steps omitted here for lack of space), the initial question of Ringer (What ions are necessary for heart contractions?) has been refined to other questions such as those involving precise, nanoscale interactions between DHPRs and RyRs, the elusive Ca^{2+} gradient resulting from their almost simultaneous opening, the process quenching the regenerative nature of Ca^{2+}-induced Ca^{2+} release, the all-or-none versus graded recruitment of RyRs in a single dyad during normal e-c coupling, etc.

The sophistication of the current questions in e-c coupling would have not been possible without the recording of intracellular Ca^{2+} signals in cardiac cells. The first visualization of intracellular Ca^{2+} transients was reported by Allen and Blinks in aequorin-injected frog cardiac muscle. The results were groundbreaking and revealed with fair approximation the cytosolic Ca^{2+} gradients achieved during single contractions for the first time. However, aequorin, a ≈22 kDa Ca^{2+}-sensitive chemiluminescent protein, is membrane impermeable and uses coelenterazine, which is irreversibly consumed to produce light, hence necessitating continuous addition of fresh protein into the media. These technical difficulties complicated the use of aequorin, and the widespread application of this technique never materialized. The arrival in 1985 of BAPTA-based Ca^{2+} indicators with capacity to permeate membranes, high Ca^{2+} affinity, and fast kinetics made intracellular Ca^{2+} measurements the mainstay of many laboratories. Only 2 years after the introduction of Fura-2, Cannell et al. determined not only the magnitude of the Ca^{2+} transients in patch-clamped rat cardiomyocytes, but also their voltage-[Ca^{2+}]_relationship and the resting (diastolic) [Ca^{2+}], establishing for the first time some of the most critical parameters of e-c coupling and revealing voltage ranges for maximal DHPR/RyR coupling efficiency. Finally, the introduction of fluorescein- and rhodamine-based Ca^{2+} indicators of high dynamic range and the advent of low-cost versatile confocal microscopes greatly facilitated the discovery of [Ca^{2+}]_sparks, the localized, transient, and presumably elemental Ca^{2+} signaling events first detected in ventricular myocytes by Cheng et al. Initially, Ca^{2+} sparks were thought to emanate from the opening of a single or a few RyR channels, but later studies pinpointed their origin to a cluster of RyRs, perhaps all those present in a single dyad. Although a single Ca^{2+} spark is an all-or-none or quantal event (but see below), recruitment of variable numbers of Ca^{2+} sparks allows for graded global Ca^{2+} release and hence contraction. Thus, the study of Ca^{2+} sparks provided direct evidence to the local control theory of e-c coupling and helped resolve the conundrum pertaining to...
the high-gain, regenerative nature of Ca\(^{2+}\)-induced Ca\(^{2+}\) release that predicted an all-or-none (instead of graded) Ca\(^{2+}\) release on cell depolarization. Fluo-3, the Ca\(^{2+}\) dye mostly used to detect Ca\(^{2+}\) sparks, displays fast Ca\(^{2+}\) association and dissociation kinetics (700 \(\mu\)mol/L per second and 369 per second, respectively) and could, in principle, return information on the Ca\(^{2+}\) dynamics of the dyadic cleft, but its fast diffusion coefficient distorts the spatial profile of the dyadic Ca\(^{2+}\) gradient, allows spatial blurring attributable to out-of-focus sampling, and precludes accurate estimation of the local peak Ca\(^{2+}\) level. Similarly, the use of intracellular solutions containing a fast, low-affinity Ca\(^{2+}\) indicator (such as Oregon Green 488 BAPTA 5N) and a slow, high-affinity Ca\(^{2+}\) buffer (EGTA) allows for detection of spatially restricted Ca\(^{2+}\) signals (Ca\(^{2+}\) spikes) that approximate the waveform of Ca\(^{2+}\) release flux in a dyad but, because of the high (EGTA) and the diffusion of the Ca\(^{2+}\) indicator as mentioned above, this method also fails to return accurate information on the magnitude of the dyadic Ca\(^{2+}\) gradient.

In this issue of Circulation Research, Shang et al\(^{11}\) made clever use of a nondiffusible, dyad-targeted Ca\(^{2+}\) biosensor to shed light, literally, on the Ca\(^{2+}\) dynamics that occur in the nanodomain of the dyadic cleft. The authors used GCaMP6f, a genetically encoded Ca\(^{2+}\) indicator composed of circularly permuted enhanced green fluorescent protein coupled to the Ca\(^{2+}\)-sensing protein calmodulin and to a calmodulin-binding peptide (the M13 fragment of myosin light chain kinase),\(^{12}\) and fused it to the N-terminal of triadin (T) or junctin (J), 2 proteins that traffic to the junctional SR and apparently interact with the RyR. GCaMP6f is itself of bigger mass than triadin or junctin (=32 and =26 kDa for the most common cardiac isoforms, respectively, see Figure) and is remarkable that junctin and triadin correctly target to the junctional SR despite such disproportionate cargo. Nevertheless, rat cardiac myocytes transfected with GCaMP6f-T/J display punctate fluorescence that partially overlaps with Di-4, an external membrane-bound dye and completely merges with RyR2 fluorescence, as expected if GCaMP6f-T/J was correctly trafficked to the junctional SR. In intact cells, the GCaMP6f-T/J fluorescence is spatially fixed, does not seem to interfere with normal Ca\(^{2+}\) signaling, and yields Ca\(^{2+}\) transients that are =50 times smaller in volume than customary Ca\(^{2+}\) sparks. Because these signals presumably arise from the nanodomain pertaining to a single dyadic cleft, the authors dubbed them Ca\(^{2+}\) nanosparks.\(^{11}\)

It is pertinent to remark some attributes of GCaMP6f-T/J and its Ca\(^{2+}\) transient to appreciate fully what the term Ca\(^{2+}\) nanospark really defines. Because of the multiple steps involved in fluorescence generation on Ca\(^{2+}\) binding, GCaMPs display slow response kinetics (\(\tau_{\text{on}} = 20 \text{ ms} \pm 1.4 \text{ s}\))\(^{13}\) compared with BAPTA-based indicators (\(\tau_{\text{on}} = 1 \text{ ms}\)). GCaMP6f is one of the fastest GCaMPs, and it was first used in neurons,\(^{12}\) where it faithfully tracked single synapse events that occurred in the subsecond time scale. Here, Shang et al\(^{11}\) found that GCaMP6f-T/J fusion to triadin increased its off rate =4-fold compared with native GCaMP6f, to 17 per second. Still, the on and off rates of GCaMP6f-T/J appear too slow for the rapidly rising and fast-decaying Ca\(^{2+}\) gradient that has been inferred by mathematical modeling for dyadic clefts of several animal species (see, for example, Cannell et al\(^{14}\)). On injection of a few Ca\(^{2+}\) ions into the dyadic cleft by DHPRs, RyRs almost instantly open (\(\tau_{\text{on}} \leq 1 \text{ ms}\)),\(^{16}\) generating Ca\(^{2+}\)-induced Ca\(^{2+}\) release and recruiting additional RyRs within the coupling. The merging of Ca\(^{2+}\) influx (\(I_{\text{Ca}}\)) and SR Ca\(^{2+}\) release generates local Ca\(^{2+}\) gradients that peak in =5 ms, persists for =15 ms, and reach levels upwards of 100 \(\mu\)mol/L.\(^{14}\) In notorious disparity, calibration of GCaMP6f-T/J in situ yielded a Ca\(^{2+}\) dissociation constant (\(K_{\text{D}}\)) of 0.63 \(\mu\)mol/L, clearly too high an affinity for the peak Ca\(^{2+}\) gradient of the dyadic cleft. Thus, GCaMP6f-T/J, although correctly targeted and probably monitoring Ca\(^{2+}\) fluxes from the nanovicinity of RyRs, appears too slow and too avid for Ca\(^{2+}\) to report the fast Ca\(^{2+}\) gradient accurately that occurs in a typical dyadic cleft. As a consequence of its slow kinetics, GCaMP6f-T/J acts as a low-pass filter, severely attenuating the amplitude of the peak Ca\(^{2+}\) gradient (Figure). Therefore, the most defining features of these Ca\(^{2+}\) nanosparks are their reduced volume and their spatial immobility, but they should not be used to surmise on the magnitude of the dyadic Ca\(^{2+}\) gradient, one of the most elusive of the e-c coupling parameters of current times.

Figure. Ca\(^{2+}\) nanospark: molecules that detect it and its relationship to other dyadic Ca\(^{2+}\) parameters. A. Approximate 3-dimensional relationship between calmodulin (CaM)–circularly permuted enhanced green fluorescent protein (cpEGFP)–M13 peptide (GCaMP6f), triadin, and the ryanodine receptor (RyR). The faded gray structure is the cryo-electron microscopy surface representation of the RyR1 protein at 10 Å resolution (courtesy of M. Samsó). Triadin and junctin were generated by Song et al\(^{13}\) using homology modeling. B. Estimated temporal relationship between the Ca\(^{2+}\) nanospark, the deconvolved Ca\(^{2+}\) nanospark signal (\(\Delta F/F_0\)), and the estimated local Ca\(^{2+}\) gradient flux in a dyad (used with permission from Cannell et al\(^{14}\)). Authorization for this adaptation has been obtained both from the owner of the copyright in the original work and from the owner of copyright in the translation or adaptation. See text for details. SR indicates sarcoplasmic reticulum.
How much farther will the Ca2+ nanosparks take the e-c coupling field? Are we witnessing a breakthrough of proportions akin to those of Allen and Blinks1 and Cannell et al.,2 who introduced Ca2+ imaging to a field that had relied on electric signals to infer Ca2+ movements, or Cheng et al.,3 who ushered in an era of Ca2+ microdomains and took e-c coupling to the level of single couplons? Only time will tell. But even now, some advances are evident and need not wait for the verdict of time. By making straightforward assumptions on its on and off kinetics that allowed for deconvolution of its raw signal, Shang et al.11 obtained fair estimates of the Ca2+ fluxes that occur in the dyad, which are in turn a fair approximation of the RyR channels’ open time. In essence, then, this new information is telling us for how long a dyad is activated, which had not been possible using diffusible Ca2+ indicators. Also, by virtue of the biosensor’s spatial confinement, researchers will now be able to infer when and where a dyad is activated and, because GCaMP6f-T/J does not seem to interfere with normal Ca2+ signaling, these parameters may be obtained even in contracting cells. Perhaps more importantly, information derived from these signals is already challenging long-established dogmas of e-c coupling: if the Ca2+ nanosparks truly represent Ca2+ signals from single dyads, then different amplitudes (or substructures)11 within a single Ca2+ nanospark may indeed represent different RyR clusters opening asynchronously (as postulated by the authors), which would not be expected from current local control models of couplon activation. Thus, there is uncontested merit in this novel approach. Although Ca2+ nanosparks do not report junctional Ca2+ levels with accuracy, neither do Ca2+ sparks report local cytoplasmic levels faithfully, yet, the latter have revolutionized our understanding of e-c coupling in fundamental ways.

Sources of Funding

H.H. Valdivia is a recipient of National Institutes of Health grants RO1-HL055438 and PO1 HL094291. Y.-T. Zhao has no grant support.

Disclosures

None.

References

1. Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol. 1883;4:29–42.3
2. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1985;245:C1–C14.
14. Cannell MB, Kong CH, Intiiaz MS, Laver DR. Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J. 2013;104:2149–2159.

Key Words: Editorials • calcium signaling • ryanodine receptor calcium release channel • sarcoplasmic reticulum
Ca2+ Nanosparks: Shining Light on the Dyadic Cleft But Missing the Intensity of Its Signal
Yan-Ting Zhao and Héctor H. Valdivia

Circ Res. 2014;114:396-398
doi: 10.1161/CIRCRESAHA.113.303112

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/114/3/396

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/