Recent Advances in Mitochondrial Research

Bradford G. Hill

Mitochondria are fundamental regulators of life and death. Not surprisingly, their role in the cardiovascular system is an intense area of research, with many important advances in the field published recently. Such articles have continued to enhance our appreciation of the importance of mitochondria in cardiovascular health and have further contributed to the idea that mitochondrial dysfunction is a sine qua non of cardiovascular disease (CVD).

An old question addressed anew relates to mitochondrial form. How do the shapes of mitochondria regulate their function? Do conditions associated with CVD alter mitochondrial dynamics? And does mitochondrial structure impact CVD? If so, how? For the past 2 years, there has been remarkable progress addressing these questions. Essential regulators of mitochondrial fission such as mitofusins 1 and 2 (Mfn 1/2), dynamin-related protein 1, and optic atrophy 1 are proving to be important in cardiac development, vascular homeostasis, and CVD. In the heart, Mfns have been shown to regulate permeability transition, cell death, and autophagy, and Mfn2 was shown to be integral in the removal of damaged mitochondria. Interestingly, loss of either Mfn1 or Mfn2 leads to increased tolerance to stress, whereas loss of both is lethal after e9.5 of development.

It has also been reported that conditional ablation of both Mfn1 and Mfn2 in adult hearts causes mitochondrial fragmentation, respiratory dysfunction, and lethal dilated cardiomyopathy. These effects of Mfn2 are likely related, in part, to its ability to tether mitochondria to sarco(endo)plasmic reticulum, allowing for propagation of sarco(endo)plasmic reticulum-mitochondrial Ca2+ signaling and regulation of bioenergetic responses to stress. Not unexpectedly, Mfn 1 and 2 are essential for postnatal remodeling in the heart and cardiomyocyte differentiation. Other regulators of mitochondrial fusion such as optic atrophy 1 have also been found to be critical for maintenance of cardiac function. From a therapeutic angle, inhibition of mitochondrial fission has the potential to become a viable option to prevent cardiac dysfunction following myocardial infarction.

Mitochondrial dynamics is a central regulator of vascular health as well. In smooth muscle, mitochondrial fission (via dynamin-related protein 1) was shown to be obligatory in the closure of the ductus arteriosus, which is required for the transition from the fetal to the neonatal pattern of circulation. Hence, the physiological changes in circulation occurring on first breath hinge on the structure of mitochondria! Mitochondrial fission, however, may be a double-edged sword in smooth muscle. It promotes a hyperproliferative phenotype that could be deleterious in the context of diseases such as pulmonary artery hypertension. Furthermore, diabetes mellitus and hyperglycemia elevate the expression of fission-1 protein and dynamin-related protein 1, resulting in mitochondrial fragmentation.

Similar to smooth muscle cells, mitochondrial fragmentation in endothelial cells is associated with a hyperproliferative phenotype, which generates higher levels of reactive oxygen species and is prone to senescence. Silencing of profission proteins restores mitochondrial networks and diminishes reactive oxygen species production while increasing the activation state of NO synthase, the latter of which could have a direct role in adaptive mitochondrial dynamics. In healthy endothelium, regulatory proteins such as uncoupling protein 2 seem to be integrated with profission responses to protect endothelial cells from the damaging reactive oxygen species and p53 activation associated with the fragmented mitochondrial phenotype.

Such changes in mitochondrial structure are known to be intricately linked with their removal via mitophagy, which seems to be essential for eliminating damaged mitochondria and preserving bioenergetic function. Should damaged mitochondria fail to be removed, then cell death via necrosis or...
apoptosis is a likely fate.21 Recent studies have shed further light into how the mitochondria regulate cell death and which specific pathways are activated by mitochondrial signaling. For example, loss of myeloid cell leukemia-1, an antiapoptotic B-cell lymphoma-2 protein, was found in 2 independent studies to impair mitochondrial respiration and lead to heart failure.22,23 Results from the past 2 years have also imparted novel insights into the roles of Ca2+/calmodulin-dependent protein kinase II,24–26 G protein–coupled receptor kinase 2,27 and mitochondrial signal transducer and activator of transcription 328 in myocardial cell death and mitochondrial stress in the heart. New advances were also made with respect to the well-studied protein targets, p53 and cyclophilin D: p53 was shown to bind to cyclophilin D, resulting in mitochondrial permeability transition pore–dependent necrosis.29,30 Although cyclophilin D is best known as a regulator of the mitochondrial permeability transition pore, studies also suggest that it modulates branched chain amino acid, pyruvate, and fatty acid metabolism,31 which was could be related to its putative role in regulating the mitochondrial acetylome.32,33 Interestingly, mitochondrial protein acetylation has also been suggested to play an important role in initiating mitophagy.34 Although there is still much to learn about cell death and the role of post-translational modifications such as protein acetylation, it is becoming increasingly clear that both cell death pathways and protein acetylation are regulated by pyridine nucleotides. Nicotinic acetylcholine receptors (NAD+/NADH) and their phosphorylated forms (NADP+/NADPH) are known to play central roles in energy production, ion channel regulation, and antioxidant defense in cardiovascular tissues.35,36 Recent studies have revealed that they regulate the Na+/Ca2+ exchanger to modulate Ca2+ homeostasis in cardiac myocytes,37 and a cytosolic form of the NAD+-utilizing enzyme aldehyde dehydrogenase 2 (initially thought to be localized only in mitochondria) was shown to be important in the bioactivation of nitroglycerin.38 The NAD+/NADH ratio also impacts the activity of the sirtuin family of protein deacetylases, and this ratio is regulated by circadian rhythms.39 Interestingly, circadian control of NAD+-dependent sirtuin 3 was shown to generate cadence in the acetylation of oxidative enzymes in mitochondria, linking respiratory activity with daily cycles of fasting and feeding.40 Moreover, diminishing complex I–supported mitochondrial respiration in the heart results in heightened NADH levels, elevated levels of protein acetylation, sensitization of mitochondria to permeability transition pore opening, and accelerated heart failure.41 A deeper understanding of how pyridine nucleotides regulate energy metabolism could aid in the development of novel therapies for CVD.

Recent work has also provided fresh insights into mechanisms underlying the salubrious effects of practical therapies such as caloric restriction and exercise. Caloric restriction is well known to diminish symptoms of cardiovascular aging and increase longevity, in part attributable to its ability to regulate not only sirtuin deacetylase activity, but mitochondria and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha-mediated processes as well.42 During caloric restriction, deacetylation of specific subunits of the electron transport chain was shown to be protective against ischemic stress.43 Exercise functions as a calorie restriction mimetic of sorts and is one of the most robust activators of PGC1. Consistent with the idea that stimulation of PGC1 activity could prevent cardiovascular decline because of stress or aging, PGC1β was demonstrated to maintain mitochondrial function following pressure overload and to prevent oxidative stress.44 Mitochondrial oxidative stress, in particular, could oxidize mitochondrial DNA, which is important in the fibrotic response that occurs after aortic constriction.45 Exercise may be important in preventing such mitochondrial changes: it was shown to prevent mitochondrial DNA depletion and mutations, increase oxidative capacity, and promote healthy aging46 as well as attenuate doxorubicin-mediated cardiac injury.47 A plausible idea concerning aging is that mitochondrial function and antioxidant capacity become mismatched over time, resulting in mitochondrial-mediated oxidative stress, bioenergetic dysfunction, and cell death. This is supported by the fact that deletion of the regulator of mitochondrial biogenetic programming PGC1α can increase mitochondrial reactive oxygen species production leading to vascular dysfunction and inflammation48 and that aortic stiffening and cardiac deterioration occur in mice expressing lower levels of the mitochondrial form of superoxide dismutase (superoxide dismutase 2).49,50 How exercise may balance mitochondrial activity levels with antioxidant capacity and delineating approaches to increase exercise capacity in obese and older individuals are areas of inquiry that, once addressed, could diminish the burden of disease associated with aging. With regards to exercise, it seems that we may be forced to abandon our 1980s approaches because deficiency in creatine—long regarded by the exercising community to have remarkable health and performance benefits—was shown in rodents to neither affect exercise capacity nor change responses to chronic myocardial stress.51

In summary, recent studies have addressed not only important, long-standing problems in mitochondrial research, but they have also led to unprecedented discoveries and novel insights into how mitochondria impact our cardiovascular health. Building on these discoveries, our search to identify the composition of mitochondria52,53 and the mitochondrial permeability transition pore,54 to understand how metabolic enzymes regulate cardiovascular remodeling and function,55–61 and to solidify the identity of the mitoKATP channel62,63 are likely to be active and contentious areas of mitochondrial research. Such controversy is important and useful because it fosters thoughtful and thorough testing of mitochondrial therapies targeting critical determinants of cardiovascular cell function.64 We can rest assured that future findings regarding how mitochondria remodel, how microRNAs regulate mitochondria,65,66 and clarification of the actions and targets67 of oxidants will further deepen our appreciation of the versatility of the mitochondrion and its critical roles in regulating cardiovascular physiology and disease.

Sources of Funding
The author acknowledges support by the National Institutes of Health [grants GM103492 and HL078825].

Disclosures
None.
References

Keywords: cardiovascular diseases | heart | metabolism | mitochondria | oxidative stress
Recent Advances in Mitochondrial Research
Bradford G. Hill

Circ Res. 2013;113:e107-e110
doi: 10.1161/CIRCRESAHA.113.302987

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/113/12/e107

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/