MicroRNA in Cardiovascular Calcification
Focus on Targets and Extracellular Vesicle Delivery Mechanisms

Claudia Goettsch, Joshua D. Hutcheson, Elena Aikawa

Abstract: Cardiovascular calcification is a prominent feature of chronic inflammatory disorders—such as chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis—that associate with significant morbidity and mortality. The concept that similar pathways control both bone remodeling and vascular calcification is widely accepted, but the precise mechanisms of calcification remain largely unknown. The central role of microRNAs (miRNA) as fine-tune regulators in the cardiovascular system and bone biology has gained acceptance and has raised the possibility for novel therapeutic targets. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of miRNA biology in cardiovascular calcification is very limited. This review focuses on the role of miRNAs in cardiovascular disease, with emphasis on osteogenic processes. Herein, we discuss the current understanding of miRNAs in cardiovascular calcification. Furthermore, we identify a set of miRNAs common to diseases associated with cardiovascular calcification (chronic kidney disease, type 2 diabetes mellitus, and atherosclerosis), and we hypothesize that these miRNAs may provide a molecular signature for calcification. Finally, we discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). The aim of this review is to provide an organized discussion of the known links between miRNA and calcification that provide emerging concepts for future studies on miRNA biology in cardiovascular calcification, which will be critical for developing new therapeutic strategies. (Circ Res. 2013;112:1073-1084.)

Key Words: aortic valve stenosis ■ cardiovascular diseases ■ circulating miRNA ■ diabetes mellitus, type 2 ■ extracellular vesicles ■ microRNAs ■ renal insufficiency, chronic ■ vascular calcification

MicroRNAs (miRNAs) are a large class of evolutionarily conserved, small, endogenous, noncoding RNAs serving as essential post-transcriptional modulators of gene expression that play a crucial role in normal physiology.1 miRNAs can be transcribed in parallel with host transcripts through 2 different transcription classes, exonic and intronic.2 Independent expression from intronic promoters could explain why host gene and miRNA expression do not always directly correlate.3 Another level of regulatory biological control of miRNAs are sponge RNAs, which act as a decoy for miRNAs,4 miRNAs regulate biological processes by binding to mRNA 3′-untranslated region sequences to attenuate protein synthesis or mRNA stability.5 Acting as genetic switches or fine-tuners, miRNAs are key regulators of diverse biological and pathological processes, including development, organogenesis, apoptosis, and cell proliferation and differentiation. In addition to these known physiological roles, miRNA dysregulation often results in impaired cellular function and disease progression.5 The detailed regulation of miRNA biogenesis in cardiovascular disease is reviewed elsewhere.5 The central role of miRNAs as fine-tune regulators in the cardiovascular system is still under investigation; however, miRNAs have received little attention in cardiovascular calcification—one of the most severe pathophysiological outcomes associated with cardiovascular disease.

Received August 31, 2012; revision received February 4, 2013; accepted February 6, 2013. In January 2013, the average time from submission to first decision for all original research papers submitted to Circulation Research was 12.2 days.

From the Center for Interdisciplinary Cardiovascular Sciences, and Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

Correspondence to Elena Aikawa, MD, PhD, Harvard Medical School, Cardiovascular Medicine, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, NRB-741, Boston, MA 02115, Phone: 617-730-7755, Fax: 617-730-7791, Email: eaikawa@partners.org

© 2013 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org DOI: 10.1161/CIRCRESAHA.113.300937

1073
Cardiovascular calcification is a major characteristic of chronic inflammatory disorders—such as chronic kidney disease (CKD), type 2 diabetes mellitus (T2D), and atherosclerosis—that are associated with significant morbidity and mortality. The precise mechanisms of calcification within the vessel wall or heart valve leaflets remain largely unknown, but the concept that pathways controlling bone remodeling also occur in the cardiovascular system is well accepted. Indeed, vascular calcification is correlated with osteoporosis in humans and animal models—the so-called calcification paradox. The physiological balance between induction and inhibition of calcification becomes dysregulated in CKD, T2D, and atherosclerosis, leading to calcification at several sites in the cardiovascular system, including the intima and media of vessels and the cardiac valves. Atherosclerotic calcification occurs as a part of the atherogenic progress in the vessel intima with small hydroxyapatite mineral crystals (microcalcifications) that seem to associate with cholesterol crystals observed in early lesions. Medial calcification occurs primarily in association with CKD and T2D, independently of hypercholesterolemia. Calcification of the aortic valve is associated with many of the same risk factors as intimal and medial calcification and leads to impaired movement of aortic valve leaflets, resulting in valve dysfunction. All three of these processes share risk factors and etiologic factors, including inflammation and oxidative stress, that appear to lead to changes in phenotype of resident or circulating progenitor cells.

Vascular calcification is an active, cell-regulated process (Figure 1). Various studies provide evidence of phenotypic transition/dedifferentiation of mature smooth muscle cells (SMCs) into an osteogenic phenotype—a key feature in vascular calcification. Osteogenic transition of vascular SMCs or stem cells is induced by bone morphogenetic proteins, inflammation, oxidative stress, or high phosphate levels, and leads to a unique molecular pattern marked by osteogenic transcription factors. In medial calcification, SMCs undergo dedifferentiation from a contractile to a proatherogenic synthetic phenotype, lose the expression of their marker genes, acquire osteogenic markers, and deposit a mineralized bone-like matrix. The major lineage source of osteogenic cells within the calcified atherosclerotic intimal lesion are SMCs; however, circulating bone marrow–derived cells also contribute to early osteochondrogenic differentiation in atherosclerotic vessels. Recently, a novel concept emerged that circulating cells harboring osteogenic potential can home to atherosclerotic lesions and contribute to intimal calcification. Independent of the cell type, it seems that master transcription factors, including Runx2/Cbfa1, Msx2, and osterix (SP7), designate cells for osteoblast lineages through the induction of downstream genes such as alkaline phosphatase (ALP), and osteocalcin. Runx2 acts as a critical regulator of osteogenic lineage and a modulator of bone-related genes and is essential and sufficient for driving SMC calcification.

Discovered in the bone biology field, a program of miRNAs controls Runx2 expression to prevent skeletal disorders. Three of these miRNAs (miR-133a, miR-135a, and miR-218) are altered in the circulation of patients with cardiovascular diseases. Additionally, circulating miRNAs have been proposed as biomarkers for a wide range of cardiovascular diseases, but knowledge of circulating miRNA in cardiovascular calcification is scant. No pattern of miRNA has been reported for vascular calcification; however, as new studies emerge, it may be helpful to understand the role of miRNAs in diseases and cellular signaling processes known to be associated with calcification. Therefore, in this review we begin by discussing the current, limited understanding of miRNA in cardiovascular calcification. We then document a set of circulating miRNAs, which is dysregulated in certain cardiovascular diseases (eg, CKD, T2D, atherosclerosis), and we propose a potential circulating miRNA signature for vascular calcification. We discuss this novel hypothesis with emphasis on known biological and pathological osteogenic processes (eg, osteogenic differentiation, release of calcifying matrix vesicles). Furthermore, we summarize and discuss miRNAs that control bone organization and link them to potential regulation of cardiovascular calcification.

miRNA in Cardiovascular Calcification and Osteogenesis

Evidence for the role of miRNAs in cardiovascular calcification is very limited (Table 1). However, we recently provided...
the first miRNA-dependent mechanism in the progression of vascular calcification by demonstrating that miR-125b dysregulation leads to the transition of human coronary arterial SMCs into osteoblast-like cells partially by targeting the transcription factor osterix. Inhibition of miR-125b promoted ALP activity and matrix mineralization in vitro. Correspondingly, in vivo observations indicate that miR-125b decreased in calcified aortas of apolipoprotein-deficient (Apoe) mice fed a high-fat diet for 26 weeks compared with those euthanized after 10 weeks. Additionally, miRNA-processing enzymes DROSHA and DICER—essential for SMC function—were determined.

Using the Exiqon mercury Locked Nucleic Acids miRNA array, Gui et al found 20 altered miRNAs in the aortic media of klotho mutant (kl/kl) mice. Kl/kl mice display vascular calcification attributable to hyperphosphatemia and through a Runx2-dependent mechanism, presenting the symptoms of CKD-associated bone and mineral disorders. Seventeen miRNAs were increased and 3 decreased (miR-1, miR-93, miR-302b) in kl/kl mice compared with wild-type kl/kl mice. The failure of miR-680 specific inhibitor to reduce SMC calcification resulted in the conclusion that miR-135a*, miR-762, miR-714, and miR-712* are specifically involved in calcification. Indeed it has been shown that miRNAs often function in clusters; however, it is still unknown whether the cluster is limited to these 4 miRNAs. Additionally, the role of the other 15 highly regulated miRNAs in kl/kl mice needs to be determined.

miR-204, a known inhibitor of osteoblastogenesis, was also recently found to contribute to SMC calcification in vitro and in vivo. In vitro, miR-204 was identified to be a negative regulator of SMC calcification through direct targeting the 3′ untranslated region of the Runx2 gene in mouse SMCs cultured in calcifying media consisting of 10 mmol/L β-glycerolphosphate. Similarly, in a mouse model of vitamin D3–induced vascular calcification, overexpression of miR-204 by agomiRs decreased medial calcification and Runx2 expression mostly to control level within 3 days of treatment.

Table 1. Specific miRNAs, Their Targets, and Effects in Cardiovascular Calcification

<table>
<thead>
<tr>
<th>miRNA/Regulation</th>
<th>Target</th>
<th>Cell Source</th>
<th>Observation by Using Inhibitor/Mimic</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-125b ↓</td>
<td>SP7</td>
<td>Human CASMC</td>
<td>Inhibit ALP activity and matrix mineralization</td>
<td>23</td>
</tr>
<tr>
<td>miR-223 ↑</td>
<td>Metf2c, RhoB, SMc actin</td>
<td>Human SMC</td>
<td>Enhance VSMC migration</td>
<td>32</td>
</tr>
<tr>
<td>miR-143 ↓</td>
<td>KLF4</td>
<td>Human SMC</td>
<td>—</td>
<td>32</td>
</tr>
<tr>
<td>miR-30d/e ↓</td>
<td>Runx2</td>
<td>Human SMC</td>
<td>Inhibit ALP activity and matrix mineralization</td>
<td>42</td>
</tr>
<tr>
<td>miR-204 ↓</td>
<td>Runx2</td>
<td>Mouse SMC</td>
<td>Inhibit ALP activity and osteocalcin secretion</td>
<td>28</td>
</tr>
<tr>
<td>miR-29a/b ↓</td>
<td>ADAMTS-7</td>
<td>Rat SMC</td>
<td>Inhibit matrix mineralization</td>
<td>52</td>
</tr>
<tr>
<td>miR-135a*, miR-762, miR-714, or miR-712* ↑</td>
<td>NCX1, PMCA1, NCKX4</td>
<td>Mouse SMC</td>
<td>Promote matrix mineralization</td>
<td>25</td>
</tr>
</tbody>
</table>

Bold indicates direct binding to 3′ untranslated region not shown in this study; and arrow indicates regulation of miRNA.

ALP indicates alkaline phosphatase; CASMC, coronary artery smooth muscle cell; miRNA, microRNA; SMC, smooth muscle cell; TGF, transforming growth factor; and VSMC, vascular smooth muscle cell.

As mentioned above, osteogenic differentiation of SMCs is also characterized by a loss of traditional SMC markers. Changes in the expression levels of the miR-143/145 cluster promotes differentiation and represses proliferation of SMCs thereby maintaining the SMC phenotype; and have also been linked to vascular calcification. Exposure of human primary SMC to pathophysiological levels of Pi decreased miR-143 and miR-145 expression. Similarly, these miRNAs are downregulated in the aorta of 20-week-old Apoe-deficient mice. Even though studies have yet to establish a direct functional role of miR-143 and miR-145 in vascular calcification, this hypothesis is supported by findings noted in literature of...
diseases associated with calcification. miR-145 promotes SMC differentiation by targeting Krüppel-like factor (KLF) 4,40 and KLF4 mediates high phosphate–induced transition of SMCs into osteogenic cells.31 Inhibition of miR-143/145 promotes a phenotypic switch to the synthetic, proatherogenic SMC state,25 including the inhibition of SMC marker (eg, α-smooth muscle actin and smooth muscle myosin heavy chain)—both diminished in osteogenic SMCs.35 Additionally, circulating miR-145 levels are reduced in patients with coronary artery disease (CAD).15 Moreover, miR-145 was identified as part of the specific miRNA profile of destabilized human plaques,36 a biomechanical failure of the plaque that may involve microcalcification.37,38

In mediating these cellular changes, the paracrine osteogenic signals facilitated by morphogens of the bone morphogenetic protein (BMP) and wingless-type MMTV integration site family member (Wnt) superfamily, are effective regulators of vascular and valvular calcification, but also necessary in controlling skeletal osteogenesis.39 Two members of the BMP signaling pathway (reviewed in detail elsewhere).39 BMP-2 and BMP-4 are potent osteogenic differentiation factors detected in calcified areas of atherosclerotic lesions.40,41 BMPs elicit their effects through activation of a receptor complex composed of type I and type II receptors and activate receptor type–dependent and ligand-dependent Smad transcription factors, which modulate the expression of Runx2.39

A recent study indicated that BMP-2 promotes SMC calcification by decreasing the expression of miR-30b by 6.2-fold and miR-30e by 5.5-fold though an Smad-independent pathway that leads to a direct increase in Runx2.42 Using antagonirs to block these miRNAs it was found that downregulation of miR-30b and miR-30e in vitro is sufficient to increase Runx2 expression, even in the absence of BMP-2. Accordingly, calcified human coronary arteries demonstrate higher BMP-2 levels and lower levels of miR-30b than noncalcified coronary arteries. Similar miRNA modulations of BMP-2 signaling have been observed in studies of heart valve calcification. Nigam et al recently identified a miRNA pattern specific to aortic stenosis, which is typically caused by calcific aortic valve disease, using whole bicuspid valves.43 miR-30b was decreased in the aortic valves of patients requiring replacement as a result of aortic stenosis, compared with those requiring replacement as a result of aortic insufficiency.44 Another group compared bicuspid and tricuspid aortic valve leaflets by miRNA microarray and found a number of modulated miRNAs.44 Particularly, miR-141 had the most dramatic change, showing a 14.5-fold decrease in the bicuspid versus tricuspid valves; however, the levels of calcification were comparable between the two groups. In vitro, miR-141 represses the valvular interstitial cell, the resident cell within cardiac valve leaflets, response to osteogenic stimuli, in part through blocking BMP2-dependent calcification.45 Likewise, Itoh et al identified miR-141 as a preosteoblast differentiation-related miRNA, which modulated the BMP2-induced preosteoblast differentiation by direct translational repression of Dkk1, a transcription factor for ostexin.45 miR-26a is another miRNA, which is repressed in aortic valve leaflets of patients with aortic stenosis.46 miR-26a was previously identified as a Smad-regulating miRNA related to osteoblastogenesis; it functionally represses osteoblast differentiation by targeting Smad1 and Smad5 expression.46 Human aortic valvular interstitial cells showed decreased mRNA levels of both BMP-2 and Smad1 when treated with a miR-26a mimic.

Although BMP-2 is a known inducer of osteogenic differentiation, activation of Wnt signaling is crucial for controlling osteoblast function47 and for the programming of vascular cells during cardiovascular calcification.48 Activation of the Wnt/β-catenin signaling pathway occurs in human calcified aortic valve stenosis,49 in low-density lipoprotein–deficient mice50 and in osteogenic SMCs in vitro.51 miR-29a potentiates osteoblastogenesis by modulating Wnt signaling. Interestingly, miR-29a/b was repressed in high-phosphate–induced calcifying rat SMC, calcified abdominal aortas from rats with CKD induced by 5/6 nephrectomy, and human radial arteries with chronic kidney failure.52 miR-29a/b directly targeted a disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7) as shown by luciferase assay. A miR-29a/b mimic inhibited, and a miR-29a/b inhibitor enhanced, high-phosphate–induced SMC calcification though alteration of ADAMTS-7, BMP-2, p-Smad 1/5/8, and Runx2 protein expression. Because miR-29 also associated with reduced extracellular matrix components, such as collagen and elastin,53 low cellular miR-29a/b levels may also cause vascular thickening, fibrosis, and elastolysis, which accelerate arterial and aortic valve calcification.44

Likewise, the canonical Wnt signaling induces miR-29a expression, which negatively targets regulators of Wnt signaling, including Dickkopf (Dkk) 1, sFRP2, Kremen, and osteonectin.54,55 Dkk1 is an extracellular antagonist of the canonical Wnt signaling that plays a crucial role in bone remodeling.56,57 Dkk1 was also shown to prevent vascular calcification by preventing warfarin-induced activation of β-catenin, and osteo- genic transdifferentiation of SMCs59 and tumor necrosis factor α–induced induction of ALP activity.58 Dkk1 serum levels in CKD patients correlate negatively with arterial stiffness,60 and matrix metalloproteinase-2, another target of miR-29,61 promotes arterial calcification in CKD.62

Studies about miRNA expression in human calcified tissue are rare (Table 2). Li et al analyzed the expression of miRNAs in patients with peripheral artery disease (arteriosclerosis obliterans), characterized by fibrosis of the tunica intima and calcification of the tunica media.63 miR-21, miR-130a, miR-27b, let-7f, and miR-210 were significantly increased, whereas miR-221 and miR-222 were decreased in the sclerotic intima samples, compared with normal vessels.64 Higher levels of miR-21 and miR-210 were confirmed in a study that compared atherosclerotic lesions with nonatherosclerotic left internal thoracic arteries.65 miR-210 is known to promote osteoblast differentiation though the inhibition of the BMP co-receptor activin type IB receptor (ALK4).66 In line with this evidence, activin—a ligand for ALK466—inhibits SMC mineralization.67 Another study found a different miRNA pattern using atherosclerotic plaque material from the carotid artery, compared with a specimen from the arteria mammaria interna as control tissue.20 The healthy vessel expressed higher levels of miR-520b and miR-105, whereas miR-10b, miR-218, miR-30e, miR-26b, and miR-125a were predominantly expressed in atherosclerotic plaque.20 The investigators in these studies,
Table 2. miRNAs Expressed in Human Atherosclerotic/Calcified Tissue

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Disease</th>
<th>Tissue Type</th>
<th>Finding</th>
<th>Control Tissue</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-21, -34a, -146a, -146b-5p, -210</td>
<td>CAD</td>
<td>Atherosclerotic arteries</td>
<td>Increased</td>
<td>Non-atherosclerotic left internal thoracic arteries</td>
<td>64</td>
</tr>
<tr>
<td>miR-105, -520b</td>
<td>CAD</td>
<td>Atherosclerotic carotid artery</td>
<td>Decreased</td>
<td>Arteria mammaria interna</td>
<td>20</td>
</tr>
<tr>
<td>miR-10b, -26b, -30e, -125a, -218, -30b</td>
<td>CAD</td>
<td>Calcified carotid artery</td>
<td>Decreased</td>
<td>Noncalcified carotid artery from non CAD patients</td>
<td>42</td>
</tr>
<tr>
<td>miR-100, -127, -133a,b-145</td>
<td>CAD</td>
<td>Destabilized plaque</td>
<td>Increased</td>
<td>Stabilized plaque</td>
<td>21</td>
</tr>
<tr>
<td>miR-221, -222</td>
<td>CAD</td>
<td>Sclerotic intima from lower extremities vessels</td>
<td>Decreased</td>
<td>Noncalcified intima from lower extremities vessels</td>
<td>63</td>
</tr>
<tr>
<td>miR-26a, -30b, -195</td>
<td>AS</td>
<td>Whole bicuspid valves</td>
<td>Decreased</td>
<td>Replacement due to aortic insufficiency</td>
<td>43</td>
</tr>
</tbody>
</table>

Bold indicates found in >1 study; and italic, found also in circulation (Table 3). AO indicates arteriosclerosis obliterans; AS, aortic stenosis; and CAD, coronary artery disease.

However, did not examine calcification levels to determine a potential correlation with the observed changes in miRNA.

In addition to the osteoblastogenesis of SMCs, the contribution of osteoclasts, bone resorbing cells that play an active role in normal bone physiology, to vascular calcification is controversial and poorly understood. The observation of osteoclast-like cells in calcified atherosclerotic lesions suggested this bone-related cell is active in the vessel wall. The evidence was strengthened recently by Sun et al, who demonstrated the functional role of SMC-derived Runtx2 promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells—suggesting that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process. The receptor activator of the nuclear factor-kB ligand/osteoprotegerin system controls proper osteoblastogenesis, and acts as a biomarker for CAD. Five miRNAs are linked to osteoblastogenesis as well as to cardiovascular disorders. (1) The receptor activator of the nuclear factor-kB ligand is a proposed target of miR-126, which is decreased in the plasma of CAD and T2D patients. (2) miR-155, which is decreased in plasma of CKD studies, was shown to inhibit osteoclast function in Dicer-deficient osteoclasts. (3) miR-146a, highly expressed in atherosclerotic arteries, inhibits osteoblastogenesis by inhibition of the number of tartrate-resistant acid phosphatase-positive multinucleated cells. (4) miR-223, a key factor in osteoblastogenesis, was found to be increased by Pi treatment of human SMC and in the calcified aorta of Apoe-deficient mice. Overexpression of miR-223 enhanced SMC migration, decreased acit cytoskeleton and modulated target genes, like Mef-2 and RhoB. (5) Wang et al demonstrated an association of miR-133a levels in circulating monocytes—osteoclast precursors—with postmenopausal osteoporosis. Women with low bone mineral density showed higher circulating miR-133a levels, but the number of patients per group was small (n=10). Circulating miR-133a levels were also higher in patients with CAD. However, direct links between miR-133a and/or miR-223 and vascular calcification processes have not been reported.

More careful research needs to be conducted to establish direct links between miRNAs and known signaling pathways associated with osteogenic differentiation in the context of cardiovascular calcification. For example, despite the links from different studies noted above, the direct Pi–miR-143/145–KL4 axis in vascular calcification has not been examined. Additionally, future studies may also lead to a better understanding of the role of miRNA networks in controlling cellular differentiation and ultimate tissue level changes. For instance, though miR-204 is a known inhibitor of osteoblastogenesis, introduction of a mimic agomiR-204 does not alter bone formation in a mouse model of vitamin D3–induced vascular calcification. The observation that miRNAs function in clusters to control cellular and tissue homeostasis may help explain some of the current inconsistencies observed between normal bone formation and vascular calcification (eg, the correlation between osteoporosis and calcification—the calcification paradox). Future miRNA studies may also better connect known signaling pathways associated with osteogenesis to the ultimate pathological outcomes, thereby leading to a deeper understanding of the cellular processes that lead to calcification.

Circulating miRNAs in Diseases Associated With Vascular Calcification – A Potential miRNA Signature

Our detailed investigation using currently published literature revealed common circulating miRNAs in diseases associated with vascular calcification. We compared miRNA signatures identified in 10 CAD, 4 T2D, and 1 CKD studies (Table 3). From this analysis, 7 miRNAs (miR-21, miR-27, miR-34a, miR-126, miR-146a, miR-155, and miR210) were found to be useful biomarkers shared between at least 2 of the compared diseases, but only miR-21 was common among all three diseases (Figure 2). miR-21 relates to key processes in the progression of atherosclerosis, and predicted targets of miR-21 include BMPR2, which has been linked to atherosclerotic calcification.
intima from lower-extremity vessels expressed higher miR-21 levels than did healthy vessels, whereas circulating levels of miR-21 in atherosclerosis (serum), T2D (plasma), or CKD (plasma) were reduced. The reason for this opposing observation is not fully understood and requires further investigation. A recent report showed that miRNAs are increased in atherosclerotic abdominal aortic aneurysm tissue, whereas reduced levels were found in the circulation, miRNAs packaged inside exosomes or apoptotic bodies may be specifically taken up by diseased tissue, which decreases circulating miRNAs.

Of note within the miRNAs shared between 2 of the diseases, miR-146a is an inflammation-related miRNA, implicated in atherosclerosis and osteoelasticostases. Although circulating miR-146a obtained from peripheral blood mononuclear cells is increased in CAD patients, T2D studies showed controversial results; miR-146a serum levels were increased, and levels in monocytes were decreased. In addition, miR-146a was more highly expressed in atherosclerotic arteries in an animal model and is associated with CKD in vivo. Additionally, miR-155, another inflammation-associated miRNA, was decreased in serum of CAD patients and plasma of CKD patients. Deficiency of miR155 enhanced atherosclerotic plaque development and decreased plaque stability, suggesting that it acts as an anti-inflammatory and atheroprotective miRNA. miR-155 is also highly expressed in endothelial cells and SMCs, where it targets angiotensin-II receptor. The renin–angiotensin system participates in vascular calcification, and angiotensin receptor blockade can inhibit arterial calcification by disrupting vascular osteogenesis in vivo. Furthermore, miR-155 repressed osteoblastogenesis by targeting Smad proteins. Thus, high expression of miR-155 may prevent vascular calcification by inhibiting the BMP signaling pathway or the renin–angiotensin system. Comparison of circulating miRNAs in published studies is challenging, mainly because of the different sources of circulating miRNAs, which include serum, whole blood, peripheral blood mononuclear cells, endothelial progenitor cells, and platelets (Table 3) and use different protocols. The miRNA profiles obtained from the different studies, therefore, are often not the same. Future studies need to take a standardized approach to identify circulating miRNAs. In this context, a recent report suggested the necessity of careful selection for reference miRNAs by showing that hemolysis may significantly affect the levels of plasma miRNAs previously used as endogenous controls. Therefore, hemolysis should be determined, to avoid the phenomenon based on red blood cells. Alternatively, the determination of miRNAs known to be enriched in red blood cells, like miR-451 and miR-16 could be performed. A novel Locked Nucleic Acids–based qPCR method can identify samples affected by sources of preanalytical variation such as cellular contamination.

Allowing for these limitations, a set of circulating miRNAs (consisting of miR-21, miR-27, miR-34a, miR-126, miR-146a, miR-155, and miR-210) is dysregulated in various proinflammatory diseases and may represent a miRNA signature for vascular calcification. Of note, systemic and local inflammation paradoxically affects cardiovascular calcification and bone loss, which supports the concept of inflammation-dependent cardiovascular calcification previously proposed by our group and others. Given the observation that miRNAs often function in clusters and networks, the subset of circulating miRNAs identified in our analysis may turn out to be a portion of a larger network that regulates cardiovascular calcification, wherein the up- or downregulation of a single miRNA is less important than the function of the network as a whole. Using a network analysis, key miRNA clusters may then be identified as the core regulators of the calcification process. Future studies may be able to use this subset as a starting point when trying to compile the larger networks for calcification.

Extracellular Vesicles in miRNA Transport and Calcification

miRNAs are present in blood (plasma, platelets, erythrocytes, nucleated blood cells) with high stability that is conferred by encapsulation in extracellular vesicles, association with a protein complex with the RNA-binding protein Argonaute (Ago) 2, or in lipoprotein complexes (high-density lipoprotein). These associations prevent the degradation of the miRNAs while in the circulation. However, the mechanism by which the majority of miRNAs are transported extracellularly remains controversial. Exported miRNAs are found both within and outside of 16 500 and 120 000g centrifugation pellets, which contains most of the cell-derived vesicles. Other studies showed that the majority of miRNAs are independent of vesicles and copurify with the Ago2 complex, which is known as a key intracellular effector protein of miRNA-mediated RNA silencing. Arrow et al quantified 88 plasma miRNAs (isolated by 120 000g centrifugation, 70 minutes) from healthy donors and found that 90% of them are present in a nonmembrane-bound form. Another study compared microparticles isolated from a 16 000g (90 minutes) centrifugation of plasma from patients with stable CAD and patients with acute coronary syndrome as a control. In CAD patients, most plasma miRNAs associate with extracellular vesicles, and only a small amount are found in extracellular vesicle-free plasma. However, the number of cases is very small (n=5 per group) and a healthy control group is missing. To determine whether the differing patterns of vesicle-associated miRNAs may be used to characterize different diseases, larger study collectives with standardized protocols are needed.
The miRNA pattern found within released vesicles is different from that associated with Ago2 complexes, implicating a cell type–specific miRNA release using different export systems. Depending on the size and type, extracellular vesicles are broadly classified as ectosomes (also called shedding microvesicles), exosomes, matrix vesicles, and apoptotic bodies. Ectosomes are large extracellular vesicles 50 to 100 nm in diameter. Exosomes are small membranous vesicles of endocytic origin with diameter of 40 to 100 nm. Matrix vesicles, which have been shown to calcify, are 30 to 300 nm in diameter and produced by blebbing of the plasma membrane. Apoptotic bodies, 500 to 1000 nm in diameter, are released from fragmented apoptotic cells. Cells may select miRNA and pre-miRNA for cellular release as cargo within these vesicles in a context-dependent manner. miRNA profiles of extracellular vesicles are different from their maternal cell profiles, indicating an active mechanism of selective miRNA packing from cells into vesicles, whereas Ago2–miRNA complexes may be passively produced by dead cells, released by live cells, or actively transported though cell membrane–associated channels or receptors. Additionally, blockade of sphingomyelinase inhibits exosome generation, miRNA secretion, and subsequent intercellular miRNA transfer, implicating a ceramide-dependent mechanism in miRNA packaging and release within extracellular vesicles.

Cells use extracellular vesicles to transport miRNA and mediate intercellular communication over long distances or on a local tissue level. Endothelial apoptotic bodies can convey miR-126 to atherosclerotic lesions, demonstrating unique paracrine-signaling function for miRNA during atherosclerosis. A recent report provided evidence that miRNA-containing vesicles regulate intercellular communication between endothelial cells and SMCs by selective packaging of the previously discussed regulators of SMC phenotype, miR-143/145, in endothelial cell–derived vesicles that are then transported to SMCs in the vessel wall.

Figure 3. Alteration of matrix vesicle transport of circulating miRNAs in cardiovascular calcification. In physiological conditions (A) or during bone calcification (osteoogenesis; B), extracellular vesicles bind to the membrane proteins of the surface of target cells through receptor–ligand interaction, causing signaling processes. They can also fuse with cell–target membrane or bind to surface receptors on target cells with endocytic internalization by recipient cell, leading to a release of their content into the cytosol of target cells. C, Mechanisms associated with extracellular vesicle–miRNA–mediated pathological calcification. Potential mechanisms associated with extracellular vesicle–miRNA–mediated pathological calcification include the following: (1) a different miRNA packaging into vesicles attributable to the osteogenic environment; (2) increased degradation attributable to increased enzymatic activity within the vesicle; (3) blocked vesicle uptake into the target cell; and (4) uptake in nontarget cells attributable to mineral nucleation on the outer membrane.
The mechanism by which miRNAs are received by target cells in a biologically active state is still unknown. In physiological conditions, extracellular vesicles may bind to the membrane proteins of the surface of target cells through receptor–ligand interaction, resulting in intracellular stimulation of genetic pathways. They can also fuse with cell–target membranes and release genetic content in a nonselective manner. Furthermore, vesicles can bind to surface receptors on target cells with endocytotic internalization by recipient cells, followed by fusion with the membranes, leading to a release of their content into the cytosol of target cells and allowing the vesicle contents to directly associate with intracellular components. In a pro-osteogenic environment, the specific, physiological vesicle-mediated transport of miRNA in the vasculature may be disturbed through differential miRNA packaging into the vesicles, decreased miRNA stability by increased enzymatic activity (methyl transferase, 3′-5′ exonuclease) within the vesicles, increased matrix vesicle degradation, or blocked or nonspecific uptake of vesicle into the target cell due to mineral nucleation on the outer membrane. In fact, SMC-derived matrix vesicles have been observed to calcify in a cell-independent manner when exposed to mineralizing conditions with noncalcifying vesicles, which might be caused by a specific packaging mechanism.

Treatment of SMCs with elevated calcium levels promotes the production of calcifying matrix vesicles, and the loss of fetuin-A, an inhibitor of mineral nucleation. These vesicles act as early nucleation sites for calcification. The phosphatidylserine-membrane complex from SMC-derived and macrophage-derived matrix vesicles redistributes and nucleates hydroxyapatite. In addition, hydroxyapatite nanocrystals shed from vesicles may further promote mineralization via direct effects on the SMC phenotype. Using a proteomic approach it was also shown that calcified extracellular vesicles-derived from SMC contain a specific protein profile compared with noncalcifying vesicles, which might be caused by a specific packaging mechanism.

In a pro-osteogenic environment, the specific, physiological vesicle-mediated transport of miRNA in the vasculature may be disturbed through differential miRNA packaging into the vesicles, decreased miRNA stability by increased enzymatic activity (methyl transferase, 3′-5′ exonuclease) within the vesicles, increased matrix vesicle degradation, or blocked or nonspecific uptake of vesicle into the target cell due to mineral nucleation on the outer membrane. In fact, SMC-derived matrix vesicles have been observed to calcify in a cell-independent manner when exposed to mineralizing conditions on a collagen I substrate. These results may explain the observations of an increased number of matrix vesicles and numerous microcalcifications throughout the collagen I-rich fibrous caps of atherosclerotic plaques. These microcalcifications have been hypothesized to contribute directly to plaque rupture that leads to thrombosis. Given these observations, miRNAs packed in extracellular vesicles may contribute to vascular calcification in two ways. First, vesicles packaged with miRNA for paracrine signaling within the plaque may become entrapped and form microcalcifications. Second, in turn, this may prevent the miRNAs within the vesicles from reaching the intended target cell, leading to phenotypic changes that promote further calcification. Therefore, insight into the underlying mechanism of selective packing of miRNAs into extracellular vesicles and selective uptake into the target cell is still needed.

Table 3. Circulating miRNA in Diseases Associated With Vascular Calcification

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Disease</th>
<th>Source</th>
<th>Finding</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-17, -21, -20a, -22a, -27a, -92a, -126, -145, -155, -221, -130a, -208b, let-7d</td>
<td>CAD</td>
<td>Serum</td>
<td>Decreased</td>
<td>19</td>
</tr>
<tr>
<td>miR-133a, -208a</td>
<td>CAD</td>
<td>PBMC</td>
<td>Increased</td>
<td>99</td>
</tr>
<tr>
<td>miR-146a/b</td>
<td>CAD</td>
<td>PBMC</td>
<td>Decreased</td>
<td>99</td>
</tr>
<tr>
<td>miR-34a</td>
<td>CAD</td>
<td>EPC</td>
<td>Increased</td>
<td>119</td>
</tr>
<tr>
<td>miR-221, -222</td>
<td>CAD</td>
<td>EPC</td>
<td>Increased</td>
<td>120</td>
</tr>
<tr>
<td>miR-135a, -147</td>
<td>CAD</td>
<td>EPC</td>
<td>Decreased</td>
<td>22</td>
</tr>
<tr>
<td>miR-140, -182</td>
<td>CAD</td>
<td>Whole blood</td>
<td>Decreased</td>
<td>121</td>
</tr>
<tr>
<td>miR-122, -370</td>
<td>CAD</td>
<td>Plasma</td>
<td>Increased</td>
<td>122</td>
</tr>
<tr>
<td>miR-181a</td>
<td>CAD</td>
<td>Monocytes</td>
<td>Decreased</td>
<td>123</td>
</tr>
<tr>
<td>Let-7i</td>
<td>CAD</td>
<td>Monocytes</td>
<td>Decreased</td>
<td>124</td>
</tr>
<tr>
<td>miR-20b, -21, -24, -29b, -15a, -126, -150, -191, -197, -223, -320, -486</td>
<td>CAD</td>
<td>Platelets</td>
<td>Increased</td>
<td>125</td>
</tr>
<tr>
<td>miR-28-3p</td>
<td>T2D</td>
<td>Plasma</td>
<td>Decreased</td>
<td>71</td>
</tr>
<tr>
<td>miR-146a</td>
<td>T2D</td>
<td>PBMC</td>
<td>Decreased</td>
<td>86</td>
</tr>
<tr>
<td>miR-21, -27b, -126, -130a</td>
<td>T2D</td>
<td>EPC</td>
<td>Decreased</td>
<td>126</td>
</tr>
<tr>
<td>miR-21, -27a, b, -126, -130a</td>
<td>T2D</td>
<td>EPC</td>
<td>Decreased</td>
<td>126</td>
</tr>
<tr>
<td>miR-9, -29a, -30d, -34a, -124a, -146a, -375</td>
<td>T2D</td>
<td>Serum</td>
<td>Decreased</td>
<td>85</td>
</tr>
<tr>
<td>miR-16, -21, -155, -210, -638</td>
<td>CKD</td>
<td>Plasma</td>
<td>Decreased</td>
<td>72</td>
</tr>
<tr>
<td>miR-188-5p, -135*, -323-3p, -509-3p, -520-3p, -573, 629*, -632</td>
<td>HC</td>
<td>HDL</td>
<td>Decreased</td>
<td>99</td>
</tr>
<tr>
<td>miR-24, -106a, -191, -218, -222, -223, -342-3p, -412, let-7p</td>
<td>T2D</td>
<td>Plasma</td>
<td>Decreased</td>
<td>126</td>
</tr>
<tr>
<td>miR-21, -27b, -130a, -210</td>
<td>A0</td>
<td>Serum</td>
<td>Increased</td>
<td>63</td>
</tr>
</tbody>
</table>

Bold indicates found in >1 study; and italic, found also in tissue (Table 2).

AO indicates arteriosclerosis obliterans; AS, aortic stenosis; CAD, coronary artery disease; CKD, chronic kidney disease; EPC, endothelial progenitor cell; HC, familial hypercholesterolemia; HDL, high-density lipoprotein; PBMC, peripheral blood mononuclear cell; and T2D, type 2 diabetes mellitus.
cell will help increase understanding of the role of miRNA-containing vesicles in physiological intercellular communication as well as unintended disruption of this communication, which may prevent calcification in the vascular system.

Conclusion and Emerging Concepts
In this review, we have discussed an emerging role of miRNAs in cardiovascular calcification, and we have also analyzed the literature of diseases that are known to correlate with calcification, and we have also analyzed the amount of these fine-tuned targets may alter biological responses and phenotypes. Understanding the role of miRNA in vascular calcification may be helpful in considering the paradoxical clinical observations of the concurrence of cardiovascular calcification and osteoporosis. Despite its global clinical burden, no medical therapies are available to treat cardiovascular calcification. Targeting of miRNA represents a novel therapeutic opportunity for treating cardiovascular calcification. As cardiovascular calcification and bone remodeling share common mechanisms, we need an in-depth understanding of miRNA function and their association with the molecular pathogenesis of osteoporosis and vascular calcification. This knowledge will be critical for the development of a more specific therapy for cardiovascular calcification that does not adversely affect physiological bone homeostasis.

Acknowledgments
We thank Sara Karwacki for her editorial assistance.

Sources of Funding
This work was supported by an American Heart Association (AHA) Scientist Development grant (0835460 N) and by a grant from the National Institutes of Health (NIH; R01HL114805-01), both to Dr Elena Aikawa.

Disclosures
None.

References

43. 2009;284:19272–19279.

44. 2009;297:H802–H810.

35. 2011;460:705–710.

18. 2011;412:66–70.

2. J Heart Valve Dis.

MicroRNA in Cardiovascular Calcification: Focus on Targets and Extracellular Vesicle Delivery Mechanisms
Claudia Goettsch, Joshua D. Hutcheson and Elena Aikawa

Circ Res. 2013;112:1073-1084
doi: 10.1161/CIRCRESAHA.113.300937
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/112/7/1073

An erratum has been published regarding this article. Please see the attached page for:
/content/113/11/e106.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/
In the *Circulation Research* article by Goettisch et al (MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. *Circ Res.* 2013;112:1073–1084. DOI: 10.1161/CIRCRESAHA.113.300937), the authors have found 2 minor errors: In Table 1, miR-30d/e should have been miR-30b/c and on page 1076, miR-30e should have been miR-30c.

The errors have been corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/112/7/1073.full.