Dihydropyridine Ca\(^{2+}\) Channel Blockers Increase Cytosolic [Ca\(^{2+}\)] by Activating Ca\(^{2+}\)-sensing Receptors in Pulmonary Arterial Smooth Muscle Cells

Aya Yamamura,* Hisao Yamamura,* Qiang Guo, Adriana M. Zimnicka, Jun Wan, Eun A. Ko, Kimberly A. Smith, Nicole M. Pohl, Shanshan Song, Amy Zeifman, Ayako Makino, Jason X.-J. Yuan

Rationale: An increase in cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{\text{cyt}}\)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca\(^{2+}\) channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH).

Objective: Our previous study demonstrated that the Ca\(^{2+}\)-sensing receptor (CaSR) was upregulated and the extracellular Ca\(^{2+}\)-induced increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\) was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (eg, nifedipine) increase [Ca\(^{2+}\)]\(_{\text{cyt}}\) by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC.

Methods and Results: The nifedipine-mediated increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\) in IPAH-PASMC was concentration dependent with a half maximal effective concentration of 0.20 µmol/L. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\), whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca\(^{2+}\)]\(_{\text{cyt}}\). Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca\(^{2+}\)]\(_{\text{cyt}}\) in IPAH-PASMC; however, the nondihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca\(^{2+}\)]\(_{\text{cyt}}\).

Conclusions: The dihydropyridine derivatives increase [Ca\(^{2+}\)]\(_{\text{cyt}}\) by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca\(^{2+}\) channels; therefore, it is possible that the use of dihydropyridine Ca\(^{2+}\) channel blockers (eg, nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension. (*Circ Res* 2013;4:640-650.)

Key Words: calcium channel blocker ■ Ca\(^{2+}\)-sensing receptor ■ nifedipine ■ nicardipine ■ pulmonary hypertension ■ smooth muscle cell

Pulmonary vascular remodeling and sustained pulmonary vasoconstriction greatly contribute to the elevated pulmonary vascular resistance and pulmonary arterial pressure (PAP) in patients with pulmonary arterial hypertension (PAH). An increase in cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{\text{cyt}}\)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction (by triggering PASMC contraction) and a critical stimulus for pulmonary vascular medial hypertrophy (by stimulating PASMC migration and proliferation). Intracellular Ca\(^{2+}\), or cytosolic free Ca\(^{2+}\), is thus an important signaling element that mediates PASMC contraction, migration, and proliferation upon membrane depolarization and activation of membrane receptors by vasoactive and mitogenic factors.

In This Issue, see p 575

By selectively blocking voltage-dependent Ca\(^{2+}\) channels (VDCC) in vascular smooth muscle cells, the dihydropyridine Ca\(^{2+}\) channel blockers (eg, nifedipine, nicardipine) have been used to treat patients with systemic\(^{1,2}\) and pulmonary\(^{3,4}\) hypertension. In 15% to 20% of patients with idiopathic PAH (IPAH), acute administration of nifedipine or other...
vasodilators could significantly reduce PAP. In these clinically
considered as the vasoreactive patients (or responders),2,3,4
the high dose of Ca2+ channel blockers (eg, nifedipine) also
has long-term therapeutic and beneficial effects determined by
hemodynamics, exercise capacity, and survival rate.3,4,9 It
is unclear, however, why the classical dihydropyridine Ca2+
channel blockers do not work well in most of the IPAH pa-

tients and even cause deterioration of the disease.

The Ca2+-sensing receptor (CaSR) is a G protein–coupled
receptor (GPCR) in the plasma membrane that can be activated
by extracellular Ca2+ (and Mg2+), polyamines (eg, spermine),
amino acids, and neomycin.10–13 Activation of CaSR sets into
motion a complex series of intracellular Ca2+ signaling events
that may be involved in stimulating PASMC contraction, pro-

liferation, and migration.14,15 Like some GPCRs coupled to Gq
(eg, endothelin receptors), CaSR activation increases the syn-
thesis of inositol 1,4,5 trisphosphate (IP\textsubscript{3}) and diacylglycerol
(DAG) directly activates receptor-operated Ca2+ chan-

nel(s) in the plasma membrane; the Ca2+ entry through
ROC is termed receptor-operated Ca2+ channel (ROC) in the
plasma membrane; the Ca2+ entry through
ROC is termed receptor-operated Ca2+ channel. In addition to
increasing [Ca2+]\textsubscript{cyt} via receptor-operated Ca2+ entry
and store-

operated Ca2+ entry, the extracellular Ca2+-induced activation
of CaSR also activates other signal transduction pathways (eg,
Akt/mTOR and mitogen-activated protein kinase/extracellular
signal regulated kinase) to induce cell proliferation.16–18

Our recent study14 indicated that the extracellular Ca2+-
induced increase in [Ca2+]\textsubscript{cyt} by activation of CaSR was en-
hanced, and the CaSR protein expression was upregulated in
IPAH-PASMC compared with normal PASMC. Inhibition of
CaSR by siRNA in IPAH-PASMC significantly attenuated the
extracellular Ca2+-induced rise in [Ca2+]\textsubscript{cyt} and markedly inhib-
ited IPAH-PASMC proliferation. Similarly, the extracellular
Ca2+-induced increase in [Ca2+]\textsubscript{cyt} was enhanced, and the mRNA
and protein expression of CaSR was upregulated in PASMC
isolated from rats with monocrotaline (MCT)-induced pulmo-
nary hypertension (MCT-PH) compared with PASMC from
control rats. Blockade of CaSR by the calcilytic NPS-2143
inhibited the development of MCT-PH. These observations
suggest that upregulated expression and enhanced function of
CaSR in PASMC are involved in the development of sustained
pulmonary vasoconstriction and pulmonary vascular remodeling
in patients with IPAH and animals with experimental PH.

In this study, we examined and compared the effects of di-
hydropyridine Ca2+ channel blockers on the CaSR-mediated
increase in [Ca2+]\textsubscript{cyt} in normal PASMC (with low expression
level of CaSR) and IPAH-PASMC (with upregulated expres-
sion level of CaSR). The data from this study indicate that
the dihydropyridine Ca2+ channel blockers (eg, nifedipine,
nicardipine), although effectively block VDCC in PASMC,
significantly enhance the activity of CaSR that is upregulated
in PASMC from patients with IPAH and animals with experi-
mental PH. These observations provide a novel explanation
for why the therapeutic effect of nifedipine and other dihy-
ropyridine Ca2+ blockers is compromised in many IPAH pa-

tients. The data from this study also imply that caution should
be exercised when the use of nifedipine and nicardipine is
considered for the treatment of IPAH patients with upregu-
lated CaSR in PASMC and the gain-of-function mutations in
the CaSR gene.

Methods

Cell Preparation and Culture

Explanted peripheral lung tissues of normal control subjects (2 un-
suitable organ donors and 2 chronic obstructive pulmonary disease
patients without PH) and patients with IPAH (3 patients diagnosed
on the basis of National Institutes of Health IPAH Registry with an
averaged mean PAP of 56±5 mm Hg) were nonresponders in
response to inhalation of nitric oxide or acute intravenous infusion
of prostacyclin and Ca2+ channel blocker) were used to isolate hu-

man PASMC from small pulmonary arteries (with an outer diameter
of 300–500 µm).10,17 PASMC were also isolated from endarterecto-
imized tissues of patients with chronic thromboembolic PH (CTEPH,
4 patients with an averaged mean PAP of 39±5 mm Hg).17 The use
of human lung tissues and cells was approved by the University of
Illinois at Chicago Institutional Review Board. Human PASMC (pas-
sages 5–10) cultured in Medium 199 supplemented with 10% fetal
bovine serum (Invitrogen, Grand Island, NY), 100 U/mL penicillin
plus 100 µg/mL streptomycin, 50 µg/mL n-valine (Sigma-Aldrich,
St. Louis, MO), and 20 µg/mL endothelial cell growth supplement
(BD Biosciences, Franklin Lakes, NJ) at 37°C were used for the
experiments.

[Ca2+]\textsubscript{cyt} Measurement

[Ca2+]\textsubscript{cyt} in PASMC was analyzed using a ratiometric method described
previously.22 Briefly, PASMC cultured on 25-mm cover slips (Fisher
Scientific, Pittsburgh, PA) were incubated in 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES)-buffered solution containing
4 µM fura-2 acetoxymethyl ester (fura-2/AM; Invitrogen/Molecular
Probes, Eugene, OR) for 60 minutes at room temperature (25°C).
The fura-2-loaded cells were placed in a recording chamber on the
stage of an invert fluorescent microscope (Eclipse Ti-E; Nikon,
Tokyo, Japan) equipped with an objective lens (5 Plan Fluor 20x/0.45
ELWD; Nikon), an electron multiplying charge coupled device camera
(Evolve; Photometrics, Tucson, AZ), and the NIS Elements
3.2 software (Nikon). [Ca2+]\textsubscript{cyt} within a region of interest (5×5 µm)
was measured as the ratio of fluorescence intensities (F\textsubscript{340}/F\textsubscript{380}) of
fura-2 at the rate of every 2 seconds. The HEPES-buffered bath
solution had an ionic composition of 137 mM NaCl, 5.9 mM KCl, 2.2
mM CaCl\textsubscript{2}, 1.2 mM MgCl\textsubscript{2}, 14 mM glucose, and 10 mM HEPES. The
pH was adjusted to 7.4 with 10 N NaOH. The Ca2+-free bath solution
was prepared by adding 1 mM EGTA and replacing CaCl\textsubscript{2} with
equimolar MgCl\textsubscript{2}. Cells in the recording chamber were continuously
superfused with HEPES-buffered solution at a flow rate of 2 mL/min.
All experiments were carried out at 32°C.
Transfection of cDNA and siRNA

Cultured PASMC were transiently transfected by electroporation with 2 μg of human CaSR cDNA (constructed into pcDNA3.1(+); Invitrogen), 50 nmol/L of control siRNA or scrambled siRNA (sc-37007; Santa Cruz Biotechnology), or siRNA for CaSR (s2440; Applied Biosystems/Ambion, Austin, TX) using an Amaxa Basic Nucleofector kit (Lonza). Experiments using CaSR-overexpressed and siRNA-transfected cells were performed 48 hours after electroporation.

Drugs

All pharmacological reagents were obtained from Sigma-Aldrich. Dihydropyridine compounds (nifedipine, nicardipine, and Bay K8644) were dissolved in dimethyl sulfoxide to make a stock solution of 10 mM. Diltiazem and verapamil were dissolved in distilled water to make a stock solution of 10 mM. Aliquots of the stock solutions were then dissolved into the HEPES-buffered bath solution at various concentrations on the day when the experiments were performed.

MCT-induced PH

Adult male Sprague–Dawley rats (190–200 g in body weight; Charles River Laboratories) were given a single subcutaneous injection of vehicle (dimethyl sulfoxide) or 60 mg/kg MCT (Sigma-Aldrich) to induce PH. For nifedipine treatment, rats were given intraperitoneal (IP) injections of nifedipine (1 mg/kg, once a day for 2 weeks) either 2 or 4 weeks after MCT injection. For hemodynamic measurements, the animals were anesthetized with an IP injection of ketamine (100 mg/kg) and xylazine (26 mg/kg). Right ventricular pressure was determined with a pressure transducer catheter (SPF869, Millar Instruments, Houston, TX) inserted through the right jugular vein and MPVS Ultra (Millar Instruments) data acquisition system. Data were then recorded and analyzed with AD Instruments Laboratory Chart Pro7.0 software.

Statistical Analysis

Pooled data are shown as the mean±SE. The statistical significance among groups was determined by Scheffé test after 2 groups was determined by Student t test. The statistical significance was determined with a pressure transducer catheter (SPF869, Millar Instruments, Houston, TX) inserted through the right jugular vein and MPVS Ultra (Millar Instruments) data acquisition system. Data were then recorded and analyzed with AD Instruments Laboratory Chart Pro7.0 software.

Results

To test the effects of dihydropyridines on [Ca²⁺]cyt, we first conducted patch clamp experiments to confirm that nifedipine inhibits, and Bay K8644 activates, VDCC in PASMC. As shown in Figure 1, extracellular application of 1 μmol/L nifedipine significantly decreased whole-cell Ca²⁺ currents in PASMC, elicited by depolarizing the cells from a holding potential of −70 to +10 mV (Figure 1A), whereas Bay K8644 (10 μmol/L) significantly enhanced the currents (Figure 1B). Consistent with its inhibitory effect on L-type Ca²⁺ channels, acute application of nifedipine (1 μmol/L) also significantly and reversibly inhibited pulmonary vasoconstriction induced by 80 mM K⁺-mediated membrane depolarization in isolated pulmonary arterial rings (Figure 1C). These data confirm that nifedipine is a blocker of VDCC, whereas Bay K8644 is an activator of VDCC in PASMC.

Nifedipine Enhances CaSR-mediated Increases in [Ca²⁺]cyt in PASMC From IPAH Patients

To elucidate the effects of dihydropyridines on CaSR-mediated increases in [Ca²⁺]cyt, we first superfused PASMC with Ca²⁺-free bath solution (0Ca) for 10 minutes and then with 2.2 mM-containing bath solution (2.2Ca) for 10 to 20 minutes to induce a rise in [Ca²⁺]cyt as a result of the extracellular Ca²⁺-mediated activation of CaSR. Then, we applied the dihydropyridines, nifedipine is a blocker of VDCC, whereas Bay K8644 is an activator of VDCC. Then, we applied the dihydropyridines, nifedipine is a blocker of VDCC, whereas Bay K8644 is an activator of VDCC.

Figure 1. Inhibitory effect of nifedipine on voltage-dependent Ca²⁺ channel in normal pulmonary arterial smooth muscle cells (PASMC) and augmenting effect of nifedipine on Ca²⁺-sensing receptor-mediated increase in [Ca²⁺]cyt in idiopathic pulmonary arterial hypertension (IPAH)-PASMC. A and B, Representative whole-cell Ca²⁺ currents (top), elicited by depolarizing the cells from a holding potential of −70 mV to a test potential of +10 mV (300 ms), in normal PASMC before (Cont) and during extracellular application of 1 μM nifedipine (Nif, A) or 1 μM Bay K8644 (Bay K, B). Summarized data (mean±SE; bottom) showing current density in normal PASMC before (Cont) and during application of Nif or Bay K. **P<0.01 and *P<0.05 vs Cont. C, Representative record of isometric tension (top) in an isolated pulmonary arterial ring from mouse before, during, and after superfusion of 80 mM K⁺ (80K)-containing solution in the absence and presence of 1 μM Nif. Summarized data (mean±SE; bottom) showing 80K-mediated active tension before (80K), during (80K+Nif), and after (80K) treatment with 1 μM Nif. **P<0.05 vs 80K. D and E, Representative traces (D) and pseudocolor images (E) showing increases in [Ca²⁺]cyt in normal (blue), IPAH (red) and chronic thromboembolic pulmonary hypertension (CTEPH) (dark green) PASMC bathed in Ca²⁺-free solution (0Ca) before, during, and after restoration of extracellular Ca²⁺ to 2.2 mM (2.2Ca; solid horizontal bars) in the absence or presence of 1 μM nifedipine (Nif). F, Summarized data (mean±SE) showing the amplitude of the 2.2Ca-induced transient (left) and plateau (right) phases of the increase in [Ca²⁺]cyt before (Cont) and after treatment with 1 μM Nif (Nif) in normal (Nor), IPAH, and CTEPH-PASMC. **P<0.01 vs Nor and CTEPH PASMC.
nifedipine, nicardipine, and Bay K8644 to cells before the extracellular Ca2+-induced rise in [Ca2+]\textsubscript{cyt} and compared the effects on the CaSR-mediated increases in [Ca2+]\textsubscript{cyt} in PASMC isolated from normal subjects (normal), patients with IPAH (IPAH), and patients with CTEPH (CTEPH).

In normal PASMC perfused with Ca2+-free solution (0 mM Ca2+ and 1 mM EGTA) for 10 minutes, restoration of extracellular Ca2+ (to 2.2 mM) had little effect on [Ca2+]\textsubscript{cyt} (Figure 1D, left and 1E, top). In IPAH-PASMC, however, restoration of extracellular Ca2+ induced a transient increase in [Ca2+]\textsubscript{cyt} (Figure 1D, center and 1E, center). In CTEPH-PASMC, restoration of external Ca2+ had negligible effect on [Ca2+]\textsubscript{cyt} (Figure 1D, right and 1E, bottom). In the absence of nifedipine, the extracellular Ca2+-induced increase in [Ca2+]\textsubscript{cyt} via CaSR activation is composed of a large transient phase and a small plateau phase in IPAH-PASMC (Figure 1D).

Extracellular application of nifedipine (1 µM), a dihydropyridine VDCC channel blocker (Figure 1A), however, significantly enhanced the extracellular Ca2+-mediated increase in [Ca2+]\textsubscript{cyt} in IPAH-PASMC, but not in normal PASMC and CTEPH-PASMC (Figure 1D–1F). The exclusive enhancement of the extracellular Ca2+-induced increase in [Ca2+]\textsubscript{cyt} by nifedipine in IPAH-PASMC was potentially owing to the upregulation of CaSR protein expression in these cells compared with PASMC from normal subjects and CTEPH patients. Extracellular application of vehicle (0.1% dimethyl sulfoxide) did not affect the CaSR-mediated increase in [Ca2+]\textsubscript{cyt} in IPAH-PASMC (data not shown). These data indicate that nifedipine not only enhanced the Ca2+-sensing receptor.

Nifedipine Directly Increases [Ca2+]\textsubscript{cyt} in PASMC with Upregulated CaSR Expression

In normal PASMC and CTEPH-PASMC, extracellular application of 1 µM nifedipine had no effect on the resting [Ca2+]\textsubscript{cyt} in the absence or presence of extracellular Ca2+, whereas in IPAH-PASMC with upregulated CaSR, nifedipine significantly increased the resting [Ca2+]\textsubscript{cyt} (Figure 2A and 2B). The resting [Ca2+]\textsubscript{cyt} in IPAH-PASMC was dramatically increased by nifedipine in the presence of extracellular Ca2+ (Figure 2A, center, and 2B and 2C). Even in the absence of extracellular Ca2+, nifedipine caused a slight, but statistically significant, increase in [Ca2+]\textsubscript{cyt} in IPAH-PASMC (Figure 2A, center, and 2B and 2C). The nifedipine-mediated increase in the resting [Ca2+]\textsubscript{cyt} in IPAH-PASMC was dose-dependent (at the range of 0.01–10 µmol/L) with an half maximal effective concentration of 0.21 µmol/L and a Hill coefficient of 1.29 (Figure 3).

These data indicate that nifedipine not only enhances the extracellular Ca2+-induced increase in [Ca2+]\textsubscript{cyt}, but also directly increases the resting [Ca2+]\textsubscript{cyt} in IPAH-PASMC with upregulated CaSR. We speculate that nifedipine may directly activate CaSR to induce the increase in [Ca2+]\textsubscript{cyt} or synergistically activate CaSR with the extracellular Ca2+ to elicit the rise in [Ca2+]\textsubscript{cyt} in IPAH-PASMC.

Figure 2. Nifedipine increases the resting [Ca2+]\textsubscript{cyt} in idiopathic pulmonary arterial hypertension (IPAH)-pulmonary arterial smooth muscle cells (PASMC) with upregulated Ca2+-sensing receptor. A and B, Representative traces (A) and pseudocolor images (B) showing changes in [Ca2+]\textsubscript{cyt} in normal (blue), IPAH (red) and chronic thromboembolic pulmonary hypertension (CTEPH) (dark green) PASMC before (Cont), during (Nif), and after application of 1 µM nifedipine (Nif) in the absence (0Ca; left) or presence (2.2Ca) of extracellular Ca2+. C, Summarized data (mean±SE) showing the amplitude of Nif-induced transient and plateau phases of increases in [Ca2+]\textsubscript{cyt} in normal, IPAH, and CTEPH PASMC. **P<0.01 vs normal and CTEPH PASMC.

Negligible Effect of Nondihydropyridine Ca2+ Channel Blockers on CaSR-mediated Increase in [Ca2+]\textsubscript{cyt}

In addition to nifedipine, we examined whether other dihydropyridine derivatives affect CaSR-mediated rise in [Ca2+]\textsubscript{cyt}.
CaSR Is Necessary and Sufficient to Mediate the Nifedipine-mediated Increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) in PASMC

To obtain direct evidence for the involvement of CaSR in the nifedipine-induced increase in \([\text{Ca}^{2+}]_{\text{cyt}}\), we examined the nifedipine effect in IPAH-PASMC treated with the CaSR-specific siRNA and in normal PASMC transfected with CaSR. As shown in Figure 5, transfection of the CaSR-siRNA into IPAH-PASMC decreased CaSR protein expression level (Figure 5A) and significantly inhibited the nifedipine-mediated increase in the resting \([\text{Ca}^{2+}]_{\text{cyt}}\) in comparison with control cells transfected with scrambled siRNA (control siRNA) (Figure 5B). The averaged data and histograms of the nifedipine-mediated rise in the resting \([\text{Ca}^{2+}]_{\text{cyt}}\) both show that upregulated CaSR is necessary for the nifedipine-mediated increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) (Figure 5C and 5D). In addition, treatment of IPAH-PASMC with the allosteric CaSR antagonist, NPS-2143, significantly attenuated the nifedipine-mediated rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) (Online Figure 1). In normal PASMC, overexpression of CaSR markedly enhanced the protein level of CaSR (Figure 6A) and significantly enhanced the nifedipine-mediated increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) in comparison with normal cells transiently transfected with an empty vector (Figure 6B–6D). These data indicate that CaSR is necessary and sufficient for the nifedipine-mediated increases in \([\text{Ca}^{2+}]_{\text{cyt}}\) in PASMC.

Nifedipine Further Increases Right Ventricular Systolic Pressure (RVSP) in Rats With Established PH

In addition to the upregulation in PASMC from IPAH patients, we found that the mRNA and protein expression of CaSR was also upregulated in PASMC, pulmonary arteries, and lung tissues from animals with MCT-PH14 (Figure 7A and 7B). In rats with established MCT-PH (2 weeks after initial injection of MCT), IP injection of nifedipine (1 mg/kg, once a day for 2 weeks) further enhanced the RVSP (Figure 7C and 7D). RVSP in MCT-PH rats intraperitoneally injected with nifedipine was significantly higher (P=0.011) than in MCT-PH rats injected with vehicle (Figure 7D). The enhanced RVSP was accompanied by further right ventricular hypertrophy determined by the Fulton index, the ratio of right ventricle/ (left ventricle+septum) (Figure 7E). In rats with more severe MCT-PH (4 weeks after initial injection of MCT), however, the nifedipine-mediated enhancement of RVSP (Figure 7F and G) was not associated with a further increase in RV hypertrophy (Figure 7H). These data indicate that, in established MCT-PH, nifedipine actually exacerbates the pulmonary vascular hemodynamics (i.e., further increases RVSP), potentially by stimulating CaSR in PASMC. The blockade effect of nifedipine on VDCC is probably compromised by the activating effect on CaSR that is upregulated in PASMC of animals with established PH.

In animals exposed to chronic hypoxia, many investigators have shown that nifedipine (and other dihydropyridine or non-dihydropyridine Ca2+ channel blockers) prevents (or significantly attenuates) the development of PH. Chronic hypoxia has been demonstrated to downregulate voltage-gated K+ channels causing membrane depolarization that subsequently opens VDCC and increases \([\text{Ca}^{2+}]_{\text{cyt}}\) in PASMC.23–26 By blocking VDCC, nifedipine would inhibit Ca2+ influx through VDCC and prevent the development of sustained pulmonary vasoconstriction and pulmonary vascular medial hypertrophy. Our preliminary data showed that CaSR was upregulated in PASMC from animals with both MCT-PH and hypoxia-induced PH,14 whereas Zhang et al15 demonstrated that activation...
Dihydropyridines Activate Ca2+-Sensing Receptors

Yamamura et al

Discussion

The major findings of this study are that dihydropyridine derivatives, regardless of their block (nifedipine, nicardipine) or activating (Bay K8644) effect on VDCC, enhanced the extracellular Ca2+-induced rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) and increased the resting \([\text{Ca}^{2+}]_{\text{cyt}}\) in PASMC from IPAH patients and MCT-PH rats in which CaSR was upregulated. Knockdown of CaSR by siRNA in IPAH-PASMC significantly attenuated the nifedipine-induced increase in \([\text{Ca}^{2+}]_{\text{cyt}}\), whereas overexpression of CaSR by transiently transfecting the human CaSR gene into normal PASMC augmented the nifedipine-mediated rise in \([\text{Ca}^{2+}]_{\text{cyt}}\). In contrast, nondihydropyridine Ca2+ blockers, for example, diltiazem (a benzothiazepine VDCC blocker) and verapamil (a phenylalkylamine VDCC blocker), had no effect on the CaSR-mediated increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) in IPAH-PASMC.

CaSR (also known as GPCR2A) is a GPCR that can be activated by polyvalent cations (Ca2+, Mg2+, and Gd3+), amino acids (phenylalanine and glutamate), endogenous polyamines (spermine and spermidine), polypeptides (amyloid-\(\beta\) peptide), and aminoglycoside antibiotics (neomycin), as well as synthetic pharmacological compounds (eg, R-568 and cinaclacet). 16-18 CaSR is expressed in parathyroid gland, kidney, bone, gastrointestinal tract, skin, brain, and heart. 16,30,31 CaSR is also expressed in vascular smooth muscle cells and endothelial cells. 39-40 Activation of CaSR is involved in the

of mitochondrial H\textsubscript{2}O\textsubscript{2}-sensitized CaSR by extracellular Ca2+ is involved in hypoxic pulmonary vasoconstriction. It is thus unclear why nifedipine only enhanced the development of PH in MCT-PH rats, but not in hypoxia-induced PH animals.27-29

Figure 4. Divergent effects of dihydropyridines and nondihydropyridine Ca2+ channel blockers on CaSR-mediated increase in \([\text{Ca}^{2+}]_{\text{cyt}}\). A to D, Representative traces (top) showing the changes in \([\text{Ca}^{2+}]_{\text{cyt}}\) in IPAH-PASMC bathed in Ca2+-free solution (0Ca) before, during, and after addition of 2.2 mM extracellular Ca2+ (2.2Ca; solid horizontal bars) in the absence or presence of 1 \(\mu\text{M}\) nifedipine (A, a dihydropyridine Ca2+ channel blocker), 1 \(\mu\text{M}\) Bay K8644 (B, a dihydropyridine Ca2+ channel activator), 10 \(\mu\text{M}\) diltiazem (C, a benzothiazepine Ca2+ channel blocker), or 10 \(\mu\text{M}\) verapamil (D, a phenylalkylamine Ca2+ channel blocker). Summarized data (mean±SE; bottom) showing the amplitude of the transient and plateau phases of the extracellular Ca2+-induced rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) in IPAH-PASMC with or without (Control) pretreatment of nifedipine, Bay K8644, diltiazem, or verapamil. **P<0.01 vs Control. The structural formula of nicardipine, Bay K8644, diltiazem, and verapamil are shown on the top of each panel. E to H, Representative traces showing the changes in the resting \([\text{Ca}^{2+}]_{\text{cyt}}\) before, during, and after application of nicardipine (1 \(\mu\text{M}\); E), Bay K8644 (1 \(\mu\text{M}\); F), diltiazem (10 \(\mu\text{M}\); G) or verapamil (10 \(\mu\text{M}\); H) in IPAH-PASMC. I, Summarized data (mean±SE) showing the amplitude of increases in the resting \([\text{Ca}^{2+}]_{\text{cyt}}\) induced by nicardipine, Bay K8644, diltiazem, or verapamil in IPAH-PASMC. **P<0.01 vs diltiazem and verapamil.
regulation of myogenic tone, peripheral vascular resistance, arterial blood pressure, and hypoxic pulmonary vasoconstriction. CaSR in vascular smooth muscle cells has been shown to contribute to regulating cell proliferation and apoptosis through the mitogen-activated protein kinase and the phospholipase C cascades.

Recently, we found that CaSR was significantly upregulated in PASMC from IPAH patients in comparison with normal controls. The upregulated CaSR protein expression was associated with a markedly enhanced Ca2+-induced increase in [Ca2+]\textsubscript{cyt} in IPAH-PASMC treated with control siRNA (Cont) or CaSR-siRNA.

As shown in this study (Figure 1), the nifedipine-induced increase in [Ca2+]\textsubscript{cyt} only occurred in IPAH-PASMC where CaSR was upregulated and in CaSR-transfected normal PASMC where CaSR was overexpressed. These data suggested that the dihydropyridine compounds (nifedipine, nicardipine, and Bay K8644) can directly activate CaSR. As a GPCR, activated CaSR signals through IP\textsubscript{3} and diacylglycerol to increase [Ca2+]\textsubscript{cyt}. IP\textsubscript{3} increases [Ca2+]\textsubscript{cyt} by stimulating Ca2+ release from the SR to the cytosol via IP\textsubscript{3} receptors on the SR membrane, whereas diacylglycerol increases [Ca2+]\textsubscript{cyt} by augmenting Ca2+ influx through ROC on the plasma membrane. In the absence of extracellular Ca2+, the nifedipine-induced increase in [Ca2+]\textsubscript{cyt} in IPAH-PASMC was much smaller than we expected (Figure 2), in comparison with other GPCR agonists. This phenomenon is, however, very similar to the response to spermine that directly activates CaSR.

Figure 5. Ca2+-sensing receptor (CaSR) is necessary for the dihydropyridine-mediated increase in [Ca2+]\textsubscript{cyt} in idiopathic pulmonary arterial hypertension (IPAH)-pulmonary arterial smooth muscle cells (PASMC). A, Western blot analysis of CaSR in IPAH-PASMC treated with control siRNA (Control) and CaSR siRNA in different concentration (10, 20, or 30 pmol). β-Tubulin is used as a control. B, Representative traces showing changes in the resting [Ca2+]\textsubscript{cyt} before, during, and after application of 1 μM nifedipine (Nif) in IPAH-PASMC treated with control siRNA or CaSR-siRNA. C, Summarized data (mean±SE) showing the amplitude of Nif-induced increases in [Ca2+]\textsubscript{cyt} in IPAH-PASMC treated with control siRNA (Cont siRNA) or CaSR-siRNA. **P<0.01 vs Cont. D, Amplitude distributions of the Nif-induced rise in [Ca2+]\textsubscript{cyt} in IPAH-PASMC treated with Cont siRNA (top) or CaSR-siRNA (bottom).

Figure 6. Ca2+-sensing receptor (CaSR) is sufficient for the dihydropyridine-mediated increase in [Ca2+]\textsubscript{cyt} in normal pulmonary arterial smooth muscle cells (PASMC). A, Western blot analysis of CaSR in normal PASMC transiently transfected with an empty vector (Vector) and the human CaSR gene (CaSR). β-Tubulin is used as a control. B, Representative traces showing changes in the resting [Ca2+]\textsubscript{cyt} before, during, and after application of 1 μM nifedipine (Nif) in normal PASMC treated with Vector or CaSR. C, Summarized data (mean±SE) showing the amplitude of Nif-induced increases in [Ca2+]\textsubscript{cyt} in normal PASMC transfected with Vector or CaSR. **P<0.01 vs Vector. D, Amplitude distributions of the Nif-induced increase in [Ca2+]\textsubscript{cyt} in normal transfected with Vector (top) or CaSR (bottom).
Yamamura et al Dihydropyridines Activate Ca^{2+}-Sensing Receptors

(eg, transient receptor potential [TRP] channels, TRPC1/C3/C6, TRPV5, and TRPM4/M5) to mediate Ca^{2+} influx.33,42–46 Dihydropyridine Ca^{2+} channel blockers (eg, nifedipine and nicardipine) are selective blockers of VDCC which have been widely used for the treatment of cardiovascular diseases, such as hypertension, angina, and arrhythmia.47,48 Conventional Ca^{2+} channel blockers (ie, nifedipine and diltiazem) that selectively block VDCC in PASMC have been used to effectively treat 15% to 20% of IPAH patients who are considered as pulmonary vasoreactive responders.3,4,49 It is, however, unknown why conventional Ca^{2+} channel blockers (ie, VDCC blockers) are not therapeutically effective for a majority of patients with PAH, especially the patients with severe PH.3,4,49 In future studies, it would be very interesting to investigate the possibility that nifedipine may have the same side effect on systemic arteries if CaSR is upregulated in the vascular smooth muscle of the small and resistance arteries in patients with systemic hypertension.

Figure 7. Intraperitoneal injection of nifedipine in animals with established pulmonary hypertension further increases right ventricular systolic pressure and right ventricular hypertrophy. A and B, Western blot analysis (A) and summarized data (mean±SE; B) of Ca^{2+}-sensing receptor (CaSR) in whole lung tissues isolated from control and monocrotaline-induced pulmonary hypertension (MCT-PH) animals. β-Actin is used as a control. C and D, Representative record of right ventricular pressure (RVP; C) and summarized data (mean±SE) showing the peak value of right ventricular systolic pressure (RVSP; D) in normal control rats (Cont, n=6) and MCT-injected rats (MCT, n=6) that are treated with vehicle or nifedipine (+Nif, 1 mg/kg per day for 2 weeks) 2 weeks after the MCT injection. E, Averaged Fulton index (right ventricle [RV]/left ventricle [LV]+septum [S]) ratio; mean±SE) showing that RV hypertrophy is further increased in MCT-rats treated with nifedipine. F and G, Representative record of RVP (F) and summarized data (mean±SE) showing the peak value of RVSP (G) in normal control rats (Cont, n=6) and MCT-injected rats (MCT, n=6) that are treated with vehicle or nifedipine (+Nif, 1 mg/kg per day for 4 weeks) 4 weeks after the MCT injection. H, Averaged Fulton index [RV/(LV+S) ratio; mean±SE] showing that RV hypertrophy is not further increased in MCT-rats treated with nifedipine 4 weeks after MCT injection.
The data from this study show that the dihydropyridine Ca\(^{2+}\) channel blockers (eg, nifedipine and nicardipine) not only block VDCC (which would decrease [Ca\(^{2+}\)\(_{cyt}\)]) but also activate CaSR (which would increase [Ca\(^{2+}\)\(_{cyt}\)]) in PASMC. Importantly, the dose or concentration range at which dihydropyridines block VDCC (100 nmol/L to 1 µmol/L) in vascular smooth muscle cells\(^{50-51}\) overlaps with the dose range at which dihydropyridines activate CaSR (half maximal effective concentration=0.20 µmol/L for nifedipine). It is thus impossible to differentiate these 2 opposite effects of nifedipine (and other dihydropyridine Ca\(^{2+}\) channel blockers) using different concentrations or doses. These observations imply that, in IPAH patients (eg, vasoreactive responders) with downregulated voltage-gated K\(^{+}\) channels in PASMC\(^{52-54}\) where membrane potential is depolarized and VDCC is opened, the dihydropyridine Ca\(^{2+}\) channel blockers (eg, nifedipine and nicardipine) should be a good therapeutic approach.\(^4\) In IPAH patients with upregulated CaSR (and upregulated TRPC channels) in PASMC\(^{14,20}\) however, the therapeutic effect of nifedipine and nicardipine (by blocking VDCC) is potentially compromised by the stimulatory effect on CaSR. Our in vivo experiments from this study show that IP injection of nifedipine in rats with established MCT-PH actually exacerbated the pulmonary vascular hemodynamics or further enhanced PAP (determined by RVSP via right heart catheterization) and right ventricular hypertrophy (determined by the Fulton index). For IPAH patients with upregulated CaSR in PASMC or with the down-regulation of function mutations in the CASR gene, it may be more appropriate to use nondihydropyridine Ca\(^{2+}\) channel blockers (eg, diltiazem and verapamil) in combination with CaSR antagonists or calcilytics (eg, NPS-2143) and TRPC channel blockers to prevent the further activation of CaSR and progression of the disease.

The stimulatory effect of dihydropyridines on CaSR or CaSR-mediated increase in [Ca\(^{2+}\)\(_{cyt}\)] in PASMC is not correlated to their inhibitory or augmenting effect on VDCC. Both dihydropyridine blockers (nifedipine and nicardipine) and activators (Bay K8644) activate CaSR and enhance CaSR-mediated increases in [Ca\(^{2+}\)\(_{cyt}\)] in IPAH-PASMC where CaSR is upregulated. These results indicate that (1) the dihydropyridine derivative-mediated activation of CaSR is unrelated to the blocking action of VDCC and (2) the specific dihydropyridine structure is somehow related to the activation of CaSR or the enhancement of CaSR-mediated increases in [Ca\(^{2+}\)\(_{cyt}\)] in PASMC. It is possible that CaSR and VDCC are colocalized, and the binding of dihydropyridine blockers to VDCC also activates the adjacent CaSR. In IPAH-PASMC, the enhanced Ca\(^{2+}\)\(_{cyt}\) influx via nifedipine-mediated activation of CaSR and subsequent activation of ROC and store-operated Ca\(^{2+}\) channels outweighs the inhibitory effect of nifedipine on L-type VDCC owing to upregulated CaSR, with a net effect to promote increased [Ca\(^{2+}\)\(_{cyt}\)] via Ca\(^{2+}\)\(_{cyt}\) influx through ROC and store-operated Ca\(^{2+}\) channels.

In cancer cells, nifedipine and extracellular Ca\(^{2+}\) synergistically activate CaSR and increase [Ca\(^{2+}\)\(_{cyt}\)]. The resultant downregulation of the expression of thymidylate synthase and survivin promotes the sensitivity of human colon carcinoma cells and breast cancer cells to fluorouracil, a pyridine analogue, and paclitaxel, a mitotic inhibitor.\(^{55,56}\) Survivin, an antiapoptotic protein that is highly expressed in cancer cells, is also expressed in PASM from patients with IPAH and rats with MCT-PH, but not in PASM from normal subjects and control rats.\(^{57,58}\) In vivo inhibition of survivin by inhalation of an adenovirus carrying a phosphorylation-deficient survivin mutant reverses established MCT-PH, whereas in vitro inhibition of survivin by adenoviral infection of the phosphorylation-deficient survivin mutant reduces PASM proliferation and increases apoptosis.\(^{59}\) It would be interesting to investigate whether nifedipine-mediated activation of CaSR downregulates survivin in PASM, especially in PASMC from patients with IPAH and animals with experimental PH, to promote PASM apoptosis and to regress established PH.

In summary, the dihydropyridine Ca\(^{2+}\) channel blockers (nifedipine and nicardipine) block VDCC and activate CaSR. In normal PASM where CaSR expression level is low, the predominant effect of nifedipine is to block VDCC, reduce [Ca\(^{2+}\)\(_{cyt}\)], and cause pulmonary vasodilation (and regression of pulmonary vascular remodeling). In PASMC isolated from patients with IPAH and animals with experimental PH where CaSR is significantly upregulated, nifedipine activates CaSR and raises the resting [Ca\(^{2+}\)\(_{cyt}\)]. Although this study has limitations owing to the small number of patient samples used, the results have significant clinical relevance. The nifedipine-induced increase in the resting [Ca\(^{2+}\)\(_{cyt}\)] and enhancement of extracellular Ca\(^{2+}\)-induced rise in [Ca\(^{2+}\)\(_{cyt}\)] would compromise its blockade effect on VDCC in IPAH-PASMC and could lead to more severe PH and right ventricular hypertrophy. Therefore, the use of nondihydropyridine Ca\(^{2+}\) channel blockers (eg, diltiazem and verapamil) in combination with specific CaSR antagonists or calcilytics and TRPC channel blockers may be more appropriate for the treatment of IPAH patients with upregulated CaSR in PASMC (or with the down-regulation of function mutations in the CASR gene) to avoid the possibility of exacerbating PH and right ventricular hypertrophy. Furthermore, synthesis of selective blocker of CaSR or identification of specific transcription factors that upregulate CaSR in PASM would greatly help develop new therapeutic approach for PAH.

Sources of Funding
This work was supported, in part, by grants from the National Heart, Lung, and Blood Institute of the National Institutes of Health (HL066012, HL115014, and HL098053).

Disclosures
None.

References

Dihydopyridines (e.g., nifedipine) activate CaSR resulting in an increase in cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)\(_{cyt}\)]) in pulmonary vascular remodeling and sustained pulmonary vasoconstiction contribute to the development of idiopathic pulmonary arterial hypertension. This study shows that dihydropyridine increases [Ca\(^{2+}\)\(_{cyt}\)] in IPAH-PASMC and that the use of dihydropyridine Ca\(^{2+}\) channel blockers could exacerbate pulmonary hypertension in IPAH patients with upregulated CaSR in PASMC.

Novelty and Significance

What Is Known?

- Pulmonary vascular remodeling and sustained pulmonary vasoconstriction contribute to the development of idiopathic pulmonary arterial hypertension (IPAH).
- Increased cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)\(_{cyt}\)]) in pulmonary arterial smooth muscle cells (PASMC) triggers pulmonary vasoconstriction and stimulates PASMC proliferation leading to pulmonary vascular remodeling.
- Dihydopyridine Ca\(^{2+}\) channel blockers, such as nifedipine, are used to treat patients with IPAH; however, these drugs are only effective in 15% to 20% of patients.
- Ca\(^{2+}\)-sensing receptor (CaSR) is upregulated in IPAH-PASMC, contributing to enhanced Ca\(^{2+}\) signaling and excessive PASMC proliferation in IPAH patients.

What New Information Does This Article Contribute?

- Dihydapyridines (e.g., nifedipine) activate CaSR resulting in an increase in [Ca\(^{2+}\)\(_{cyt}\)] in IPAH-PASMC, but not in normal PASMC.
- The use of dihydropyridine Ca\(^{2+}\) channel blockers in IPAH patients with upregulated CaSR in PASMC might exacerbate pulmonary hypertension.

What Is Unknown?

- Why dihydropyridine Ca\(^{2+}\) channel blockers are not therapeutically effective in a majority of patients with PAH, especially those with severe pulmonary hypertension.

What New Information Does This Article Contribute?

- Calcium channel antagonists: clinical uses–past, present and future.
- The use of dihydropyridine Ca\(^{2+}\) channel blockers in IPAH patients with upregulated CaSR in PASMC might exacerbate pulmonary hypertension.

References

- Increased cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)\(_{cyt}\)]) in IPAH-PASMC, but not in normal PASMC.
- Pulmonary vascular remodeling and sustained pulmonary vasoconstiction contribute to the development of idiopathic pulmonary arterial hypertension. This study shows that dihydropyridine increases [Ca\(^{2+}\)\(_{cyt}\)] in IPAH-PASMC and that the use of dihydropyridine Ca\(^{2+}\) channel blockers could exacerbate pulmonary hypertension in IPAH patients with upregulated CaSR in PASMC.
Dihydropyridine Ca\(^{2+}\) Channel Blockers Increase Cytosolic [Ca\(^{2+}\)] by Activating Ca\(^{2+}\) -sensing Receptors in Pulmonary Arterial Smooth Muscle Cells

Aya Yamamura, Hisao Yamamura, Qiang Guo, Adriana M. Zimnicka, Jun Wan, Eun A. Ko, Kimberly A. Smith, Nicole M. Pohl, Shanshan Song, Amy Zeifman, Ayako Makino and Jason X.-J. Yuan

Circ Res. 2013;112:640-650; originally published online January 8, 2013; doi: 10.1161/CIRCRESAHA.113.300897

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/112/4/640

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/01/08/CIRCRESAHA.113.300897.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/
Online Figure I

Yamamura et al

Online Figure I. Inhibitory effect of NPS-2143 on nifedipine-mediated increase in [Ca^{2+}]_{cyt} in PASMC from IPAH patients.

A: Representative traces showing changes in [Ca^{2+}]_{cyt} before, during, and after application of 1 μM nifedipine (Nif) in IPAH-PASMC treated with vehicle (DMSO) or NPS-2143 (30 μM). B: Summarized data (means±SE) showing the amplitude of Nif-induced increases in [Ca^{2+}]_{cyt} in IPAH-PASMC treated with vehicle (Cont) or NPS-2143 (NPS). **P<0.01 vs. Cont. C: Amplitude distributions of the Nif-induced rise in [Ca^{2+}]_{cyt} in IPAH-PASMC treated with vehicle (Control, upper panel) or NPS-2143 (lower panel).