A novel mechanism has been defined for controlling peroxisome proliferator-activated receptors γ (PPARγ) activity in response to thiazolidinedione (TZD) ligands, in which deacetylation of PPARγ by SirT1 remodels the transcriptional complex. This change favors expression of genes associated with increased energy use and insulin sensitization in white adipose tissue (WAT), and is required for a portion of the beneficial effects of TZDs. More broadly, PPARγ acetylation and other recently identified regulatory modifications are clarifying the mechanisms by which TZDs exert their antidiabetic effects in fat cells and other tissues.

PPARγ is a ligand-activated transcription factor first studied for its importance in adipogenesis. From then, it has become recognized that PPARγ also mediates diverse effects in non-adipose tissues including liver, skeletal muscle, brain, bone, and blood vessels. PPARγ is thought to be a fatty acid and lipid sensor, which when activated can stimulate expression of genes that promote insulin action, fatty acid storage, and glucose metabolism. Other beneficial effects of PPARγ activity may be garnered by inhibition of proinflammatory and prooxidant gene expression. The therapeutic importance of PPARγ in providing glycemic control is underscored by the actions of the TZD class of drugs, which can markedly improve insulin sensitivity in patients with type 2 diabetes mellitus. The beneficial actions of TZDs are believed to be centered on their ability to act as high-affinity ligands for PPARγ, where they convert PPARγ from a transcriptional repressor to a transcriptional activator. This transition occurs by the disassociation of a corepressor, NCoR, from the PPARγ complex and its replacement by an activator complex. Since the discovery that TZD drugs have potent antidiabetic activity, the mechanism through which they exert their beneficial effects has gained significant clinical importance.

In addition to the classic model of ligand-mediated activation, recently, PPARγ has been shown to be regulated by a series of posttranslational modifications, many of which can be effected by TZDs. One such modification is sumoylation, which has been shown to stabilize the association of PPARγ with the corepressor complex and inhibit PPARγ transcriptional activity.1 TZDs promote PPARγ transcriptional activity in WAT, in part, by promoting expression of fibroblast growth factor 21, a PPARγ target gene, which acts in a feed-forward mechanism to inhibit PPARγ sumoylation.2 Rather than promoting general activating or repressing activities of PPARγ, other modifications have been identified which regulate subsets of PPARγ target genes. This is exemplified by the effects of cyclin-dependent kinase 5–mediated phosphorylation at serine 273 (S273) of PPARγ, which results in decreased expression of a small set of PPARγ targets including adiponectin,3 an insulin-sensitizing adipokine. Importantly, S273 phosphorylation is promoted by factors associated with obesity and high-fat diet (free fatty acids and inflammatory cytokines), and inhibited by the binding of TZDs and other novel nonagonist PPARγ ligands.4 Such activities could at least partly account for the antidiabetic effects of TZDs. In the August 3, 2012 issue of Cell, an article by Qiang et al defined a distinct mechanism for PPARγ regulation (Figure), whereby its acetylation differentially affects the expression of genes that control energy expenditure in adipocytes and controls the browning of subcutaneous inguinal WAT.5

Adipose tissue includes 2 functionally distinct subtypes: white adipocytes and brown adipocytes. White adipocytes provide a repository for energy storage, whereas brown adipocytes are characterized by high mitochondrial density and uncoupling protein activity which makes these cells effective at dissipating energy as heat. Although white and brown adipocytes are functionally distinct, some white adipocytes in certain depots can be induced to take on a brown-like phenotype (ie, browning). Notably, uncoupling protein-1 expression is much higher in inguinal WAT than in visceral WAT, making the inguinal WAT depot more susceptible to taking on a brown-like phenotype.6 Brown-like white adipocytes exhibit increased expression of genes characteristic of brown adipose tissue (BAT) with coincidently decreased expression of genes characteristic of WAT. Mechanistic hints on how this may occur are suggested by the recent identification of white adipocytes (so-called beige adipocytes) that respond to cAMP stimulation by increasing uncoupling protein-1 expression and respiration rates while exhibiting a gene expression profile distinct from both...
white and brown adipocytes. This change in WAT promotes energy expenditure, a process that could potentially be beneficial in diet-induced obesity. Moreover, decreased expression of some WAT genes during browning includes genes associated with insulin resistance. The ability of TZDs to promote browning of WAT and decrease expression of genes associated with insulin sensitivity suggests that this effect may contribute to the antidiabetic activity of these drugs.

Insulin-sensitizing effects consistent with the browning of white adipocytes have also been linked with increases in the deacetylation activity SirT1, an NAD+-dependent deacetylase. Factors that induce SirT1 activity include calorie restriction and exercise, suggesting that SirT1 might serve as an energy state sensor and may promote insulin-sensitizing effects. Recognizing that TZDs and activators of SirT1 have an energy state sensor and may promote insulin-sensitizing activity, this model was further supported through demonstration of endogenous ligands or new nonagonist PPARγ ligands can prevent PPARγ acetylation, or whether deacetylation of PPARγ contributes to side effects caused by TZDs.

Figure. Posttranslational modified of peroxisome proliferator-activated receptors γ (PPARγ) by acetylation impairs its transcriptional activity. In the current report, acetylation promotes energy storage through maintenance of the white adipocyte phenotype and gene expression program, and in response to high-fat diets may promote insulin resistance. Thiazolidinediones (TZDs) increase the association of PPARγ with SirT1, thus promoting deacetylation of PPARγ. Deacetylation of PPARγ by SirT1, or mutation of the acetylated lysines in PPARγ promotes dissociation of the corepressor NCoR and association with Prdm16. This promotes browning of subcutaneous white adipocytes by stimulating them to adopt a brown adipose tissue gene expression profile, resulting in increased energy expenditure in white adipose tissue and insulin sensitivity. However, increased PPARγ activity promoted by TZDs also causes unwanted side effects. It remains unclear whether endogenous ligands or new nonagonist PPARγ ligands can prevent PPARγ acetylation, or whether deacetylation of PPARγ contributes to side effects caused by TZDs.

The physiological significance of PPARγ deacetylation was investigated with regard to the browning effects on white adipocytes mediated by TZDs and SirT1 activity. Factors that increased SirT1 activity and the deacetylation of PPARγ led to an increased expression of genes typical of BAT and a concomitant decrease in expression of genes characteristic of WAT, whereas the converse was true of factors that reduced SirT1 activity. Importantly, BAT development and function was not grossly altered in Sir1+/− mice, suggesting that it does not play a unique role in this tissue. Rather, Sir1-dependent deacetylation of PPARγ correlated with a more brown-like phenotype of subcutaneous WAT induced by cold exposure in mice lacking Dbc1 or in mice overexpressing Sir1, essentially replicating the browning effect that TZDs had previously been shown to induce in WAT.

These SirT1-dependent effects were mediated through modification of PPARγ was strikingly demonstrated using PPARγ mutants that could not be acetylated (2KR) or which mimicked constitutive acetylation (KQ). Like the effects of reduced SirT1 activity, the constitutive acetylation mutant suppressed expression of BAT genes, markedly blunted the induction of BAT genes by rosiglitazone, and enhanced expression of WAT genes. Conversely, the nonacetylated mutant caused enhanced expression of BAT-like genes with greater potency than did wild-type PPARγ. Thus, acetylated PPARγ enforces a white adipocyte (energy storage) phenotype, whereas PPARγ in its deacetylated state promotes a browning (energy utilization) effect on subcutaneous white adipocytes.

How does deacetylation of PPARγ affect its transcriptional activity? Ultimately, 2 changes in PPARγ complex formation provide likely explanations. First, mutation of either K268 or K293 disrupted association between PPARγ and its corepressor, NCoR, suggesting that deacetylation may contribute to a switch in PPARγ activity from transcriptional repression toward transcriptional activation. Second, factors that reduced PPARγ acetylation (including TZD treatment) increased PPARγ association with Prdm16, a coactivator that was previously shown to promote browning in WAT. Indeed, the nonacetylated PPARγ mutant associated with Prdm16 in the absence of the deacetylating factors normally needed to
promote Prdm16 association with wild-type PPARγ. The authors propose that deacetylation of PPARγ by SirT1 leads to the selective association of PPARγ with Prdm16, thus promoting a brown-like profile of gene expression. Although the data are consistent with this hypothesis, the authors did not directly test whether the brown-like phenotype resulting from PPARγ deacetylation was Prdm16-dependent.

Another relevant question is how PPARγ acetylation relates to other mechanisms regulating its function. A potential relation between acetylation and S273 phosphorylation is suggested by molecular modeling, which places K268 and K298 proximal to the cleft containing the cyclin-dependent kinase 5 phosphorylation site at S273. Indeed, Qiang et al found that a K293Q mutation enhanced S273 phosphorylation of PPARγ, suggesting that acetylation at this site may favor increased phosphorylation at S273, thus reinforcing impaired PPARγ activity. Despite this correlation and the observation that deacetylation and lack of S273 phosphorylation are both promoted by TZDs, it is presently unclear whether there may be settings where these sites are differently affected by their cognate regulators (SirT1 and cyclin-dependent kinase 5, respectively). However, some similarity in the outcome of these activities is suggested by the observation that both the nonacetylated PPARγ mutant and the nonphosphorylated S273A PPARγ mutant each promote increased adiponectin expression compared with wild-type PPARγ. By contrast, expression of several brown adipocyte genes enhanced by nonacylated PPARγ mutant were not affected by the S273A mutation of PPARγ, suggesting that at least in white adipocytes posttranslational modification of these sites may have differential effects on PPARγ-mediated gene expression. Further studies will be necessary to fully understand the range of posttranslational modifications that control insulin sensitivity by PPARγ.

Because SirT1-mediated deacetylation of PPARγ is dependent on ligand binding, it is reasonable to hypothesize that at least some effects of endogenous or exogenous (TZD) ligands may be derived from their ability to promote PPARγ deacetylation. But many questions remain. Will the same effects on PPARγ acetylation be preserved with a new class of PPARγ ligand? Will the same effects on PPARγ acetylation be preserved with a new class of PPARγ ligands in vascular tissue as it is in adipocytes, and whether is hyperglycemia and prevents diabetes in mice. Cell Metab. 2008;8:333–341.


14. Quelle and Sigmund

PPARγ: No SirT, No Service

further establishes the need to define the spectrum of regulatory activities, including posttranslational modifications, such as sumoylation, phosphorylation, and acetylation that are affected by TZDs and the next generation of PPARγ ligands in the hope that those governing their beneficial effects may be discretely targeted. Although there is still much to be learned, these novel modes of PPARγ regulation clearly represent fertile ground to explore in an attempt to identify new antidiabetic drugs with improved safety profiles.

Sources of Funding
This work was supported by National Institutes of Health grants HL048058, and HL061446, HL062984, HL084207 to C.D. Sigmund, and the Johnson Scholars Program at the University of Iowa to F.W. Quelle. We also gratefully acknowledge the generous research support of the Roy J. Carver Trust.

Disclosures
None.

References


PPARγ: No SirT, No Service
Frederick W. Quelle and Curt D. Sigmund

Circ Res. 2013;112:411-414
doi: 10.1161/CIRCRESAHA.113.300870

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/112/3/411

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/