Pathophysiological Consequences of TAT-HKII Peptide Administration Are Independent of Impaired Vascular Function and Ensuing Ischemia

Rationale: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 μmol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia.

Objective: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium.

Methods and Results: Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential mapping, analysis of lactate production, nicotinamide adenine dinucleotide epifluorescence, lactate dehydrogenase release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of ischemic preconditioning, is not associated with ischemia or ischemic injury.

Conclusions: Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia, thereby lending further credence to the role of mitochondria-bound HKII as a critical regulator of cardiac function, ischemia-reperfusion injury, and cardioprotection by ischemic preconditioning. (Circ Res. 2013;112:e8-e13.)

Key Words: hexokinase ■ ischemia ■ mitochondrial membrane potential ■ TAT peptide ■ vasoconstriction

Warburg et al1 were the first to report markedly elevated levels of the glycolytic enzyme hexokinase (HK) in aggressive tumors. Indeed, increased HK expression in cancer cells was mechanistically linked to their resilience against apoptosis. These pioneering studies established a central role for HK expression in cancer biology. In recent years, we extended the role of HK isozymes from the pathophysiology of cancer to that of ischemic heart disease.2,3 Specifically, we showed that the expression and subcellular distribution of the HK isozyme, HKII, is a major determinant of ischemia-reperfusion (IR) injury.4–6 Furthermore, binding of HKII to mitochondria, which is increased by ischemic preconditioning (IPC),2,5 protects against oxidative stress and IR injury, potentially by limiting cellular reactive oxygen species levels5 and preserving the mitochondrial membrane potential (ΔΨm).6

In our most recent work, we undertook a small molecule approach designed to acutely dislodge HKII from mitochondria.4 Specifically, we used a transactivating transcriptional factor peptide (TAT-HKII) that contains the mitochondrial...
Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with functionally significant ischemia. Taken together, our data refute the notion that the deleterious effects of TAT-HKII are attributable to impaired vascular function and ischemia, thereby lending further credence to our previous conclusion that mitochondria-bound HKII is indeed a critical regulator of cardiac function, IR injury, and cardioprotection by IPC in the intact heart.

Methods

A detailed Materials and Methods section is available in the Online Data Supplement.

All experiments were approved by the animal ethics committee of the Academic Medical Center, Amsterdam, The Netherlands or by the Animal Care and Use Committee of the Mount Sinai School of Medicine and adhered with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication No. 85-23, revised 1996). Hearts were Langendorff-perfused.

TAT-Peptides

The soluble peptides MIASHMIACLFTELN(β-Ala)GYGRKKRRQRRR-amide (TAT-HK) and GYGRKKRRQRRR-amide (TAT-CON) were produced by Pepscan presto (Lelystad, The Netherlands). Peptides were dissolved in perfusate Krebs–Henseleit solution and administered through a side-arm connected to a mixing chamber above the heart, at 1% of total perfusion flow.

The effect of endothelin-induced vasoconstriction on tissue structure of the mouse heart was evaluated using transmission EM of cryosections. High-resolution optical ΔΨm imaging using the fluorescent dye tetramethylrhodamine methylester was performed in the intact, beating rat heart. Action potentials (APs) were measured using a charge-coupled device–based high-resolution optical mapping system. In a separate series of mice experiments, effluent lactate and lactate dehydrogenase (LDH) were measured spectrophotometrically, and nicotinamide adenine dinucleotide (NADH) fluorescence of the surface of the heart was evaluated using a videofluorimeter.

Results

Myocardial Dysfunction Caused by High-Dose TAT-HKII Administration Cannot Be Attributed to Impaired Vascular Function

The study by Pasdois et al revealed a 58% reduction in perfusion flow to the rat heart after administration of 2.5 μmol/L TAT-HKII but not TAT-con. They concluded that increased vascular resistance by TAT-HKII caused functionally significant ischemia, which in turn, likely altered myocardial function. Reproducing their experimental conditions (60% flow reduction) and using the same species and peptide concentrations, we set out to formally investigate whether changes in perfusion flow and pressure could indeed account for the functional changes that we recently reported.

Differential Effects of Global Low-Flow Ischemia Versus High-Dose TAT-HKII Administration

Consistent with our previous findings, treatment of rat hearts with 2.5 μmol/L TAT-HKII (Figure 1A and 1C) caused a rapid (within 20 minutes) and sustained depolarization of ΔΨm across the intact heart. Interestingly, ΔΨm depolarization was associated with the initiation of sustained ventricular fibrillation within 21.1±3.2 minutes of TAT-HKII administration in all treated hearts (Figure 1D, red trace). In sharp contrast,
global low-flow ischemia mimicking the flow reduction reported by Pasdois et al (ie, by 60%) completely failed to alter $\Delta \Psi_m$ within the same time-course (Figure 1B and 1C). In fact, $\Delta \Psi_m$ was unchanged ($P=NS$) even after 1 hour of low-flow perfusion compared with baseline levels. Interestingly, unlike TAT-HKII administration, global low-flow ischemia to the rat heart was not associated with the incidence of sustained ventricular arrhythmias because all hearts exhibited relatively stable electric rhythm (3/3 hearts, Figure 1D, blue trace). In further support of these findings, we performed an additional series of studies using high-resolution optical AP mapping to assess whether 60% flow reduction produces adverse electrophysiological changes that are consistent with ischemic damage. Indeed, although global no-flow ischemia to the heart elicited significant AP duration (APD) shortening and conduction velocity slowing (known hallmarks of ischemia), a 60% reduction in flow failed to alter either parameter (Online Figure I). These findings confirm the notion that the effects of TAT-HKII administration cannot be reproduced by low-flow conditions, which contrary to the suggestion by Pasdois et al do not produce adverse mitochondrial (Figure 1) or electrophysiological (Online Figure I) alterations.

Increased Vascular Resistance Does Not Cause Mitochondrial Damage, Whereas 10 μmol/L TAT-HKII Does

High-dose TAT-HKII administration to the intact heart is also associated with increased vascular resistance in the constant flow mode, as initially reported by us and later confirmed by Pasdois et al. It was therefore possible that the ultrastructural damage to mitochondria was a consequence of increased perfusion pressure. To address this issue, a series of mouse hearts were first treated with the vasoconstrictor endothelin-1 (7.5 nmol/L). As expected, perfusion pressure rose significantly...
(173±13 mm Hg, Figure 1E) after 15 minutes of endothelin-1 administration, comparable (P=0.66) with that elicited by 10 μmol/L TAT-HKI (161±13 mm Hg). Analysis of mitochondrial morphology using EM on tissue sections from these hearts revealed normal ultrastructure (Figure 1F). On average, the percentage of mitochondria exhibiting abnormal morphology in endothelin-1–treated hearts was only 1.01±1.25%, well below the reported value (78±21%) for high-dose TAT-HKI administration (Figure 1G).

These qualitative ultrastructural findings were corroborated by our functional measurements of ΔΨm within the intact heart. Specifically, in a series of 3 additional rat hearts, we increased perfusion flow to achieve an artificially high perfusion pressure that mimics values reported by Pasdois et al. Despite a major rise in perfusion pressure (=150 mm Hg), these hearts exhibited a minor reduction (<8%) in ΔΨm compared with >40% by TAT-HKI (Figure 1C, 1H, and 1I). On average, ΔΨm depolarization after 30 minutes of perfusion was markedly greater (P<0.018) in TAT-HKI compared with high-pressure hearts. Taken together, our findings argue against high perfusion pressure as a major cause of mitochondrial dysfunction.

Low-dose TAT-HKI Administration Does Not Result in Ischemia

A major finding of our previous report was the abrogation of the protective effects of IPC on IR injury by low-dose TAT-HKI (200 nmol/L) administration. Pasdois et al speculated that this is likely attributed to ischemic damage by the peptide, although their data on perfusion flow and pressure did not support that view. Nonetheless, we set out to determine whether low-dose TAT-HKI peptide administration results in functionally significant ischemic damage that can potentially confound the interpretation of our earlier findings. Using optical AP mapping, we asked whether low-dose administration of TAT-HKI altered ischemia-sensitive functional parameters (particularly APD and conduction velocity). Shown in Figure 2 are representative AP traces recorded during steady-state pacing from TAT-con (blue) and TAT-HKI (red) hearts (Figure 2A), as well as average APD75 and APD90 measurements performed over a wide range of pacing cycle lengths (Figure 2B and 2C). Also shown are representative AP upstrokes indicating the delay in AP propagation (Figure 2D), a series of isopotential contour maps that depict the spread of the AP wavefront in TAT-con and TAT-HKI hearts (Figure 2E), and average conduction velocity measurements from each group (Figure 2F). Clearly, low-dose TAT-HKI (200 nmol/L) administration did not alter key electrophysiological properties (APD75, APD90, or conduction velocity). These findings argue against the development of functionally significant ischemia with low-dose administration of the peptide that could potentially explain the abrogation of IPC, as speculated by Pasdois et al.

Ischemia Does Not Explain the Adverse Effects of High-Dose TAT-HKI Administration and Is Not Present With Low-Dose Administration

Finally, we evaluated the presence of ischemia by measuring lactate production (Figure 2G) and NADH epifluorescence (Figure 2H and Online Figure II). LDH release was simultaneously measured as an independent index of cardiac damage (Figure 2I). Consistent with the electrophysiological measurements reported above, ischemia was undetectable in low-dose TAT-HKI hearts because NADH and lactate production were identical in low-dose TAT-HKI and TAT-Con groups, further arguing against a role of ischemia in our reported IR and IPC-effects. Moreover, in support of the electrophysiological measurements performed during low-flow perfusion (60% flow reduction), there were also no differences in any of the ischemia-sensitive parameters. High-dose TAT-HKI peptide administration, on the contrary, resulted in a minor increase in NADH levels (by 18%, P<0.05), a nonsignificant trend toward elevated lactate production (by 11%, P=NS), and a large significant increase in LDH release. In contrast, the high-pressure (endothelin) and hypoxia groups exhibited significantly greater increases in ischemia-sensitive parameters (NADH and lactate production) compared with high-dose TAT-HKI administration. These rises in NADH and lactate in these groups, however, were not associated with significant cardiac damage (assayed by LDH release). This clear dichotomy between ischemia markers and cardiac damage within 15 minutes of isolated heart perfusion argues against a causative role of ischemia in the cardiac destructive effects observed with high-dose administration of the peptide.

Discussion

We recently investigated the functional consequences of reduced mitochondrial-HKI interactions by using a small molecule approach. Specifically, we used a peptide (TAT-HKI) containing the mitochondrial binding motif of HKII, which has been shown to dislodge HKII from mitochondria in intact cells. In that study, we abrogated the protective effects of IPC on IR injury by low-dose TAT-HKI administration and caused rapid myocardial dysfunction and mitochondrial disintegration by high-dose TAT-HKI treatment. We attributed these functional and ultrastructural changes to reduced HKII interaction with mitochondria, as evidenced by EM and immunogold labeling of HKII. In this issue of Circulation Research, Pasdois et al report similar functional changes in rat hearts but arrive at a very different conclusion with regard to underlying mechanisms.

Deleterious Effects of High-Dose TAT-HKI In Intact Myocardium: Muscle or Vessel?

A key finding by Pasdois et al is the impairment of vascular function by high-dose TAT-HKI administration in the intact heart. This translates to a major increase in perfusion pressure (during constant flow conditions) or a decrease in flow (during constant pressure perfusion). Indeed, it is conceivable that ischemic injury caused by impaired vascular function may underlie mitochondrial dysfunction and associated electric abnormalities. We addressed this issue directly by investigating the impact of low-flow perfusion, endothelin-mediated vasoconstriction, and high perfusion pressure on electrophysiological properties, mitochondrial function, and ultrastructure. Finally, we assessed the presence of ischemia and associated damage in several groups, including low-and high-dose TAT-HKI perfused hearts. We found that neither vascular changes nor ischemic damage can explain the acute...
and detrimental effects of TAT-HKII administration in the intact heart. However, our present findings do not exclude the theoretical possibility that some of the adverse effects of high-dose TAT-HKII administration may somehow be amplified by minor ischemic damage. Nevertheless, we believe that our present findings reaffirm the vital importance of maintaining a basal level of HKII on cardiac mitochondria to preserve mitochondrial energetics, electro-mechanical function, and cardiac structure, as we originally concluded.

Abrogation of IPC: Partial Loss of Mitochondrial-HKII Levels or Silent Ischemia?

Pasdois et al argued that the abrogation of IPC with low-dose peptide administration may be attributed to ischemia. Using 3 independent techniques, we were unable to detect ischemia or ischemia-mediated dysfunction in the low-dose peptide group, arguing strongly against a role for ischemia in the abrogation of the protective effects of IPC by low-dose peptide administration. However, it is still possible that vascular changes may be unmasked by low-dose administration of the peptide during the reperfusion phase that follows an ischemic insult, an issue that will require direct examination in future studies.

Finally, using cell fractionation and Western blotting techniques on isolated mitochondria, Pasdois et al found that TAT-HKII administration did not alter HKII binding to mitochondria. One potential explanation for this discrepancy could be their reliance on a short period of peptide administration (<9 minutes). The protocol they chose is indeed problematic considering that the half-time of HK dissociation from mitochondria was recently reported to be 8.5 minutes. The protocol they chose is indeed problematic considering that the half-time of HK dissociation from mitochondria was recently reported to be 8.5 minutes.
of maintaining the tissue intact when studying the subcellular localization of proteins whose association with mitochondria is highly regulated. To achieve this stringent requirement, we resorted to EM and immunohistological analysis of HKII in perfusion-fixed hearts. Of note, in pilot experiments we also were unable to detect TAT-HKII–mediated changes in mitoHKII levels using standard techniques (Western blotting and HK activity measurements) that necessitate membrane fragmentation (data not shown). Because the association of HKII with the outer membrane of mitochondria is a dynamic and reversible process, which is likely dependent on the in vivo posttranslational status of its mitochondrial binding partner and the outer membrane potential (through binding to voltage-dependent anion channel), it is not surprising that the tissue fractionation process used by us in pilot experiments and Pasdois et al markedly disrupts HKII binding to the mitochondrial membrane.

The importance of studying mitoHKII in situ is also reflected by the higher concentration threshold required to elicit the detrimental effects of TAT-HKII in isolated mitochondria (30 μmol/L range) as compared with intact cardiomyocytes (=1 μmol/L range). Such finding is consistent with the notion that the most dynamic and regulated subpopulation of HKII that binds mitochondria in situ is likely to be severely disrupted by the artificial process of membrane fragmentation used to isolate mitochondria. Interestingly, John et al recently reported HK dissociation on permeabilization of Chinese hamster ovary cells. A similar mechanism underlies the observation that although the outer membrane of mitochondria in their in situ native environment is highly impermeable, it is readily permeabilized by the mitochondrial isolation process probably through loss of tubulin binding to voltage-dependent anion channel. This highlights major differences in mitochondrial membrane properties that likely affect the association between HKII and mitochondria using various techniques.

Finally, one must note that the technique of EM with immunogold labeling has clear limitations. For one, it only allows for very limited sampling and semiquantitative analyses, issues which we tried to minimize by choosing an identical predefined sampling procedure in all groups. We also complemented our histological examinations with integrative functional measurements, including electrophysiological and mitochondrial imaging tools, lactate production, NADH, and LDH release assays. Further refinement of biochemical tools for studying mitoHKII localization and displacement will be important in future studies because they will further complement the semiquantitative EM technique.

In conclusion, Pasdois et al report important changes in vascular function that are elicited by TAT-HKII administration. Here, we demonstrate that impaired vascular function does not account for mitochondrial dysfunction in the intact heart. However, in light of the intriguing findings by Pasdois et al, future work directed toward understanding potential mechanisms by which HKII subpopulations may regulate vascular smooth muscle and endothelial cell function seems highly warranted.

Sources of Funding
This work was supported by grants from the National Institutes of Health–HL079108 (F.G. Akar), the Irma T. Hirsch and Monique Weill Trusts (F.G. Akar), and the Dutch Heart Foundation–Grant No. NHS2010B011 (C.J. Zuurbier).

Disclosures
R. Nederlof, M.W. Hollman, R. Southworth, and C.J. Zuurbier are participants on a research grant (NHS2010B011) from the Dutch Heart Foundation that is relevant to the topic of this article.

References
Pathophysiological Consequences of TAT-HKII Peptide Administration Are Independent of Impaired Vascular Function and Ensuing Ischemia

Circ Res. 2013;112:e8-e13
doi: 10.1161/CIRCRESAHA.112.274308
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/112/2/e8

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2013/01/21/112.2.e8.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Supplemental Material

Isolated heart preparations

Mouse studies: All experiments were approved by the animal ethics committee of the Academic Medical Center, Amsterdam, The Netherlands. Experiments were performed with male C57Bl/6J mice (24-31 g). Mice were heparinized (15 IU) and anesthesized with pentobarbital (100 mg kg⁻¹). Following tracheotomy, the mice were mechanically ventilated and a thoracotomy performed. The hearts were cannulated in situ and perfusion initiated before excision of the heart. Hearts were Langendorff-perfused at a constant flow (initial perfusion pressure 80 mm Hg) at 37°C with Krebs-Henseleit solution containing (mmol/L) NaCl 118, KCl 4.7, CaCl₂ 2.25, MgSO₄ 1.2, NaHCO₃ 25, KH₂PO₄ 1.2, EDTA 0.5, and glucose 11, glutamine 0.5, lactate 1.0 and pyruvate 0.1, gassed with 95% O₂/5% CO₂. The perfusate was in-line filtered by a 0.45-μm filter. End-diastolic pressure (EDP) was set at ~4-8 mmHg using a water-filled polyethylene balloon inserted into the left ventricular (LV) cavity via the mitral valve. The hearts were continuously submerged in 37°C perfusate.

Rat Studies: A total of 23 rat hearts were used for this study. All procedures involving the handling of animals were approved by the Animal Care and Use Committee of the Mount Sinai School of Medicine and adhered with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication No. 85-23, revised 1996). High resolution optical ΔΨₘ (n=9) and action potential (n=14) mapping studies were performed in ex vivo perfused rat hearts. As described previously, rats were anesthetized with sodium pentobarbital (50mg/Kg, IP) and euthanized. Their hearts were rapidly excised and retrogradely perfused via the aorta with oxygenized (95%O₂/5%CO₂) Tyrode’s solution containing: 121.7mM NaCl, 2.74mM MgSO₄, 25mM NaHCO₃, 4.81mM KCl, 5mM Dextrose, and 2.5mM CaCl₂ at 36±1°C. Both atria were excised in order to avoid competitive stimulation of the ventricles by the sinoatrial node. Perfusion pressure was maintained at ~60-65mmHg by adjusting the perfusion flow rate. Perfused hearts were positioned in a custom built imaging chamber with their anterior surface gently pressed against a glass imaging window by a customized “U” shape piston. Preparations were immersed in the coronary effluent to maintain the heart surface temperature at 36±1°C. Hearts were paced with a silver electrode placed on the surface of epicardium with its tip in the corner of the mapping field. Volume conducted electrocardiograms (ECG) were recorded for cardiac rhythm analysis by placing non-contact silver electrodes in the solution filled chamber. ECG signals were amplified, digitized and displayed in real time using the acqknowledge 3.9 software package (Biopac system, Goleta, CA, USA). In a subset of 9 hearts, a buffer filled latex balloon (Harvard Apparatus) was inserted into the LV cavity via the mitral valve to measure LV cavity pressure (LVP). Mitochondrial membrane potential imaging (details below) was performed in the following groups: 1) 2.5μM TAT-HKII (n=3), 2) low-flow ischemia (n=3), 3) high-pressure perfusion (n=3). Action potential mapping (details below) was performed in the following groups: 4) 200nM TAT-HKII (n=4), 200nM TAT-con (n=4), no-flow ischemia (n=3), low-flow ischemia (n=3).

Endothelin-1
Endothelin-1 was dissolved in Krebs-Henseleit solution and administered through a side-arm connected to a mixing chamber above the heart. Flow was set to reach a final perfusion pressure of 160 mmHg and was 1.88 ± 0.07% of total perfusion flow. A mean of 7.5 nM endothelin-1 was used to obtain a mean perfusion pressure of 173 ± 13 mmHg at the end of the 15 min treatment period (n=3).

TAT-peptides
The soluble peptides MIASHMIACLFTELN(β-Ala)GYGRKKRRQRRRG-amide (TAT-HK) and GYGRKKRRQRRRG-amide (TAT-CON) were produced by Pepscan presto (Lelystad, The
Peptides were dissolved in perfusate Krebs-Henseleit solution and administered through a side-arm connected to a mixing chamber above the heart, at 1% of total perfusion flow.

Sample preparation and sectioning for electron microscopy studies
Following endothelin-1 administration, hearts were perfused at an equal perfusion flow rate with 2% formaldehyde + 0.2% glutaraldehyde in KHB (pH 7.4) for 5 min. Longitudinal left ventricular sections were cut, lightly fixed for 1 hour, placed in 2.3mol/L sucrose and shipped to London, UK. Sections were cut again into 1-2mm cubes, mounted in random orientation on specimen pins, and frozen in liquid nitrogen prior to cryosectioning. 70nm-thick sections were cut with glass knives at −80°C using a Leica ultramicrotome, mounted on 3mm nickel grids (4 grids per sample), coated on one side with 0.3% Pioloform film, and embedded in 9 parts 2% methyl cellulose, 1 part 3% uranyl acetate.

Transmission Electron Microscopy of Cryosections
Micrographs were obtained using a FEI T20 transmission electron microscope at an accelerating voltage of 80kV. A random sampling approach was employed to assess tissue morphology in an objective manner. Specifically, at a magnification sufficiently high to visualize the distribution of the tissue sections present on each grid (typically 1500x), but not so high as to enable the identification of structural details, 23 representative co-ordinates were randomly assigned. Magnification was then increased to 3500x, and the stage advanced through the first 3 co-ordinates to obtain images of gross tissue morphology, before increasing the magnification to 9800x and advancing through the remaining 20 co-ordinates for assessment of mitochondrial morphology. Thus, 60 random high resolution images were obtained for each heart (20 images from 3 grids each). Average mitochondrial area was estimated as described previously, and each mitochondrion in each image was crudely scored as “normal” or “abnormal” based on visible evidence of swelling, disrupted cristae patterns or loss of integrity.

High-resolution optical $\Delta \Psi_m$ mapping in ex vivo perfused rat hearts
High-resolution optical $\Delta \Psi_m$ imaging using the fluorescent dye tetramethylrhodamine methylester (TMRM) was performed in the intact, beating rat heart as detailed elsewhere. This method allows the assessment of mitochondrial function at a subcellular resolution within the intact organ. Briefly, following cannulation, hearts were allowed to stabilize for ten minute at physiological temperature (36 ± 1°C). Hearts were then stained with TMRM (125nM; Molecular Probes Inc.) mixed in a 500mL volume of Tyrodes solution (dye loading phase) for 20 minutes. This was followed by a 20-30 minute dye washout phase during which perfusion was switched back to dye free medium and the stability of TMRM fluorescence was ensued. A 6400 pixel CCD based optical imaging approach allowed the measurement of normalized $\Delta \Psi_m$ with 50μm resolution over a 4x4mm² window of the epicardial surface. Changes in $\Delta \Psi_m$ caused by each experimental protocol (TAT-HK II, low flow ischemia, and high perfusion pressure) were normalized to the steady state background subtracted TMRM fluorescence level achieved during the dye washout phase on a pixel by pixel basis. Normalized $\Delta \Psi_m$ measurements across the imaged region of the heart were plotted as contour maps using Delta Graph 5.6 (Red Rock Software). These maps served to illustrate the spatial distribution of $\Delta \Psi_m$.

Three groups were studied: 1) high-dose TAT-HKII: Rat hearts were treated with 2.5μM TAT-HKII for 30min during which $\Delta \Psi_m$ was measured and compared to steady-state pre-TAT-HKII levels; 2) Low flow ischemia: Perfusion flow was decreased by 60% of the baseline value for up to 1 hour; 3) High perfusion pressure: Hearts were subjected to an elevated perfusion pressure of ~150mmHg by increasing the pump driven flow rate. In all hearts, steady-state
pacing at 300ms pacing cycle length (PCL) was initiated before the dye loading phase and maintained throughout the entire protocol or until sustained ventricular fibrillation was spontaneously initiated.

High-resolution optical action potential mapping in ex vivo perfused hearts.

Action potentials were measured using a CCD-based high resolution optical mapping system, as previously described in detail. For these measurements, movement artifact was suppressed by perfusion of hearts with 10μM blebbistatin (Tocris Bioscience, MO, USA) mixed in Tyrode’s solution for 15min. Hearts were stained with 20μM di-4-ANEPPS (Invitrogen, CA, USA) mixed in Tyrode’s solution for 10min, and excited with filtered light (515±5nm) emitted by a high power, low noise Tungsten Halogen lamp. Emitted fluorescence was filtered (>620nm) and focused onto a high resolution CCD camera through a custom designed optical macroscope. Electrophysiological measurements of action potential duration (APD) and conduction velocity (CV) were conducted in 200nM TAT-HKII and TAT-con treated hearts during steady state pacing over a wide range of pacing cycle lengths (300ms to 140ms in 20ms decrements). Additional experiments were performed in low-flow and no-flow ischemia models that served to mimic the flow reduction conditions reported by Pasdois et al (60% reduction) and a positive control (no-flow ischemia group).

Lactate production, NADH epifluorescence and Lactate Dehydrogenase enzyme release in isolated perfused mouse hearts.

In a separate series of experiments, effluent lactate and NADH fluorescence of the surface of the heart were evaluated as direct indices of ischemia in the different experimental groups. For this series of experiments, all hearts were treated as described above for the mouse studies, except that glucose was now the sole substrate to allow lactate production measurements to be unaffected by lactate and pyruvate present in the perfusate. Following 15 min stabilization, six different groups were examined for 15 min perfusion and intervention: 1) TAT-Con group: administration of TAT-CON peptide at a final concentration of 2.5 μM (n=9 for LDH and lactate; n=4 for NADH), 2) 200 nM TAT-HKII group: administration of TAT-HKII peptide at a final concentration of 200 nM (n=9 for LDH and lactate; n=4 for NADH), 3) 2.5 μM TAT-HKII group: administration of TAT-HKII peptide at a final concentration of 2.5 μM (n=6 for all measurements), 4) 60% flow reduction group, flow was measured at the end of the stabilization period and reduced by 60% during the intervention period (n=4 for all measurements), 5) 7.5 nM endothelin group, endothelin was administered through a side arm at 1% total flow, to mimic the increased perfusion pressure observed with high-dose TAT-HKII administration (n=6 for all measurements), 6) hypoxia group, perfusate was switched from 95%O2/5%CO2 to 95%N2/5%CO2 (n=5 for all measurements).

Effluent of the heart was sampled before and at the end of the 15 min intervention period, and the difference was used as index of lactate production due to the intervention. Lactate was measured using standard spectrophotometric techniques at 340 nm, using an assay mixture of glycine, NAD, hydrazine hydrate. The reaction was initiated with the addition of lactate dehydrogenase. Lactate dehydrogenase enzyme activity was measured in the effluent at the end of the 15 min intervention using standard spectrophotometric techniques (kPi-buffer, pH 7.5, NADH and pyruvate).

The mitochondrial NADH/NAD\(^+\) redox state is viewed as the gold standard for the condition of dysoxia at a cellular level.\(^5\) NADH is visible due to its fluorescence upon excitation, whereas NAD\(^+\) is not. The videofluorometer was attached to a brace and positioned in front of a custom build imaging chamber, with a crystal window through which the left ventricle of the heart was visible. The heart was submerged in perfusate and kept at 37 °C. The fluorometer consisted of a 100-W mercury arc lamp, a dichroic mirror for separation of excitation and emission light and a Lamberts CCD camera. A UG-1 barrier filter allowed transmission of 360-nm excitation light, and a band-pass filter allowed transmission of NADH
fluorescence light at 460 ± 20 nm. A manually controlled shutter in front of the Hg lamp allowed intermittent illumination of the left ventricular surface for 10 s, during which NADH fluorescence images were recorded with a digital videorecorder. NADH images were recorded at \(t = 0, 5, 10 \) and \(15 \) min of the intervention perfusion protocol, and following \(3 \) min of global no-flow ischemia (providing a positive NADH control measurement for each heart). The fluorescence images were analyzed offline by ImageJ software. The largest area of the left ventricle visible throughout the experiment was chosen and the averaged gray level determined and corrected for fluctuations in excitation lamp intensities by normalization with the fluorescence intensity of a piece of uranyl positioned next to the heart. NADH fluorescence was subsequently normalised to the values obtained at \(t = 0 \) min, before any intervention/administration started.

References

Online Figure I: Average APD75, APD90, and CV during low-flow (60% flow reduction) ischemia (left) and no-flow ischemia (right).
Online Figure II: Representative NADH images of isolated Langendorf-perfused rat hearts at baseline (BL, before treatment), during the 15 min intervention period (t = 5, 10 and 15 min), and at the end of a 3 min no-flow ischemia (ISCH). The uranyl positioned immediately next to the heart is used for normalization of NADH epifluorescence between experiments for fluctuations in experimental set-up and excitation light intensity. Note that due to small differences in fluorescence measurement settings, the uranyl of the different hearts in this figure is not equal. Therefore, heart fluorescence can only be compared after normalization to uranyl fluorescence.