Letter to the Editor

Response to Pomozi et al’s Research Commentary

To the Editor

In the course of studying the effects of ABCC6 deficiency in mice, we observed an enrichment of mitochondrial gene expression signatures. In subsequent studies, we found that ABCC6 null mice exhibited abnormal mitochondrial morphology and functional mitochondrial deficiencies. We then carried out subcellular fractionation studies, indicating that ABCC6 colocalized with markers of the mitochondria-associated membranes in mouse liver and kidney. Our results differed from Le Saux et al from the Varadi group, who had concluded in a recent publication that ABCC6 resided in the plasma membrane. To test whether ABCC6 was localized in plasma membrane, we performed cell surface protein biotin labeling experiments, which were negative for ABCC6.

See Research Commentary, p e148

Pomozi et al of the Varadi group have now challenged our conclusions based, as in their previous report, on immunofluorescent imaging of frozen liver sections and cells in culture showing peripheral cellular localization of antibody binding. They argue that cell disruption and subcellular fractionation in our study may have resulted in artifactual associations of membrane proteins. However, this seems improbable, given that the plasma membrane markers that we examined did not fractionate with ABCC6, and mitochondria-associated membranes constitute a very small fraction of the total membranes. Cellular fractionation techniques have been used almost universally to provide definitive evidence of subcellular localization. Pomozi et al also argue that ABCC6 lacks sufficient amine groups on the extracellular surface to allow biotin labeling. This possibility cannot be excluded, although the manufacturer of the surface protein biotin labeling assay (Thermo Pierce) indicates that it is sensitive to even a single amine group, which would be present in the N terminus or in one of the predicted available lysines.

In our studies, we used the N-terminal binding (S-20) antibody from the same commercial supplier (Santa Cruz Biotechnology) as reported by Pomozi et al. In our hands, this antibody exhibited significant nonspecific binding in ABCC6 null mouse tissue sections (not shown) and in Western blots. We note that in their publication, the methods state that the S-20 antibody is made in rabbit and blocking was performed using goat serum. In fact, the antibody is made in goat and blocking with goat serum would produce nonspecific labeling (per Santa Cruz Biotechnology). An advantage of our results obtained by subcellular fractionation compared with immunofluorescence of tissue sections is that, in the former, the protein is detected on Western blots after separation by gel electrophoresis, thus allowing better separation from cross-reacting proteins. A lack of accompanying Western data in the current challenge, in our opinion, significantly weakens the ability to ascertain the specificity of the signal.

In conclusion, we recognize that localization of proteins can be challenging and is highly dependent on the quality of the antibody reagents. Although we cannot exclude the possibility that some of the ABCC6 protein resides on the plasma membrane, low-resolution imaging studies of frozen liver sections and cells in culture do not provide convincing evidence against the localization of ABCC6 in the mitochondria-associated membranes.

Sources of Funding
This work was supported by funding from the NIH (HL30568, S10RR026744, HL088640, and HHSN268201000035C) and American Heart Association (11SDG7230059, 11POST7300060, and 12PRE11610024).

Disclosures
None.

Lisa J. Martin
Department of Medicine
Edward Lau
Departments of Medicine and Physiology
Harpreet Singh
Department of Anesthesiology
Laurent Vergnes
Department of Human Genetics
Elizabeth J. Tarling
Margarete Mehrabian
Imran Mungrue
Sheila Xiao
Diana Shih
Lawrence Castellani
Department of Medicine
Peipei Ping
Departments of Medicine and Physiology
Karen Reue
Department of Human Genetics
Enrico Stefani
Department of Anesthesiology
Thomas A. Drake
Department of Pathology and Laboratory Medicine
Kristina Bostrom
Department of Medicine
References

Response to Pomozi et al's Research Commentary

Lisa J. Martin, Edward Lau, Harpreet Singh, Laurent Vergnes, Elizabeth J. Tarling, Margarete Mehrabian, Imran Mungrue, Sheila Xiao, Diana Shih, Lawrence Castellani, Peipei Ping, Karen Reue, Enrico Stefani, Thomas A. Drake, Kristina Bostrom and Aldons J. Lusis

Circ Res. 2013;112:e152-e153; originally published online April 26, 2013;
doi: 10.1161/CIRCRESAHA.113.301666

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/112/11/e152

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/