Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control

MITOCHONDRIA IN HEALTH AND DISEASE, which includes the following articles:
Mitochondrial Control of Cellular Life, Stress, and Death [Circ Res. 2012;111:1198-1207]

Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control

Dieter A. Kubli, Åsa B. Gustafsson

Abstract: Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release prodeath proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant mitochondria that can cause harm to the cell. This mechanism involves selective sequestration and subsequent degradation of the dysfunctional mitochondrion before it causes activation of cell death. Induction of mitochondrial autophagy, or mitophagy, results in selective clearance of damaged mitochondria in cells. In response to stress such as ischemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in cardiac myocytes. Thus, there is a delicate balance between life and death in the mitochondria during stress, and the final outcome depends on the complex cross-talk between these pathways. Mitophagy functions as an early cardioprotective response, favoring adaptation to stress by removing damaged mitochondria. In contrast, increased oxidative stress and apoptotic proteases can inactivate mitophagy, allowing for the execution of cell death. Herein, we discuss the importance of mitochondria and mitophagy in cardiovascular health and disease and provide a review of our current understanding of how these processes are regulated. (Circ Res. 2012;111:1208-1221.)

Key Words: apoptosis • autophagy • mitochondria • p53 • Parkin
• phosphatase and tensin homolog–induced putative kinase 1

Mitochondria are primarily responsible for producing ATP via oxidative phosphorylation in the inner mitochondrial membrane. Because of the high energy demand of the heart, mitochondria comprise at least 30% of the myocyte volume.1 Mitochondria also play central roles in both necrosis and apoptosis and can quickly change from a source of energy for sustaining contraction to an organelle that promotes cell death. In response to changes in the environment, ATP synthesis is disrupted, and mitochondria become producers of excessive reactive oxygen species (ROS) and release proteins that participate in cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant mitochondria, which can cause harm to the cell. This mechanism involves selective...
Non-standard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amra1</td>
<td>activating molecule in beclin1-regulated autophagy</td>
</tr>
<tr>
<td>ANT</td>
<td>adenine nucleotide transporter</td>
</tr>
<tr>
<td>Atg5/7</td>
<td>autophagy protein 5/7</td>
</tr>
<tr>
<td>BCL</td>
<td>B-cell lymphoma</td>
</tr>
<tr>
<td>Bnip3</td>
<td>BCL2/adenovirus E1B 19-kDa protein-interacting protein 3</td>
</tr>
<tr>
<td>Bnip3L</td>
<td>BCL2/adenovirus E1B 19-kDa protein-interacting protein 3-like</td>
</tr>
<tr>
<td>Drp1</td>
<td>dynamin-related protein 1</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>LC3</td>
<td>microtubule-associated protein 1 light chain 3</td>
</tr>
<tr>
<td>Mfn1/2</td>
<td>mitofusin-1/2</td>
</tr>
<tr>
<td>mPTP</td>
<td>mitochondrial permeability transition pore</td>
</tr>
<tr>
<td>Opal</td>
<td>optic atrophy protein 1</td>
</tr>
<tr>
<td>PGC-1α</td>
<td>peroxisome proliferator-activated receptor-γ coactivator 1α</td>
</tr>
<tr>
<td>PINK1</td>
<td>phosphatase and tensin homolog–induced putative kinase 1</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>VDAC</td>
<td>voltage-dependent anion channel</td>
</tr>
<tr>
<td>VPS</td>
<td>vacuolar protein sorting</td>
</tr>
</tbody>
</table>

Autophagy is an evolutionarily conserved process that is responsible for the degradation of components in the cytoplasm via the lysosomal pathway. When the cell receives a signal to initiate autophagy, a membrane called the phagophore is formed (Figure 1). Initial phagophore formation, or nucleation, requires the assembly of a complex consisting of BECLIN1, vacuolar protein sorting (VPS) 34, and VPS15. Subsequent expansion of the membrane is mediated by 2 ubiquitin-like conjugation systems, microtubule-associated protein 1 light chain 3 (LC3) and autophagy protein (ATG) 12-ATG5, that promote assembly of the ATG16L complex and the conjugation of LC3 with phosphatidylethanolamine. The phagophore expands until its edges fuse around its target(s), forming a double-membrane structure called the autophagosome. Next, the autophagosome fuses with a lysosome and the contents are degraded by lysosomal enzymes.

Autophagy initially was believed to be a nonselective process, whereby autophagosomes randomly engulf cytosolic material. However, it is now clear that autophagy specifically targets invading bacteria, protein aggregates, and organelles such as mitochondria and endoplasmic reticulum (ER). Thus, autophagy constitutes a very important quality-control mechanism in cells, particularly in postmitotic cells such as cardiac myocytes.

Interestingly, mitochondria can activate both cell death and mitophagy, 2 opposing forces in the cell, in response to the same stimulus. These are highly regulated processes, and the delicate balance between the 2 determines whether a cell will live or die. Defining the role of mitochondria and mitophagy in various cardiovascular pathologies is currently an area of great interest. The importance of understanding how dysfunctional mitochondria and mitophagy contribute to cell survival and death in the myocardium during ischemia/reperfusion (I/R) and heart failure is becoming increasingly apparent. This review highlights the role of mitochondria in cell death and mitophagy and discusses our current understanding of how these processes are regulated in cells.

Mitochondria and Cell Death

Mitochondria are important regulators of cell death and respond to many different stress signals, including loss of growth factors, hypoxia, oxidative stress, and DNA damage. The switch to a cell death program is mediated by permeabilization of the outer mitochondrial membrane via BCL2-associated X protein (BAX) and BCL2-antagonistic/killer (BAK) or by opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane (Figure 2). Permeabilization of the outer membrane by BAX/BAK results in the release of proapoptotic proteins such as cytochrome c, second mitochondria-derived activator caspase (Smac) direct IAP-binding protein with low pI (DIABLO), apoptosis-inducing factor, and endonuclease G to activate apoptosis. In contrast, opening of the mPTP causes rapid influx of solutes and water into the mitochondrial matrix, collapse of the proton gradient, and disruption of ATP synthesis. This influx causes swelling of the inner membrane and eventual rupture of the outer membrane, culminating in necrotic cell death. Both forms of cell death are highly regulated by mitochondria and have been implicated in loss of myocardial cells in pathologies, such as I/R, cardiomyopathies, and congestive heart failure.

Regulation of Mitochondrial Permeabilization by BCL-2 Family Proteins

The B-cell lymphoma (BCL)-2 family of proteins is at the center of mitochondrial apoptosis regulation. Antiapoptotic members such as BCL-2 and BCL-XL promote survival by inhibiting the function of the proapoptotic BCL-2 proteins. The proapoptotic members can be separated into 2 distinct subfamilies: the BH3-only proteins, which include BH3 interacting domain death agonist (BID), BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), Nip3-like protein X (NIX)/BCL2/adenovirus E1B 19-kDa protein-interacting protein 3-like (BNIP3L), and p53 upregulated modulator of apoptosis (PUMA), and the effector proteins BAX and BAK. Some of the BH3-only proteins transduce stress signals from the cytosol to the mitochondria to initiate cell death by binding to and neutralizing the antiapoptotic BCL-2 proteins, thereby activating BAX and BAK. Some of the BH3-only proteins, such as BID, can interact directly with BAX and BAK to induce their activation. Upon activation, BAX and BAK form pores in the outer mitochondrial membrane large enough to allow for the passage of cytotoxic proteins from the intermembrane space to the cytosol (Figure 2A). The regulation of apoptosis in the heart by BCL-2 proteins has been implicated in the pathogenesis of cardiac hypertrophy, infarction, and heart failure. Numerous studies have demonstrated a cardioprotective role for the antiapoptotic BCL-2 proteins in response to various stressors. For instance, transgenic mice overexpressing BCL-2 in the heart are resistant to I/R injury. Moreover, BAX is activated in myocytes in response to oxidative stress and during ischemia. Hearts from BAX-deficient mice have reduced mitochondrial damage and decreased infarct size after I/R.
compared with wild-type mice, implicating BAX as a major player of mitochondrial dysfunction in I/R. Among the BH3-only proteins, BID, PUMA, BNIP3, and NIX/BNIP3L have been implicated in cardiac myocyte death.

Mitochondria and the mPTP

The mPTP is a channel in the inner mitochondrial membrane that allows for the passage of molecules up to 1.5 kDa. Opening of the pore causes a collapse of the proton gradient and electrical potential across the inner mitochondrial membrane, leading to disruption of oxidative phosphorylation (Figure 2B). Opening of the mPTP also causes influx of solutes and water with subsequent swelling of the inner membrane. The outer mitochondrial membrane is unable to expand, resulting in rupture and release of proapoptotic proteins into the cytosol. The composition of the mPTP remains elusive and, to date, the only protein identified to be an essential component is cyclophilin D.

The mPTP is a major contributor of myocardial I/R injury, and inhibitors of the mPTP reduce infarct size in ex vivo I/R. Moreover, cyclophilin D–deficient mice are resistant to I/R injury. Interestingly, cells lacking cyclophilin D are still sensitive to apoptotic stimuli, suggesting that mPTP opening is not required for the induction of apoptosis via the mitochondrial pathway.

Studies also have suggested the voltage-dependent anion channel (VDAC) and the adenine nucleotide transporter (ANT) as potential components of the mPTP. Interestingly, experiments in mice deficient for multiple isoforms of VDAC demonstrate that pore opening occurs in the absence of VDAC. Similarly, mitochondria lacking ANT1/2 still undergo permeability transition, albeit at higher Ca\(^{2+}\) thresholds. However, considering the critical role of the ANTs in ATP/ADP exchange, it is likely that a functional compensation by other mitochondrial carrier proteins counterbalances the lack of ANT. There is strong evidence that ANT and VDAC are important regulators of cell death. Studies have found that modulation of the levels of different ANTs can result in either cytoprotection or exacerbated cell death. For instance, overexpression of ANT1 causes apoptosis, whereas ANT2 inhibits mPTP opening. Differential regulation of cell survival and death also has been reported for the different

Figure 1. Induction of autophagy. B-cell lymphoma (BCL)-2 prevents the induction of autophagy by binding BECLIN1 and activating molecule in BECLIN1-regulated autophagy (AMBRA1). Displacement by BH3-only proteins leads to activation of the BECLIN1–vacuolar protein sorting (VPS) 34–VPS15 complex and phagophore nucleation. Elongation of the membrane requires 2 ubiquitin-like conjugation systems: autophagy protein (ATG)12-ATG5-ATG16L and conjugation of microtubule-associated protein 1 light chain 3 (LC3)-I with phosphatidyethanolamine (PE) to form LC3-II. After maturation of the autophagosome, it fuses with the lysosome to degrade the cargo. (Illustration credit: Ben Smith.)
isofoms of VDAC. Tajeddine et al \(^{35}\) reported that VDAC1 contributes to mitochondrial membrane permeabilization via activation of BAX. In contrast, VDAC2 has been reported to inhibit apoptosis by sequestering BAK. \(^{36}\)

There exists substantial cross-talk between the BCL-2 proteins and the mPTP. In the heart, BCL-2 has been reported to increase the calcium threshold for mPTP opening by blocking the opening of the pore. \(^{37}\) In addition, Whelan et al \(^{38}\) recently made the discovery that Bax/Bak/cyclophilin D triple-knockout mice fail to show further reduction in infarct size compared with Bax/Bak double-knockout mice. Moreover, the authors found that cells deficient only for Bax/Bak are also resistant to mPTP opening and necrotic cell death, \(^{38}\) and that BAX can promote mPTP opening via a mechanism that is distinct from its ability to induce outer mitochondrial membrane permeabilization. Thus, although apoptosis and necrosis are distinct pathways, there is substantial overlap between the 2 in both regulation and mechanism of action.

Regulation of ER Ca\(^{2+}\) Flux and Metabolism by BCL-2 Proteins

Release of Ca\(^{2+}\) from the ER via inositol triphosphate receptors is another critical event for the initiation of apoptosis. Mitochondria are closely associated with ER, and a major portion of the Ca\(^{2+}\) that is released into the cytosol is absorbed by mitochondria. \(^{39}\) This mitochondrial Ca\(^{2+}\) buffering protects cells from the cytotoxic effects of Ca\(^{2+}\) and results in activation of several key enzymes in the mitochondrial matrix to enhance ATP production. \(^{39}\) However, excess Ca\(^{2+}\) uptake by mitochondria leads to Ca\(^{2+}\) overload and opening of the mPTP. \(^{27}\) The level of Ca\(^{2+}\) stored in the ER, and by extension released during stress, determines how much is subsequently taken-up by mitochondria. BCL-2 proteins also localize to the ER where they regulate Ca\(^{2+}\) homeostasis. BCL-2 and BCL-X\(_L\) repress proapoptotic Ca\(^{2+}\) signals from the ER by reducing ER Ca\(^{2+}\) stores, consequently reducing Ca\(^{2+}\) release during stress. \(^{40,41}\) Alternatively, BCL-2 can directly interact with inositol triphosphate receptors to inhibit inositol triphosphate–mediated ER Ca\(^{2+}\) release. \(^{42}\) In contrast, ER-localized BAX and BAK elevate the resting ER Ca\(^{2+}\) stores and trigger the release of ER Ca\(^{2+}\) into the cytosol during stress. \(^{40,43}\) Moreover, the BH3-only protein NIX is localized to the ER/sarcoplasmic reticulum (SR) and is implicated with increasing Ca\(^{2+}\) release from ER/SR, leading to opening of the mPTP in cardiac myocytes. \(^{44}\) Thus, proapoptotic BCL-2 proteins promote cell death directly by causing mitochondrial permeabilization and indirectly by increasing ER calcium release for subsequent uptake by mitochondria.

Studies have demonstrated that antiapoptotic BCL-2 family proteins also can influence cell survival by regulating mitochondrial bioenergetics. A pool of BCL-X\(_L\) localizes to the mitochondrial matrix, where it interacts with the \(\beta\) subunit of the F\(_{1}\)F\(_{0}\) ATP synthase and prevents proton leakage. \(^{45,46}\) Because proton leakage reduces available protons for the ATPase, decreasing this leak enhances the efficiency of mitochondrial ATP synthesis. This positive energetic change may increase resistance to stressors such as hypoxia. Similarly, Percivalle et al \(^{47}\) reported that Mcl-1 is localized to distinct mitochondrial locations where it exhibits different functions. Mcl-1 on the outer mitochondrial membrane has antiapoptotic activity and maintains mitochondrial integrity, whereas Mcl-1 in the matrix is important in assembly of F\(_{1}\)F\(_{0}\) ATP synthase oligomers.

Regulation of Autophagy by BCL-2 Family Proteins

BCL-2 and BCL-X\(_L\) are also negative regulators of autophagy via interaction with BECLIN1 \(^{48}\) (Figure 1). Although BECLIN1 contains a BH3 domain, it does not function as a proapoptotic protein. \(^{49}\) Instead, it is involved in autophagosome nucleation. He et al \(^{50}\) recently reported that both fasting- and exercise-induced autophagy in the myocardium require
disruption of the BCL-2-BECLIN1 complex, and knock-in mice expressing a mutant BCL-2 that is unable to dissociate from BECLIN1 fail to induce autophagy. BCL-2 also inhibits autophagy by interacting with activating molecule in BECLIN1-regulated autophagy (AMBRA1). AMBRA1 activates the BECLIN1-VPS34-VPS15 complex that is required for nucleation of phagophores. During autophagy induction, BECLIN1 and AMBRA1 are released from BCL-2 to initiate the formation of the phagophore. The interaction between BECLIN1 and BCL-2/BCL-X\textsubscript{I} can be disrupted by BH3-only proteins to activate autophagy. However, it is currently unknown what mechanism triggers the dissociation of AMBRA1 from BCL-2.

BCL-2 family proteins also can regulate autophagy via ER Ca2+ stores. Treatment of cells with intracellular Ca2+-mobilizing agents results in increased autophagy, which is inhibited by ER-targeted BCL-2. Similarly, Brady et al demonstrated that ER/SR-targeted BCL-2 negatively regulates starvation-mediating autophagy by depleting ER/SR Ca2+ content rather than via direct interaction with BECLIN1 in HL-1 myocytes.

BNIP3 and NIX/BINP3L were originally identified as proapoptotic BH3-only proteins that cause cell death via permeabilization of the outer mitochondrial membrane. Although it is now understood that they can activate both apoptosis and mitophagy, it is also evident that these are 2 distinct processes activated independently and in differing contexts. For instance, NIX/BINP3L is essential for the removal of mitochondria in reticulocytes by mitophagy. Similarly, BNIP3 is a potent inducer of mitophagy in cells including cardiac myocytes. In cells lacking BAX and BAK, overexpression of BNIP3 results in increased mitophagy in the absence of outer mitochondrial membrane permeabilization. Interestingly, we found that disrupting BNIP3-mediated mitophagy has no effect on its proapoptotic activity. This suggests that BNIP3 and NIX have the dual function of regulating both mitophagy and cell death.

It is still unclear exactly under what conditions BNIP3 and NIX switch from mitophagy regulators to cell death mediators.

Regulation of Cell Death and Autophagy by p53

The p53 tumor suppressor protein regulates both apoptosis and autophagy. The induction of cell death by p53 occurs via regulation of gene expression and by direct action at the mitochondria. Under normal conditions, p53 is maintained at low levels by the E3 ubiquitin ligase mouse double minute 2 (MDM2), which targets p53 for degradation by the proteasome. In response to stress such as hypoxia or DNA damage, the levels of p53 increase in the cell. Nuclear p53 transactivates several proapoptotic genes, including Bax, Bak, Noxa, and Puma, whereas it represses the transcription of antiapoptotic Bcl-2, Bcl-X\textsubscript{L}, and Mcl-1. A portion of p53 also translocates to mitochondria, where it promotes mitochondrial permeability by interacting with BCL-2 family proteins. p53 has been reported to directly bind to and activate BAX and BAK to inhibit BCL-2/BCL-X\textsubscript{L}. Accumulating evidence indicates that p53 plays an important role in stress-induced apoptosis in the heart. Studies have found that p53 is upregulated in the heart in response to ischemia, oxidative stress, and anthracycline exposure. Moreover, p53-deficient mice have reduced susceptibility to anthracycline-induced myocardial apoptosis and heart failure, whereas cardiac-specific deletion of Mdm4, a homolog of Mdm2, results in elevated levels of p53 and development of dilated cardiomyopathy.

p53 plays dual roles in regulating autophagy depending on the context and subcellular localization. Under normal conditions, cytoplasmic p53 suppresses the induction of autophagy. The serine/threonine kinase PINK1 plays a central role in communicating the collapse of the mitochondrial membrane potential (Δψ\textsubscript{m}) (Figure 3). The phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin pathway is important in regulating mitophagy in cells. Mitophagy allows for the selective removal of only dysfunctional mitochondria by autophagosomes. The E3 ubiquitin ligase Parkin is predominantly cytosolic under basal conditions but rapidly translocates to mitochondria upon loss of mitochondrial membrane potential (Δψ\textsubscript{m}) (Figure 3). To date, only 4 Parkin substrates have been identified on mitochondria: VDAC1, mitofusin-1 and mitofusin-2 (MFN1/2), and MIRO.

The serine/threonine kinase PINK1 plays a central role in communicating the collapse of the Δψ\textsubscript{m} to Parkin. PINK1 is found at very low levels on mitochondria with intact Δψ\textsubscript{m} because it is rapidly imported and cleaved by mitochondrial proteases. The fragments are then degraded by the...
proteasome. Upon collapse of the Δψm, the import and degradation of PINK1 are blocked, and PINK1 accumulates on the outer mitochondrial membrane. Studies have demonstrated that the expression of PINK1 is necessary for the recruitment of Parkin to depolarized mitochondria. However, exactly how accumulation of PINK1 on the outer mitochondrial membrane results in recruitment and activation of Parkin is currently unclear. On the basis of experimental findings, 3 different models have been proposed. First, it has been suggested that PINK1 directly interacts with Parkin, thereby anchoring it to the mitochondria. Another model suggests that PINK1 directly phosphorylates Parkin, resulting in its activation. Alternatively, PINK1 may phosphorylate Parkin substrates on the mitochondria, thereby increasing their affinity for Parkin. In contrast, other studies have found that Parkin does not require PINK1 for its function. Additional studies are needed to elucidate the relationship between PINK1 and Parkin in mitophagy.

To date, very few PINK1 substrates have been identified, and only one of them is associated with the mitochondria. The atypical Rho GTPase MIRO plays an important role in the movement of mitochondria within cells by connecting mitochondria to microtubules. Wang et al reported that phosphorylation of MIRO by PINK1 activates proteasomal degradation of MIRO in a Parkin-dependent manner. This supports the notion that the PINK1/Parkin pathway disrupts movement of damaged mitochondria in cells, thereby separating them from the pool of healthy mitochondria for mitophagy. Unlike neuronal cells, whose survival depends on efficient transport of mitochondria from the cell body to the axon terminal, mitochondria in cardiac myocytes do not display significant motility. Interestingly, MIRO is highly expressed in the heart and skeletal muscle, and it will be greatly beneficial to determine what role MIRO plays in PINK1/Parkin-mediated mitophagy in the myocardium.

Figure 3. Regulation of mitophagy. Damaged mitochondria undergo dynamin-related protein 1 (DRP1)-mediated fission before mitophagy. Reduced mitochondrial membrane potential leads to accumulation of phosphatase and tensin homolog–induced putative kinase 1 (PINK1) and subsequent recruitment of the E3 ubiquitin ligase Parkin to mitochondria. Parkin promotes ubiquitination of proteins in the mitochondrial membrane, which targets the damaged mitochondrion for removal by an autophagosome. The healthy mitochondrial fragment will undergo fusion mediated by mitofusin-1/2 (MFN1/2) and optic atrophy protein 1 (OPA1). (Illustration credit: Ben Smith.)

Selective Mitophagy Is Mediated Via Autophagy Adaptors/Receptors

Previously, autophagy was thought to be an essentially nonselective pathway that accidentally sequestered material in the cytosol including mitochondria, but recent evidence suggests that autophagosomes carry selective cargoes. Until recently, it was unclear what signals or labels were used to target specific mitochondria for removal by the autophagy pathway. The recent identification of autophagy adaptor proteins and autophagy receptors on mitochondria has provided important new insights into this process. Currently, there is experimental evidence of at least 2 different mechanisms for selective mitophagy in mammalian cells (Figure 4).

Mitophagy Via Autophagy Adaptors

One mechanism of mitochondrial clearance involves autophagy adaptors and ubiquitin, in which the ubiquitin is used as a signal for autophagic degradation of mitochondria. In this model, the dysfunctional mitochondrion is recognized by Parkin, which ubiquitinates specific protein substrates on the mitochondrion. The identification of the autophagy adaptor protein p62/SQSTM1 (hereafter referred to as p62) has provided important insights into the process of mitophagy. The p62 protein binds to ubiquitinated proteins via its ubiquitin-associated domain and to LC3 on the phagophore via its LC3-interacting region. Thus, the binding of p62 to
ubiquitinated mitochondrial proteins tethers the mitochondrion to the LC3-positive phagophore for engulfment (Figure 4A). In support of this model, it has been reported that p62 is recruited to mitochondria in a Parkin-dependent manner and that knockdown of p62 substantially inhibits mitophagy. In contrast, another study found that depletion of p62 by RNAi has little effect on mitophagy in HeLa cells. The authors also found that p62 can be recruited to mitochondria by a mitochondrion-anchored ubiquitin fusion protein, but this does not induce substantial mitophagy. This suggests that p62 recruitment to mitochondria alone is not sufficient for mitophagy to ensue. Therefore, p62 may not be responsible for Parkin-induced mitophagy, or there may be redundancy in autophagy adaptor proteins. Neighbor of BRCA1 gene (NBR1) contains both a LC3-interacting region and an ubiquitin-associated motif and has been identified to act as an autophagy adaptor protein. However, it is currently unknown if NBR1 plays a role in mitophagy.

AMBRA1 and Mitophagy

Recent evidence indicates that AMBRA1 plays a role in mitophagy. Upon induction of autophagy, AMBRA1 translocates to the ER and mitochondria, where it interacts with BECLIN1 to initiate nucleation. Strappazzon et al. reported that a pool of AMBRA1 is already docked at mitochondria by BCL-2 under normal conditions. This reserve of AMBRA1 is released from BCL-2 when autophagy is induced, allowing it to bind to BECLIN1 and initiate formation of the phagophore at the mitochondrion. PARKIN also interacts with AMBRA1 at mitochondria to promote mitochondrial clearance, and depolarization of mitochondria increases the interaction between Parkin and AMBRA1. Interestingly, AMBRA1 is required for the clearance of mitochondria, but not for the translocation of Parkin. In contrast, AMBRA1-mediated mitophagy is dependent on Parkin, and overexpression of AMBRA1 in Parkin−/− cells fails to restore mitophagy. It has been hypothesized that local activation of the phosphoinositide 3-kinase complex (BECLIN1-VPS34-VPS15) by AMBRA1 at the mitochondria allows for the formation of new phagophores near or even directly around depolarized mitochondria. AMBRA1 recruitment to damaged mitochondria therefore may contribute to the efficient, spatially restricted, selective nature of mitophagy. Currently, it is unclear whether these 2 different models of Parkin-mediated mitophagy are separate or complementary. Because LC3 only associates with phagophores after they have started to form, p62 can only recruit preexisting phagophores to mitochondria and cannot induce the formation of new autophagosomes. In contrast, AMBRA1 stimulates new phagophore formation. Thus, we believe that the 2 mechanisms have complimentary effects to allow for efficient mitophagy; AMBRA1 induces the formation of new phagophores at the mitochondria, which, after incorporation of LC3, may be tethered to ubiquitinated mitochondria via p62.

NIX and BNIP3 as Autophagy Receptors on Mitochondria

Mitochondria can also be cleared via an ubiquitin-independent pathway involving direct binding of ATG8 family proteins to autophagy receptors on the mitochondria (Figure 4B). In yeast, mitophagy is regulated by a single ubiquitin-independent pathway that requires the autophagy receptor ATG32. In mammalian cells, mitochondrial NIX/BNIP3L and BNIP3 have been identified as autophagy receptors for the selective clearance of mitochondria in cells. NIX and BNIP3 target mitochondria for autophagy by directly binding to LC3/gamma-aminobutyric acid receptor-associated protein (GABARAP) on the autophagosome via their conserved LC3-interacting region motifs. We have found that BNIP3 promotes mitophagy in cells including cardiac myocytes. NIX and BNIP3 target mitochondria for autophagy by directly binding to LC3/gamma-aminobutyric acid receptor-associated protein (GABARAP) on the autophagosome via their conserved LC3-interacting region motifs. Interestingly, disrupting the interaction between LC3 and BNIP3 significantly decreases but does not completely abrogate mitophagy, suggesting that BNIP3 is not the only autophagy receptor on the mitochondria.
Similarly, disrupting the interaction between NIX and LC3/GABARAP causes only a partial reduction in mitophagy. A study from Dorn et al confirmed that BNIP3 and NIX have overlapping functions as regulators of mitophagy in the adult myocardium. Long-term studies of Nix and Bnip3 knockout mice revealed that these mice accumulate dysfunctional mitochondria in the heart with age. Interestingly, the accumulation occurs faster in Nix/Bnip3 double-knockout mice, suggesting that BNIP3 and NIX have overlapping functions in regulating mitochondrial clearance in the adult heart. To date, only NIX and BNIP3 have been identified as mitophagy receptors in mammalian cells. However, it is likely that there exists a redundancy in the mitophagy pathway and that multiple proteins can act as autophagy receptors to ensure the removal of aberrant mitochondria. On the autophagosome, only ATG8 family proteins have been identified to participate in the clearance of mitochondria and protein aggregates. However, it is possible that other autophagosomal proteins can participate in binding proteins on mitochondria to ensure docking and removal.

An important question is whether BNIP3/NIX and PINK1/Parkin participate in the same pathway. On this matter, studies have produced contradictory evidence. Parkin translocation is dependent on the loss of Δψm, yet we have found that BNIP3 promotes mitophagy in BAX/BAK-deficient mouse embryonic fibroblasts even when mitochondria retain their Δψm. In contrast, we also have found that Parkin localizes to mitochondria in response to BNIP3 overexpression in heart tissues.121,122 Furthermore, Ding et al reported that carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced Parkin translocation is significantly reduced in NIX-deficient MEFs. This suggests that NIX and BNIP3 may be important in recruiting Parkin to mitochondria.

Interplay Between Mitophagy and Mitochondrial Biogenesis

Not surprisingly, mitophagy is closely coupled to mitochondrial biogenesis. Studies have demonstrated that mitophagy has the capacity to clear most of the mitochondria in cells. In fact, cells overexpressing PINK1 or Parkin can degrade all their mitochondria within 24 to 96 hours in response to treatment with mitochondrial uncouplers.69,92 It is therefore important for the cell to quickly replace the mitochondria that have been removed by mitophagy. Mitochondria have a significant reserve capacity that can be used on demand.120 In response to modest mitophagy, myocytes can use their mitochondrial reserve to maintain energy production without affecting contractility. However, excessive mitophagy in the absence of mitochondrial biogenesis will result in the depletion of the bioenergetic reserve in the remaining mitochondria and subsequent cell death.

The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a master regulator of mitochondrial biogenesis.121 PGC-1α is induced at birth in the mouse heart when there is a striking increase in mitochondrial biogenesis.121,122 Studies have found that fasting is associated with both increased mitophagy123 and rapid upregulation of PGC-1α in heart tissues.124 In addition, Parkin also has been shown to be a central regulator of both mitophagy and mitochondrial biogenesis. Shin et al recently identified PARIS (ZNF746), a KRAB and zinc finger protein, to be a Parkin substrate. PARIS represses the expression of PGC-1α by binding to insulin response sequences in the PGC-1α promoter. Activation of Parkin promotes degradation of PARIS and subsequent activation of PGC-1α transcription. Although it has been shown that Parkin regulates mitophagy in myocytes, it remains to be determined whether Parkin regulates mitochondrial biogenesis via PARIS in the heart.

Mitochondrial Dynamics Are Integrated With Cell Death and Mitophagy

Mitochondrial fission and fusion are regulated by several different GTPases. MFN1 and MFN2 regulate fusion of the outer mitochondrial membrane, whereas optic atrophy protein 1 (OPA1) promotes fusion of the inner membrane.125,126 Mitochondrial fission is regulated by dynamin-related protein 1 (DRP1) and fission protein 1.127,128 These proteins are highly expressed in the heart.129-132 Deletion of Drp1 is embryonic-lethal, and myocytes in Drp1-null embryos have reduced contractility.133 Defects in DRP1 function also are associated with early infant mortality and cardiomyopathy.134,135 Knockdown of fusion proteins mitochondrial assembly regulatory factor (MARF) or OPA1 leads to the development of cardiomyopathy in Drosophila.136 These studies indicate that functional mitochondrial dynamics are important for normal heart and mitochondrial function.

Importantly, mitochondrial dynamics influence cell death by mechanisms that are not fully understood, and it is unclear whether mitochondrial fragmentation is the cause or a consequence of the pathogenesis. Inhibition of mitochondrial fission attenuates disease progression in models of neurodegenerative and cardiovascular diseases.130,137,138 Studies have found that excessive DRP1-mediated mitochondrial fission contributes to apoptotic cell death.139-141 Mitochondrial fission occurs within the same time frame as activation of proapoptotic BAX and permeabilization of the mitochondrial outer membrane. In addition, DRP1 colocalizes with BAX on the mitochondrial membrane at the onset of apoptosis.139 However, fission is not required for BAX/BAK-dependent apoptosis, and inhibiting DRP1 only delays cell death.141,142 It has been found that inhibiting the fission machinery partially prevents cytochrome c release from mitochondria141 and that cells with fragmented mitochondria are more sensitive to apoptosis.142 This suggests that although DRP1-mediated fission is not required for apoptosis to proceed, it increases sensitivity to apoptotic stimuli possibly by enhancing cytochrome c release.

In addition, Picqueureau et al recently reported that cardiac mitochondria of Opal−/− mice accumulate more calcium and present a delay in calcium-induced mPTP opening. Opal downregulation induces clear changes in mitochondrial morphology and alterations of the mitochondrial cristae. Unexpectedly, mitochondria seem larger in Opal−/− myocytes. Similar findings have been reported in Mfn2−/− mice, in which MFN2 deficiency leads to accumulation of large mitochondria in the myocardium.131 In contrast, MFN1-deficient myocytes accumulate small spherical mitochondria, as has been previously reported in Mfn1-null cell lines.144 Although mitochondria in Mfn1−/− and Mfn2−/− hearts have opposing morphologies, they are both more resistant to mPTP opening.
suggesting that the process of fusion influences mPTP more than mitochondrial size. Mitochondrial dynamics are closely integrated with mitophagy (Figure 3). Consistently, mitophagy is attenuated in cells with reduced mitochondrial fission, suggesting that fission is a prerequisite for mitophagy to occur. For instance, DRP1-deficient MEFs have significantly reduced Parkin-mediated mitophagy compared with wild-type MEFs. We found that DRP1-mediated fission is a prerequisite for mitophagy by BNIP3 in cardiac myocytes. It is currently unclear why mitochondrial fission must occur before mitophagy. One possibility is that fission produces smaller mitochondrial fragments that can more easily be engulfed by autophagosomes. Mitochondria usually have an elongated shape and can be up to 5 µm long, whereas autophagosomes are spherical in shape with a diameter of ≈1 µm. Recent studies have connected the PINK1/Parkin mitophagy pathway with mitochondrial dynamics. MFN1 and MFN2 are substrates for Parkin, although their ubiquitination does not serve as a signal for mitophagy. Instead, MFN1/2 ubiquitination leads to their proteasomal degradation before mitophagy, indicating that ubiquitination of MFNs does not constitute a signal for mitophagy. Tanaka et al also identified that p97 is required for proteasomal elimination of MFN1 and MFN2. p97 is an AAA+ ATPase that is involved in the retrotranslocation of ER membrane-spanning proteins after their ubiquitination. Thus, these data suggest that degradation of MFN1/2 might serve to switch the balance of mitochondrial dynamics toward fission to facilitate mitophagy. The loss of mitochondrial size plays a role in mitophagy from studies published by Lippincott-Schwartz’s and Scorrano’s groups. They found that nutrient deprivation induces the formation of hyperfused mitochondrial networks that protect mitochondria from elimination by autophagosomes. An alternative possibility is that fission segregates dysfunctional mitochondria before removal by autophagy. Twig et al provided evidence that mitochondrial fission gives rise to 2 fragments with different ΔΨm. Mitochondrial fragments with low ΔΨm are more likely to be targeted by autophagosomes, whereas fragments with high ΔΨm have a higher probability of undergoing mitochondrial fusion.

Regulation of Cell Death and Autophagy by ROS

Mitochondria are both a major source of and targets of ROS, which are byproducts of mitochondrial electron transport activity. Although significant amounts of ROS are generated by cardiac mitochondria, myocytes have developed a highly efficient antioxidant system that can neutralize ROS under normal conditions. However, damaged mitochondria can produce ROS at levels that exceed the capacity of the antioxidant system and can result in cell death. ROS can cause the oxidative modification of mitochondrial proteins, lipids, and mtDNA, resulting in mitochondrial dysfunction. ROS also can contribute to opening of the mPTP. Oxidative stress has been associated with loss of cells in both I/R injury and anthracycline-induced cardiomyopathy.

In addition, ROS play an important role in inducing autophagy during myocardial I/R. Exactly how ROS regulate autophagy is unknown, although it is possible that oxidative modification of transcription factors affects the levels of autophagy proteins. ROS also can directly regulate the formation of autophagosomes. ATG4 enables the conversion of LC3-I to lipiddated LC3-II, its insertion into the autophagosome, and the recycling of LC3-II after autophagosome–lysosome fusion. ATG4 is subject to oxidation and subsequent inactivation, which leads to accumulation of LC3-II and increased formation of autophagosomes. Interestingly, increased oxidative/nitrosative stress can inhibit mitophagy by modification and inactivation of Parkin. Parkin contains multiple conserved cysteine residues that are important for maintaining its solubility. These residues also are susceptible to modification by oxidative and nitrosative stress that lead to Parkin inactivation and aggregation. Because cardiac mitochondria are a major source of ROS/reactive nitrogen species during stress, it is likely that aberrant modification of Parkin and subsequent inhibition of mitophagy will result.

Cross-Talk Between Apoptosis and Mitophagy

During stress, prosurvival and prodeath processes are concomitantly activated in cells. The final outcome (life versus death) depends on the balance between these pathways (Figure 5). Although it might be surprising that the cell is activating 2 opposing pathways, it is prudent to have multiple strategies in place for dealing with stress. The ability of a cell to repair itself and prevent unnecessary death is particularly important in a postmitotic cell such as a myocyte that cannot be easily replaced. If exposure to modest stress results in damage to only a few mitochondria, then the cell can easily clear those mitochondria via mitophagy. However, if the number of damaged mitochondria exceeds the capacity of mitophagy, or if mitophagy becomes inactivated, then the cell is beyond rescue and apoptosis will become the dominant pathway to minimize extraneous tissue damage upon cell death.

Although there is overwhelming evidence that dysfunctional mitochondria activate mitophagy, several studies have found that mitochondrial stress and apoptosis inhibit induction of autophagy in cells. For instance, caspases have been reported to cleave BECLIN1 during apoptosis, thereby preventing the initiation of autophagy. The resulting BECLIN1 fragment is unable to form a complex with VPS34, as is required for autophagy. Instead, the BECLIN1 fragment translocates to mitochondria and enhances apoptosis. Atg5 also has been reported to be cleaved by calpain in response to apoptotic stimuli. Similar to the BECLIN1 fragment, truncated Atg5 translocates from the cytosol to mitochondria, where it associates with BCL-XL and triggers cytochrome c release and caspase activation.

AMBRA1 also is an important target during apoptosis. Pagliarini et al found that AMBRA1 is subjected to cleavage by caspases and calpains, which results in inactivation of autophagy and promotion of cell death. Interestingly, knockdown of AMBRA1 results in increased sensitivity to cell death, whereas overexpression of a caspase cleavage-resistant form of AMBRA1 prolongs autophagy and reduces cell death. These findings suggest that when there is vast mitochondrial damage, such as that which occurs during a myocardial infarction, activation of apoptotic proteases will shut down...
autophagy/mitophagy to ensure cell death. Whether proteolytic cleavage of BECLIN1, Atg5, or AMBRA1 occurs in the myocardium in response to stress such as I/R is currently unknown and remains to be explored.

Conclusion

Understanding the interface between adaptation to stress and cell death is important for understanding the pathogenesis of cardiovascular disease. Basal levels of mitophagy are important for maintaining cellular homeostasis and protecting cells against accumulation of dysfunctional mitochondria. There is also cross-talk between the autophagic and apoptotic pathways. During stress, there is concomitant activation of autophagy/mitophagy and apoptosis, in which enhanced mitophagy is an early response to promote survival by removing damaged mitochondria. With overwhelming mitochondrial damage, apoptosis becomes dominant, and inactivation of critical proteins of the autophagy pathway allows for cell death. Interestingly, enhanced levels of mitophagy can lead to excessive removal of mitochondria, loss of cardiac myocytes, and development of heart failure. It is important to clarify the differences between mitophagy pathways used in the degradation of damaged versus merely superfluous mitochondria. The manipulation of proteins that regulate mitochondrial integrity and mitophagy represents future therapeutic targets to preserve myocyte viability and prevent the development of heart disease. Therefore, it is important to gain insights into the mechanisms regulating the balance between survival and death, both under normal conditions and in the diseased myocardium.

Sources of Funding

A.B. Gustafsson is supported by National Institutes of Health grants R01HL087023, R01HL101217, and R01HL092136.

Disclosures

None.

References

146. Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. *Biochim Biophys Acta.* 2008;1777:860–866.
156. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. *J Mol Cell Cardiol.* 1997;29:2571–2583.