A New pROM King for the MitoK$_{\text{ATP}}$ Dance
ROMK Takes the Lead

Amy K. Rines, Marina Bayeva, Hossein Ardehali

Ischemic heart disease remains the leading cause of death in the developed world, and mechanisms to reduce cardiac ischemic damage are being actively investigated. A potent protective mechanism for the heart is ischemic preconditioning (IPC), a phenomenon in which brief ischemic episodes protect the heart from tissue damage and cell death resulting from subsequent periods of ischemia and reperfusion. The precise molecular mechanisms at play during IPC are not known, but the opening of a mitochondrial ATP-sensitive potassium channel, mitoK$_{\text{ATP}}$, is believed to be necessary for IPC-induced activation of several prosurvival pathways and processes.

Although the discovery of a putative mitoK$_{\text{ATP}}$ occurred more than 20 years ago, progress on identifying its molecular composition has been limited. The mitoK$_{\text{ATP}}$ was determined to be both functionally and molecularly distinct from sarcoternal K$_{\text{ATP}}$ channels, which have a relatively minimal role in IPC protection and are insensitive to several drugs that affect the mitoK$_{\text{ATP}}$. Initial studies using immunoreactivity identified the inward rectifying K$^+$-channel subunit Kir6.1 as localizing to mitochondria and thus Kir6.1 became an attractive candidate as a possible subunit of the mitoK$_{\text{ATP}}$. However, further research by mass spectrometry into the specificity of the Kir6.1 antibody revealed that the antibody does not recognize Kir6.1, and that Kir6.1 is not isolated from more thorough proteomic screens of mitochondria. Another investigation led to purification of an inward-rectifying K$^+$-channel component of the mitochondria but did not identify any specific protein. In a separate study, sulfonylurea receptor (SUR)2 was presented as a possible candidate for a mitoK$_{\text{ATP}}$ channel component. The long form of SUR2 is needed for the diazoxide-sensitive K$^+$ current. The short form of SUR2 localizes to mitochondria and is able to form a glibenclamide-sensitive and ATP-sensitive K$^+$ current on the cell surface with Kir6.1. The protective effects of SUR2 have been shown directly only in Escherichia coli and not in cardiac cells. Whether SUR2 is truly necessary for the ATP-sensitive K$^+$ current in the mitochondria, and whether it plays a role in IPC, remains to be seen. The mitoK$_{\text{ATP}}$ has also been proposed to be a multiprotein complex, and succinate dehydrogenase was found to play a regulatory role in mitoK$_{\text{ATP}}$ activity. However, the identity of the protein that is responsible for the K$^+$-channel activity in this complex is unknown.

The search for mitoK$_{\text{ATP}}$ subunits has been complicated by the lack of specificity of pharmacological agents that target the K$_{\text{ATP}}$. Diazoxide, a commonly used drug for mitoK$_{\text{ATP}}$ activation, has been shown to activate the sarcoternal K$_{\text{ATP}}$ as well. This drug, along with the mitoK$_{\text{ATP}}$ inhibitor 5-HD, also affects metabolism and therefore may have a confounding contribution to the protective effects of IPC that is not directly related to the mitoK$_{\text{ATP}}$. Thus, pharmacological manipulation alone has proven to be insufficient in identifying mitoK$_{\text{ATP}}$ components.

In this issue of Circulation Research, Foster et al combine a high-throughput proteomic screen with pharmacological and genetic manipulation to provide evidence that renal outer medullary potassium channel (ROMK) is a component of the K$^+$ channel of the cardiac mitoK$_{\text{ATP}}$. The authors use mass spectrometry analysis of a scaled-up preparation of bovine heart mitochondria to identify ROMK as an inner membrane component and verify its localization to the mitochondria. They also determine that the ROMK inhibitor Tertiapin Q decreases mitoK$_{\text{ATP}}$ activity and that ROMK knockdown inhibits ATP-sensitive and diazoxide-activated mitochondrial uptake of the K$^+$ surrogate thallium. Finally, they find that ROMK overexpression protects against cell death in H9c2 cardiomyoblasts, whereas ROMK knockdown increases cell death.

The findings by Foster et al are novel and compelling in identifying ROMK as a subunit of the mitoK$_{\text{ATP}}$ channel. This study also brings up new questions about the mitoK$_{\text{ATP}}$. First, although the relatively low abundance of ROMK isoforms in the mitochondria presents particular technical difficulties in studying them, it is now pertinent to investigate what other proteins bind to endogenous levels of ROMK. Specifically, given the previous data on SUR2, it would be of interest to see whether endogenous cardiac SUR2 and ROMK can coprecipitate and form functional K$^+$ channels in the mitochondria (Figure). Additionally, it is unclear whether ROMK2 is the particular ROMK isoform present in the mitoK$_{\text{ATP}}$. More detailed studies on the function of each isoform are needed to determine if there are isoform-specific differences in ROMK localization and K$_{\text{ATP}}$ activity. It is also unknown whether ROMK transports K$^+$ selectively in the mitochondria or if it is involved in the transport of other ions as well. Moreover, ROMK was chosen as a candidate for further study from the proteomics screen based on its known K$^+$-transporter properties. However, additional targets from
the screen may also be part of the mitoK\textsubscript{ATP} channel, even if they are not known to be K+ transporters. A thorough second look at the results of this screen may reveal other potential candidates for mitoK\textsubscript{ATP} components.

As many pharmacological agents have been proven to lack specificity for mitoK\textsubscript{ATP}, research on the mitoK\textsubscript{ATP} must take care to utilize genetic manipulation in addition to pharmacological treatment. Foster et al combined both methods by separately using ROMK knockdown and Tertiapin Q to show inhibition of mitoK\textsubscript{ATP}. However, in addition to its known inhibition of ROMK, Tertiapin Q may also have nonspecific ROMK-independent effects that contribute to its reduction of mitoK\textsubscript{ATP} activity. If there is any ROMK-independent mitoK\textsubscript{ATP} inhibition by Tertiapin Q, identification of the potential nonspecific effects would be needed for future studies utilizing this toxin.

A logical next step to follow up on the results from Foster et al is to investigate whether ROMK confers mitoK\textsubscript{ATP} activity in vivo as well. ROMK knockout or transgenic animals should now be studied for mitoK\textsubscript{ATP} activity as well as IPC protection. These experiments would be important in determining whether ROMK is a physiologically relevant factor of mitoK\textsubscript{ATP} and IPC in vivo.

In summary, the components of the mitoK\textsubscript{ATP} have remained elusive since its initial discovery, as investigation into its composition has been hindered by the low abundance of K+ transporters in the mitochondria as well as a lack of pharmacological specificity for the mitoK\textsubscript{ATP}. Foster et al now demonstrate that ROMK is a novel component of the mitoK\textsubscript{ATP} through the combination of a relatively large and specific proteomic screen with pharmacological and genetic techniques. Future studies will reveal what other proteins bind to ROMK, whether there are ROMK isoform-specific differences in mitoK\textsubscript{ATP} function, and whether this protein is a part of the in vivo mitoK\textsubscript{ATP}.

Sources of Funding

H.A. is supported by National Institutes of Health grants K02 HL107448, R01 HL087149, R01 HL104181, and 1P01 HL108795 and by the American Heart Association.

Disclosures

None.

References

Key Words: ischemic preconditioning • mitoK\textsubscript{ATP} • ROMK
A New pROM King for the MitoK\textsubscript{ATP} Dance: ROMK Takes the Lead
Amy K. Rines, Marina Bâyeva and Hossein Ardehali

Circ Res. 2012;111:392-393
doi: 10.1161/CIRCRESAHA.112.275461

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/111/4/392

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org//subscriptions/