Adipose Tissue Biology and Cardiomyopathy
Translational Implications

Aslan T. Turer, Joseph A. Hill, Joel K. Elmquist, Philipp E. Scherer

Abstract: It is epidemiologically established that obesity is frequently associated with the metabolic syndrome and poses an increased risk for the development of type 2 diabetes mellitus and cardiovascular disease. The molecular links that connect the phenomenon of obesity, per se, with insulin resistance and cardiovascular disease are still not fully elucidated. It is increasingly apparent that fully functional adipose tissue can be cardioprotective by reducing lipotoxic effects in other peripheral tissues and by maintaining a healthy balance of critical adipokines, thereby allowing the heart to maintain its full metabolic flexibility. The present review highlights both basic and clinical findings that emphasize the complex interplay of adipose tissue physiology and adipokine-mediated effects on the heart exerted by either direct effects on cardiac myocytes or indirect actions via central mechanisms through sympathetic outflow to the heart. (Circ Res. 2012;111:1565-1577.)

Key Words: adipokines ■ adipose ■ diabetes mellitus ■ heart failure ■ insulin sensitivity ■ obesity

The impact of the worldwide increase in obesity cannot be easily overstated. Current estimates suggest that ≈70% of United States adults are overweight or obese. These numbers are rapidly mirrored across the rest of the globe. Perhaps most troubling are the statistics related to the prevalence of overweight/obesity in the pediatric population. Diseases previously observed only in adulthood, for example, hypertension and type 2 diabetes mellitus (T2DM), are now increasingly diagnosed in children. This trend threatens to translate into a deluge of cardiovascular disease (CVD), presenting decades earlier than otherwise might have been expected based on the prevalence of obesity 30 years ago.

The complex biology between adipose tissue and the cardiovascular system, in many ways, lies at the center of the pathogenesis of CVD. Although much is known vis-à-vis the relationship between adiposity and traditional CVD risk factors, there is a growing appreciation of novel markers and mediators of disease that are adipose-derived. Here, we summarize our current understanding of these interactions, with a particular emphasis on the association between adipose tissue biology and cardiomyopathy, because this has been an area of important recent advances in our understanding from a basic science and clinical perspective.

Constituents of Adipose Tissue

Over recent years, the notion of adipose tissue as a passive repository of lipids stored in adipocytes has been overturned. Adipose is now seen as a dynamic tissue that is both responsive to and responsible for a wide variety of hormonal, inflammatory, and metabolic interactions with other organs.

The prototypic cell of adipose tissue is the adipocyte, of which the main, but certainly not only, function is to store energy in the form of triglyceride (TG). Under the influence of insulin, the adipocyte takes up free fatty acids (FFAs) from the blood and then stores them in the form of intracellular lipid droplets. Conversely, during periods of fasting and in response to exogenous humoral signals, such as circulating catecholamines, TGs are hydrolyzed and liberated from the lipid droplet to be released into the bloodstream. FFAs can then be used at distant sites as metabolic substrates through transport into cells by interaction with fatty acid transport proteins or CD36. Alternatively, these lipids can potentially act as signals themselves. Adipocytes also are now recognized to secrete a number of more traditional hormones, referred to as adipokines, which report on the status of the adipose tissue itself. Adipokines exert effects on the central nervous system, peripheral metabolism, and the immune system, as well as in a paracrine fashion on local cells in adipose tissue directly.

Although adipocytes are important constituents of adipose tissue, comprising the majority of tissue mass, they only account for ≈50% of all cells. The remaining cells are frequently referred to as the stromal vascular fraction. Endothelial cells, pericytes, and various types of immune cells comprise the majority of the remaining cells. Among the immune cells, macrophages feature prominently in evolving and dysfunctional fat pads. These macrophages either are in a proinflammatory state polarized toward the M1 phenotype or have an alternative gene expression program that leans more toward the M2 phenotype that is more prone to be involved in tissue remodeling. However, many additional immune cells play a
vital role in maintaining adipose tissue homeostasis, including regulatory T cells, eosinophils, and mast cells. The relative number of each of these cell types varies with the changing metabolic state and functionality of the adipose tissue. The macrophages play an important role in the disposal of adipocyte remnants that leave large lipid droplets behind. Lipid-phagocytosing macrophages that start to look like foam cells over time surround lipid droplet remnants and form crown-like structures characteristic of dysfunctional adipose tissue.

Adipose Tissue as an Endocrine Organ
Dysfunctional, inflamed adipose tissue in states of nutrient excess can promote systemic inflammation and insulin resistance. The ability to buffer excess nutrients is reduced, the secretion of inflammatory cytokines is increased, and the secretion of the insulin-sensitizing hormone adiponectin is lowered in obese adipose tissue. Furthermore, an enhanced capacity for lipid storage in adipocytes protects against metabolic disturbances, even in the context of massive nutrient excess. An opposite phenotype can be observed in models of lipodystrophy, whereby the storage capacity of adipose tissue is limited. Therefore, it is apparent that adipocytes, through their function as nutrient storage cells, play a key role in the pathogenesis of the metabolic syndrome and have the capability to exert profound effects on whole-body metabolism. Prolonged nutrient overload results in a state of chronic, low-grade inflammation in adipose tissue that is associated with the downregulation of critical adipokines, such as adiponectin, and an upregulation of other factors, such as leptin, resistin, and the recently identified endotrophin. Adipose tissue, therefore, serves as a potent endocrine organ, releasing a complex set of proteinaceous factors acting on many other metabolically active tissues.

Leptin. Leptin is the archetypical adipokine that was identified in 1994. With >20,000 articles focusing on leptin action or minimally using it as a biomarker, leptin has been widely studied for its established actions in the brain affecting food intake and energy expenditure. Circulating levels of this hormone are directly correlated with fat mass and it can affect metabolic processes in peripheral tissues either directly via action on the tissues or indirectly through neuronal innervation. Several splice variants of the leptin receptor are known, but its downstream intracellular effects generally are mediated by the Janus kinase/signaling transducer and activator of transcription 3 and phosphatidylinositol 3-kinase pathways.

Adiponectin. This is another widely studied adipokine first described in 1995, with ~10,000 publications since that time. Adiponectin is a member of a growing family of paralogues known as C1q/tumor necrosis factor-related proteins based on its structural similarities to these proteins. Its effects are widely considered to be beneficial, with potent insulin-sensitizing, antiapoptotic, and anti-inflammatory properties. Adiponectin receptors are ubiquitously expressed, leading to a host of effects on different target tissues. Previous work had identified an adiponectin mechanism involving downstream AMP-activated protein kinase or peroxisome proliferator-activated receptor-α-mediated effects. It subsequently has been shown that adiponectin has both an AMP-activated protein kinase–dependent and an AMP-activated protein kinase–independent mechanism. More recent work, however, has identified activation of intracellular ceramidase activity as critical to the actions of adiponectin in a number of different cell types, including the cardiomyocyte. Hence, a potentially unifying mechanism for the diverse beneficial effects of adiponectin may be related to its ability to alter cellular sphingolipid metabolism via activation of its receptors adipoR1 and adipoR2.

Resistin. Resistin has become regarded as another important adipokine, at least in rodents. It is generally upregulated in the obese state and has been implicated as a causative factor in insulin resistance. In distinction to rodents, resistin expression in humans is mainly limited to macrophages and circulating monocytes, which makes the relevance of animal models examining the role of this cytokine somewhat difficult to interpret. Nonetheless, this cytokine has been correlated with clinical conditions in humans, namely, hypertension, atherosclerosis, and heart failure (HF).

Collagen VIα3-C5/Endotrophin. Collagen VI is ubiquitously expressed, but its most abundant source is adipose tissue. It contains 3 chains, α1, α2, and α3, which associate further to form intracellular tetramers. Once secreted, the C5 domain of the α3 chain (also known as endotrophin) is cleaved off by a protease that has yet to be identified, and the tetramers subsequently aggregate into microfibrils. Local endotrophin levels within adipose tissue are high in obese mice and accumulate within areas of dysfunctional adipocytes and infiltrating macrophages (crown-like structures). There is a correlation seen between total collagen VIα3 levels and macrophage infiltration in adipose tissue of obese patients. Most recently, endotrophin has been shown to play a critical role in malignant mammary tumor progression, both in terms of primary tumor growth and distal metastasis. This paracrine factor appears to be an important link in the connection between obesity and malignancy but, more generally, ties metabolic dysregulation to a more fibrotic extracellular environment.

Other Hormones. Many additional factors have been shown to be expressed in adipocytes, including many proinflammatory factors and acute phase reactants, omentin, chimerin, and visfatin, all of which are merely enriched in adipocytes and are found in other tissues as well.

Brown Adipose Tissue and Its Hormonal Control
The past several years have brought considerable excitement in the field regarding the progress made in the area of brown adipose tissue physiology. There is an increased appreciation for these cells in humans. They are not only relevant in the newborn state, as was the general belief for many years, because they may be playing an important role in systemic metabolic homeostasis even in the adult. What makes the brown adipocytes somewhat more difficult to detect is that, unlike in rodents, brown and white adipocytes are mixed together in the various depots. Strong indications regarding the presence of brown adipocytes came from fluorodeoxyglucose positron emission tomography/computed tomography scans that
suggested disproportionate uptake into certain fat depots, particularly in the subclavicular region.32 The hope is that with an increased abundance of brown adipocytes in the system, an increase in overall energy expenditure can be solicited. Beyond the inducibility of brown adipocytes by exposure to cold, a number of additional mechanisms have been discovered recently that can increase the proportion of brown adipocytes, including actions by vascular endothelial growth factor on adipose tissue,33 a newly identified muscle-derived molecule called irisin,34 as well as the natriuretic peptides.35 Future studies need to demonstrate whether the mere increased presence of brown adipocytes is sufficient to increase energy expenditure or whether additional steps need to be taken to activate these newly acquired brown, white, or beige adipocytes, as several different laboratories refer to them.36–38

Distribution of Adiposity Influences Its Biological Effects

The ability of the fat mass to expand is key in maintaining the overall health of the tissue. Subcutaneous fat depots are relatively inert from an inflammatory/insulin resistance standpoint and serve as an important energy storage depot prior to ectopic fat deposition. Because the subcutaneous adipose tissue (SAT) mass continues to increase, fat becomes deposited in visceral adipose tissue (VAT; eg, intraperitoneal, retroperitoneal, and intrahepatic). VAT releases more inflammatory mediators (eg, interleukin-6) than does SAT.39,40 Furthermore, the expression of β3-adrenoreceptors is higher in VAT than in SAT,41 making this tissue more sensitive to catecholamine-induced lipolysis42–44 and perhaps less sensitive to inhibitory α2 effects.45 VAT is also less sensitive to the antilipolytic effects of insulin.46,47

Even among those who are already obese, preferential fat expansion in SAT, rather than VAT, is associated with a generally more favorable cardiovascular risk factor profile.48 Site-specific location of fat also appears to be important. Higher degrees of lower extremity adiposity relative to central deposition of fat have been associated with improved insulin sensitivity, lipid parameters, and cytokine profiles.49–52 Conversely, increasing central fat deposition, even in the setting of normal body mass index (BMI), is associated with worse cardiovascular risk profiles,53 insulin sensitivity,53,54 and diastolic function.55

Taken to the extreme, the most dramatic examples of altered fat distribution, the congenital and acquired forms of generalized lipodystrophy, are associated with loss (or lack of development) of peripheral adipose tissue and accumulation of adipose tissue centrally. Insulin resistance, dyslipidemia, hepatic steatosis, hypoadiponectemia, and hypertension are extremely common in this population, and patients are predisposed to development of atherosclerosis at a young age.55,56 Women not only are more easily identified from an anthropomorphic standpoint but also are significantly more likely to have development of metabolic complications than men.57 Early-onset cardiac hypertrophy is common, likely reflecting the influences of comorbid conditions; left ventricular (LV) dilation is less frequent.58

More recently, the specific role of intrapericardial fat as a form of visceral adipose tissue has garnered increasing attention. Although pericardial and epicardial fat are biologically distinct,59,60 their differentiation and measurement from static images may be difficult, and these terms appear to be often interchanged in the reported literature. Similar to intra-abdominal VAT, pericardial fat is associated with overall adiposity and is tightly associated with the presence of adverse metabolic phenotypes, including insulin resistance.61,62 Its accumulation has been associated with LV structure–function changes.63,64 Pericardial fat is also associated with not only prevalent coronary artery disease65,66 but also progression of atherosclerosis,67 ischemia on stress testing,68 and future adverse clinical events.68 The proximity of epicardial fat and the coronary arteries to one another may allow this tissue influence. Epicardial fat from patients with coronary atherosclerosis is associated with proinflammatory macrophage polarization69 and higher levels of cytokine production.70

Adipokine Action on the Heart Mediated by Central Mechanisms

Although traditionally thought of as acting through cognate receptors in peripheral target tissues, we now know that several key metabolic hormones have important central inputs, which in part mediate their peripheral effects. Insulin and leptin act in the hypothalamus to regulate glucose homeostasis independent of body weight. Central administration of insulin suppresses hepatic glucose production, and insulin-induced suppression of hepatic glucose production is attenuated in mice lacking insulin receptors in the brain. Likewise, leptin signaling in the hypothalamus is required for the control of glucose balance. It has been shown that central administration of leptin alters peripheral glucose uptake and hepatic glucose output.71 Leptin also plays a central role in the regulation of the sympathetic nervous system,72 and leptin acts within the central nervous system to affect heart rate and blood pressure.73 Notably, direct injections of leptin into the arcuate nucleus increased mean arterial pressure by increasing renal sympathetic nerve activity.74 More recently, do Carmo et al75 produced mice with selective deletion of leptin receptors in pro-opiomelanocortin neurons. They found that pro-opiomelanocortin leptin receptor knockouts had normal mean arterial pressure despite obesity. Moreover, the deletion of leptin receptors in pro-opiomelanocortin neurons blunted the effects of leptin administration to increase blood pressure, to increase energy expenditure, and to exert antidiabetic effects.75 Collectively, work from multiple groups has highlighted that pro-opiomelanocortin neurons are key targets for leptin to regulate the cardiovascular system.

These central effects are clearly best described for leptin, but it is likely that additional adipocyte-derived factors exert at least some of their effects on the cardiovascular system via central action, including adiponectin76 and resistin.77,78

Mechanisms of Insulin Resistance in the Heart

Obesity and whole-body alterations in insulin sensitivity are well-recognized to go hand-in-hand, but insulin resistance specifically at the level of the heart has important implications for cardiac metabolism and function. Obesity and systemic insulin resistance are marked by enhanced lipid synthesis in hepatocytes and increased lipolysis in adipocytes, which together lead to increases in circulating FFAs and TGs. Also, elevated levels of insulin, which typify these disorders, will
stimulate FFA transport into cardiomyocytes.79 Thus, hyperlipidemia and hyperinsulinemia together increase FFA delivery to myocytes, which rapidly adapt by promoting fatty acid use. At baseline, the myocardium is a metabolic omnivore capable of switching between metabolic substrates, for example, FFA and carbohydrates, in response to changes in substrate availability and physiological conditions.88 However, if FFA delivery exceeds the oxidative capacity of the cell, then these substrates accumulate, with resulting lipotoxicity.89 This promotes cardiac dysfunction via several mechanisms, including the generation of reactive oxygen species82 and ceramide production,25,89 further impairing insulin signaling,84 decreasing contractility by influencing sarcoplasmic reticular Ca²⁺ stores,85 and promoting mitochondrial dysfunction.86,87

In the setting of myocardial insulin resistance, metabolic flexibility is diminished, and the reliance of the heart on FFAs for energy supply increases. Accumulation of FFAs leads to impaired insulin-mediated glucose uptake through inhibition of insulin receptor substrate (IRS) and Akt. The serine protein kinases protein kinase C-<i>θ</i> and IκB kinase which elicit serine phosphorylation of IRS1, are activated.88 In turn, this reduces signaling through phosphatidylinositol 3-kinase and Akt, which has major implications for insulin responsiveness under these conditions.89

Several lines of evidence point to phosphorylation-dependent negative regulation of IRS1, triggering its proteolytic degradation, as a critical event in the pathogenesis of insulin resistance. Degradation of IRS1 elicits impaired insulin signaling in a number of cell types,90 and low levels of IRS1 correlate with development of T2DM.91 This negative feedback occurs primarily through the posttranslational modification of IRS1 by serine phosphorylation, an event that can both disrupt the function of this adaptor protein and target it for degradation by the ubiquitin proteasomal machinery.

Much less is known about the phosphatases that antagonize these inhibitory phosphorylation events, although protein phosphatase 2A has been implicated.92 Previous work has demonstrated that FoxO1 can inhibit protein phosphatase 2A activity.93 This may be a relevant mechanism behind serine phosphorylation of IRS1 in T2DM, a condition in which persistent FoxO1 activation has been observed.94 Furthermore, cardiomyocytes transfected with a green fluorescent protein–tagged FoxO1 show increased levels of IRS1 serine phosphorylation and decreased steady-state levels of total IRS1.94 These data, along with in vivo data from <i>FoxO1</i> null mice, suggest that regulation of IRS1 activity and stability by FoxO1 may contribute to cardiomyocyte insulin resistance and subsequent cardiac dysfunction.

Hence, increasing adiposity may set the stage for cardiac dysfunction by promoting excessive myocardial FFA use and the development of lipotoxicity. However, obesity also promotes global insulin resistance, which eventually leads to chronic systemic hyperglycemia. Glucotoxicity also contributes to cardiac injury through multiple mechanisms, including direct and indirect effects of glucose on cardiomyocytes, cardiac fibroblasts, and endothelial cells. Hyperglycemia promotes the overproduction of reactive oxygen species,95–97 which can induce apoptosis and activate poly(ADP-ribose) polymerase-1.98 By subsequent poly(ADP-ribose) polymerase-1–mediated ribosylation and inhibition of glyceraldehyde phosphate dehydrogenase, glucose is diverted from the glycolytic pathway toward alternative biochemical cascades that participate in hyperglycemia-induced cellular injury. These pathways include the creation of advanced glycation end products and the activation of the hexosamine pathway, the polyol pathway, and protein kinase C.99,100 Hyperglycemia-induced apoptosis is stimulated by these end products, namely, reactive oxygen species, poly(ADP-ribose) polymerase-1, advanced glycation end products, and aldose reductase. Hyperglycemia also contributes to altered cardiac structure and function through posttranslational modification of extracellular matrix proteins (eg, collagens) and altered expression/function of intramyocellular calcium channels (eg, the ryanodine receptor and sarcoplasmic reticulum Ca²⁺-ATPase), which contribute to both systolic and diastolic dysfunction.90 Therefore, glucotoxicity and lipotoxicity, each manifestations of insulin resistance, participate in the pathogenesis of the clinical entity known commonly as the diabetic cardiomyopathy.

Obesity and HF: A Clinical Perspective

Although there is a wealth of mechanistic data linking adipose tissue biology and insulin resistance with cardiomyopathy, it can be clinically difficult to differentiate HF symptoms arising from cardiac limitations from other etiologies in the obese patient. The Framingham criteria set the gold standard for the diagnosis of HF, but these criteria have not been validated in the obese population. Nevertheless, there is a robust literature supporting obesity as an independent risk factor for the development of clinical HF.101–103 This relationship persists even after controlling for the obvious confounders, such as T2DM, hypertension, and coronary atherosclerosis. In a seminal study in the field, Kenchaiah et al,104 reporting on the Framingham cohort, estimated the 10-year age-adjusted risk of HF at approximately 7% in women and 10% in men with BMI ≥30. The hazard ratio was even higher among patients with more severe degrees of obesity.

Despite the clinical data supporting the relationship between increasing adiposity and the development of HF, the structural and mechanistic underpinnings behind this association remain largely unresolved. In particular, although it is known that obesity is associated with HF events, it is unknown whether such patients have abnormal ventricular morphology (eg, concentric LV hypertrophy [LVH] or LV dilation) as anatomic correlate at the time that their HF events are diagnosed. In general, however, cardiac hypertrophy and diastolic abnormalities are commonly seen in patients with obesity.105–108 This begs the question as to why some obese patients have development of HF with these structural changes and others do not. It may be that in some patients the observed LVH is compensatory (ie, eccentric from increased stroke volume), whereas in others it is pathologic (ie, concentric thickening); careful morphologic studies in obese patients with and without HF are needed to determine which mechanism is at work in this context.

Whether isolated obesity (ie, the metabolically healthy obese individual)109 is associated with pathologic LVH independent of T2DM and hypertension is a matter of debate.105–108 For instance, the potential association between obesity and
Adiposity, Insulin Resistance, and Cardiac Steatosis

Intramyocardial TG (mTG) accumulation is a prominent feature of several models of cardiomyopathy generated from interruption of normal cardiac FFA metabolism. Examples include transgenic overexpression of fatty acyl-coenzyme A synthetase, lipoprotein lipase, acyl coenzyme A:diacylglycerol acyltransferase, and peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor-γ. In general, these models of lipotoxic cardiomyopathy involve increased FFA flux or delivery to the heart and highlight the potential for adipose tissue, the source of most circulating FFAs derived from lipolysis, to impact cardiac metabolism from the distance by influencing serum concentrations of these substrates.

Adiposity also promotes myocardial steatosis by promoting insulin resistance, which occurs on a whole-body, as well as a cardiac-specific, level. Murine models of diabetic cardiomyopathy accumulate significant amounts of mTG. This can be reversed by cardiac-specific restoration of insulin sensitivity. Recent work has highlighted the critical role of FoxO transcription factors, specifically FoxO1, in a pathway linking insulin signaling to the development of cardiomyopathy.

Although a high-fat diet induces a severe cardiomyopathic phenotype with prominent myocardial steatosis in mice, this can be completely abrogated with cardiac-specific FoxO1 deletion. Without FoxO1, signaling downstream from the insulin receptor, which becomes disrupted after long-term high-fat feeding, is once again restored and cardiac insulin sensitivity is improved. This results in normalization of cardiac glucose uptake, metabolic enzyme profiles, and steatosis. These data highlight that mTG may accumulate as a consequence of local pathologic LVH.

Subclinical hypertension, impaired glucose tolerance and sleep apnea, highlights the difficulties in using large databases in studying LVH in cohorts of otherwise healthy obese patients. Detailed studies to date have been relatively small in scope and cross-sectional in nature. This has limited our ability to unambiguously assign a causal role to obesity per se in promoting LVH. Many of these studies have reached contradictory conclusions.

A related question is whether it is total adiposity that is the driving force or whether site-specific fat depots are related to HF and LV structural changes. Different depots are known to have distinct biological activities. In particular, VAT and SAT are thought to exert rather distinct physiological effects, and it is possible that the purported association between obesity and LV structure/function is mediated primarily through the differential impact that these subtypes of fat pads exert. This hypothesis remains to be formally tested in the context of HF. We appreciate that VAT releases more inflammatory cytokines and less adiponectin than SAT, which is consistent with findings from cross-sectional studies concerning the relationship between adipokines and prevalent LVH.

Among all of the adipokines, the association between circulating adiponectin and LVH is the most studied. Several groups have shown that lower adiponectin levels correlate with higher LV mass, even after controlling for insulin sensitivity and BMI. A report from the Jackson Heart Study suggested that adiponectin had a more complex relationship with LVH among blacks, that is, the directionality of its association depended on the presence or absence of hypertension and insulin resistance. Animal models are supportive of the influence of adiponectin on LVH. In mice lacking adiponectin, an exaggerated cardiac hypertrophic response to pressure overload is seen but can be blunted with adenoviral-mediated restoration of adiponectin levels. This suggests that adiponectin is important in modulating cardiac hypertrophy, perhaps through an AMP-activated protein kinase or ceramidase-mediated mechanism.

The relationship between both resistin and leptin with LVH is less well-explored. The existing studies, although they have methodological limitations, suggest that there is some association between elevated resistin and leptin levels with LVH. However, the mechanistic underpinnings behind these associations are still a matter of investigation. The biological effects of leptin on cardiac hypertrophy in animal models have been conflicting, with either prohypertrophic or anti-hypertrophic responses being observed. In the case of resistin, adenovirally mediated cardiac-specific overexpression does result in LVH through several signaling pathways (eg, mammalian target of rapamycin), but it is unclear how well these observations translate into the clinical setting.

To date, reports on the association between adipokines and LV structure have been cross-sectional in nature but suggest that markers of adiposity (eg, high leptin or low adiponectin) and inflammation (eg, high resistin or low adiponectin) are related to the presence of hypertrophy. Because the levels of most adipokines tend to be reasonably well-correlated with one another, either directly or inversely, it is not necessarily clear whether each adipokine is independently informative or simply reflective of another biomarker unadjusted for in the modeling. Potential mechanistic pathways to explain adipokines as primary drivers of LVH in animal models have been suggested. However, with prospective studies largely lacking in humans, it is perhaps still premature to assign causality between adipokines and LV structural changes. Such studies also are needed to understand whether long-term favorable changes in circulating adipokine profiles may be associated with actual regression of LV mass.

In terms of clinical HF, the role of adipokines has been explored in several large cohort studies. Although adiponectin has been associated with LVH, it has not been independently associated with the development of HF per se. Studies of leptin have led to conflicting results, perhaps because leptin is so tightly correlated with adiposity and its statistical relationship with BMI is difficult to separate. Longitudinal follow-up from the Multi-Ethnic Study of Atherosclerosis study group reported that the effect of obesity on HF events could be explained by C-reactive protein and interleukin-6 levels, suggesting that inflammatory adipokines may be mediating this clinical association. Similarly, resistin has been independently associated with incident HF events in the Framingham cohort. The mechanisms by which these inflammatory mediators may be promoting HF is unclear, but these data are suggestive that accumulation of the proinflammatory VAT may be a key driving force for the development of obesity-related HF and pathologic LVH.
increases in FFA delivery to the heart or alterations in either global or cardiac-specific insulin sensitivity.

In humans, mTG accumulation is also well-documented and appears to occur in 2 major clinical contexts, obesity/insulin resistance and LV failure. It should be recognized, however, that mTG changes observed in the diseased human heart are somewhat less dramatic than may be seen in transgenic animal models. Although a patient with T2DM may have 1.0% to 1.5% mTG (compared with 0%–0.5% in controls), the long-chain acyl-coenzyme A synthetase–overexpressing mouse displays a dramatic 12-fold increase in mTG, and high-fat diet alone induces a 4-fold increase in mTG. Furthermore, fat accumulation in the heart is ≈1 order of magnitude lower than in the liver, which also is known to accumulate fat under similar metabolic challenges.

Given the practical limitations of acquiring cardiac tissue specimens in nontransplant settings, proton magnetic resonance spectroscopy has emerged as a useful tool to noninvasively quantify the degree of myocardial steatosis. Proton magnetic resonance spectroscopy has been successfully used on a larger scale for measuring hepatic fat, and TG quantification for both the liver and heart correlate well with that obtained from biopsy. Several studies have demonstrated that mTG levels are influenced by total adiposity. However, there is a clear further increase once insulin resistance occurs. Interestingly, there is no close correlation between the degree of cardiac and hepatic fat, although visceral fat is an independent predictor of mTG after multivariate modeling. Likewise, circulating FFA levels are linked to both hepatic and cardiac TG accumulation. Adiponectin levels also correlate with cardiac steatosis (although it is unclear whether this effect is independent of insulin sensitivity). Taken together, these observations also suggest that, similar to the relationship between LVH and obesity, the accumulation of VAT may be the primary upstream culprit to accumulation of mTG by virtue of its ability to influence circulating adipokines, lipolysis, and global insulin sensitivity.

The clinical effects of cardiac steatosis have not been well-defined, particularly in the setting of normal LV function. This is largely because of the few patients studied to date and lack of long-term follow-up. Rijzewijk et al demonstrated the degree of mTG was an independent predictor of diastolic dysfunction among a cohort of patients with relatively well-controlled T2DM (hemoglobin A1c <8.5%). Similarly, another recent study, again in patients with well-controlled T2DM, demonstrated an inverse relationship between mean diastolic strain rate as assessed by MRI and mTG levels. These observations could be clinically meaningful and may suggest a possible direct effect of mTG toward impaired diastolic function. However, it could also reflect effects of confounding factors associated with comorbidities. Importantly, the largest study reported to date of patients with T2DM (enrolled across a wide range of varying glycemic control) failed to demonstrate any relationship between the degree of mTG and diastolic function. Hence, the clinical implications of cardiac steatosis in the setting of insulin resistance, independent of other comorbid factors, remains ambiguous but certainly represents a relevant area for further study.

Adipose Tissue Function and the Failing Ventricle

Curiously, although obesity is an independent risk factor for the development of clinical HF, it consistently appears to be associated with improved prognosis in the setting of existing HF. This is referred to as the obesity paradox of HF, and we completely lack a mechanistic basis for an explanation. This implies that adipose tissue either directly or indirectly promotes survival of cardiac myocytes. Alternatively, the lack of adipose tissue (ie, the inability to maintain a stable BMI) is associated with a deficiency of a factor, the lack of which leads to a worsened clinical outcome. It is clear, however, that this is not simply because of protection from cardiac cachexia that is frequently seen at the opposite end of the BMI spectrum. However, BMI itself may be an inadequate measure of nutritional status, and even HF patients with high BMI may manifest hypoalbuminemia.

HF is well-known to result in neurohormonal activation. As such, circulating levels of catecholamines and natriuretic peptides are increased. These hormones act to drive TG hydrolysis from fat and increase systemic FFAs. Levels of FFAs are significantly elevated in HF patients. This is, at least in part, attributed to the altered neurohormonal environment and a consequence of the associated increase in cytokines and the accompanying insulin resistance associated with HF. Such dramatic elevations in circulating FFAs have unquestionably important implications for myocardial metabolism, given the general affinity of the heart toward FFA uptake and the well-described impairments of substrate oxidation in the failing ventricle.

Beyond the changes in FFAs, adipokine levels are also significantly altered in HF patients. Adiponectin is perhaps the best-studied marker in this context. Levels of adiponectin increase in a stepwise fashion with worsening scores in the New York Heart Association functional classification system. Higher plasma adiponectin concentrations are associated with higher mortality. This finding, which we refer to as the adiponectin paradox associated with HF, has been reproduced in several different populations. This observation seems to defy any easy explanations based on what we know about adiponectin action, particularly in light of the generally positive functions ascribed to adiponectin in terms of metabolism and cardioprotection. After LV assist device (LVAD) support, elevated adiponectin levels have been reported to decline dramatically, in parallel with a lowering of systemic and adipose-specific markers of inflammation, as well as improvements in insulin sensitivity. It is possible that adiponectin is increased in this setting because of a state of adiponectin resistance. Interestingly, however, LVAD support also is associated with a reduction in key mediators of lipolysis, such as natriuretic peptides. This also correlates with increases in adipocyte size (ie, cross-sectional area). Although this suggests that systemic adiponectin levels may be passively coupled to the degree of TG hydrolysis and FFA release from adipose tissue, more recent data in rodent models argue against this explanation. In addition, adiponectin has well-described effects on metabolism of lipotoxic intermediates, so the dramatic increases in circulating adiponectin concentrations may be an active response to HF-induced lipolysis. Supporting this paradigm is the close correlation between brain natriuretic peptide
levels and adiponectin, and the finding that natriuretic peptides can directly promote adiponectin expression/release from the adipocyte. Finally, although adipose is the major source of adiponectin, it has been reported that the heart may be a source of this cytokine as well. Although an attractive potential explanation for the elevations seen with HF, the available human data have not demonstrated any increased adiponectin production during LV failure. The levels of leptin and resistin are also increased in HF patients but, in distinction to adiponectin, levels of these adipokines do not change after mechanical unloading with LVAD support. The increase in serum leptin levels with HF appears to be independent of weight. Cardiac expression of leptin receptor mRNA and protein levels are upregulated in HF, and both levels decline with LVAD support. In parallel, there is an observed decrease in both signal transducer and activator of transcription 3 and AMP-activated protein kinase activation after LVAD treatment. Although the exact role and relative importance of leptin signaling in the failing heart are largely unknown, these findings suggest that there is likely some further important biology to be discovered in this area.

As seen in the insulin-resistant state (which includes HF), the failing human heart also accumulates mTG. Although it is again unclear whether the lipid accumulation is lipotoxic per se, intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. This can be partially reversed after mechanical unloading. In particular, ceramides, which have well-described proapoptotic effects, but not total mTG or fatty acids, have been shown to significantly decline with LVAD. Thus, myocardial lipid overload in the setting of HF appears to be derived from a surplus of FFAs delivered from adipose tissue hydrolysis and a superimposed inability of the failing heart to oxidize the substrate. Improvement in HF, for example, after LVAD, likely improves lipid overload by decreasing the lipolytic drive at the level of adipose, although this hypothesis remains to be directly tested.

The Obesity Paradox
Increasing adiposity is unquestionably associated with the aggregation of multiple risk factors for HF and vascular disease. However, obesity is associated with an improved survival after the diagnosis of these CVD conditions. Specifically, evidence of the obesity paradox has been observed in chronic and acute coronary heart disease, stroke, and peripheral vascular disease in addition to HF. This paradox is more generally referred to as an example of reverse epidemiology, a somewhat misleading term referring to the apparent reversal of classic associations of risk factors with disease outcomes.

Several explanations have been offered for these observations. Some of these seek to explain the obesity paradox as an artifact, for example, because of residual confounding at the statistical level, differences in treatments/management strategies by BMI grouping, survival bias, or the fact that obesity patients may become symptomatic earlier in their disease course and present earlier (eg, lead time bias). Furthermore, it has been suggested that, at least for acute coronary syndromes, the absolute amount of additional prognostic information offered by BMI is small, statistically accounting for other more clinically relevant risk variables. Lead time bias and the potential for misclassification of HF symptoms in the obese because of ambiguity of the Framingham criteria in this clinical context (ie, diagnostic bias) certainly may be potential contributors to the observation of the obesity paradox of HF. However, there is a strong evidence base that reverse epidemiology (ie, the counterintuitive protection observed for obesity and high cholesterol and the corresponding association with greater survival) is a real biological phenomenon. The dramatic changes in circulating adipokine profiles, lipolytic signals, insulin sensitivity, and FFAs highlight the interplay between adipose tissue and the failing heart. How the adipose may be protective under these circumstances remains ambiguous.

Clearly, it is difficult to reconcile how obesity may promote CVD and may be protective once it has been diagnosed. This paradox has rightly caused some consternation among physicians, because it has become unclear whether, once controlling risk factors for disease progression, weight loss specifically should be encouraged. Ultimately, clinical trials aimed specifically at such lifestyle interventions will be needed to address this critical question prospectively and definitively.

Outstanding Questions and Future Directions
Over the past several years, there has been an exponential increase in our understanding of adipose biology and its relevance to the CVD. Nonetheless, there are still many unanswered questions in this field. One of the most puzzling, mentioned previously, is the obesity paradox. How can adipose increase the risk of CVD risk factors and yet be protective once CVD develops? Is this phenomenon mediated through adipokines or differential SAT/VAT masses?

Much needs to be explored in the context of adipokine biology and the failing heart. Are adipokine and insulin resistances at the myocardial level occurring, and are they a cause or consequence of HF? What is the etiology of the adiponectin paradox, and what is the role of adiponectin in the context of HF, that is, is it a bystander or an active counterregulatory hormone designed to offset the insulin resistance and lipotoxicity that accompany HF? Furthermore, we do not completely understand what the drivers of the significantly elevated adiponectin levels in HF are. Peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α are the 2 major drivers of adiponectin expression in adipose tissue, but whether their activities are increased in adipose during HF is not clear. Similarly, there are additional secretagogues for adiponectin in addition to the natriuretic peptides, for example, FGF21; whether such circulating factors are important in driving adiponectin release from fat needs to be elucidated further.

Leptin has been extensively studied in many contexts, but our understanding of its influences on the heart is still incomplete. The direct actions of leptin in the hypothalamus can reverse hepatic insulin resistance, and it is fascinatingly possible that central influences of adipokines may have indirect effects on the cardiovascular system and the failing heart (ie, mediated through actions in the brain).
Finally, much has been written about myocardial lipotoxicity, but the clinical effects of mTG accumulation in humans are not clear. Data from transgenic murine models make a strong case for the detrimental effects of local accumulation of lipotoxic intermediates. These models include the overexpression of diacylglycerol acyltransferase, peroxisome proliferator-activated receptor-γ–overexpressing hearts in the background of peroxisome proliferator-activated receptor-α, long-chain acyl-coenzyme A synthetase overexpression, or the increased presence of lipoprotein lipase on cardiac myocytes. No systematic analysis has been performed across all of these mouse models to help us understand what specific species of lipid metabolites are toxic. Detailed analysis of intramyocardial fatty acids, ceramides, diacylglycerols, and acylcarnitines from human samples will be informative but inevitably may need to be coupled with metabolic fatty acid flux data to ensure proper interpretation. These unanswered questions are important because the accumulation of mTG alone is not sufficient and may, in fact, be protective. In other words, it may not only be absolute levels of these lipotoxic species that drive local insulin resistance, inflammation, and propensity to cell death, but rather the subcellular distribution of the lipids that matters the most. Finally, whether these phenomena related to cardiomyocyte dysfunction are a cause or an effect of HF also remains to be seen with refined time course studies.

Conclusions

It is apparent that adipose tissue has a role beyond serving as a mere storage compartment of TGs. When dysfunctional, it exerts a negative impact on all other tissues by creating a much more lipotoxic environment in peripheral tissues, including the heart. Combined with ensuing insulin resistance and a dysregulation of key adipokines, it is at the core of systemic metabolic dysfunction, with the cardiovascular system representing the key organ system affected. This suggests that therapeutic interventions early in the progression to CVD need to target specific metabolic and structural derangements, particularly at the level of adipose tissue. This will require an improved understanding of adipokine biology, hypothalamic control of organ homeostasis, potently influenced by adipokines, and direct effects of these adipokines on cardiovascular metabolism (Figure).

Sources of Funding

The authors are supported by National Institutes of Health grants R01-DK55758 and P01-DK088761 (to P.E. Scherer); HL-075173, HL-080144, and HL-090842 (to J.A. Hill); and R01-DK53301, RL-1DK081185, and P01-DK088761 (to J.K. Elmquist.).

Disclosures

None.

References

141. Fonarow GC, Srikantan P, Costanzo MR, Cintron GB, Lopatin M; ADHERE Scientific Advisory Committee and Investigators. An obesity paradox in acute heart failure: analysis of body mass index and inhos-

systolic heart failure: cumulative prognostic benefit of classical cardio-

146. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adi-

147. Nørenlund H, Wiggers H, Halbirk M, Frykyst J, Flyvbjerg A, Botker HE, Schmitz O, Jørgensen JO, Christiansen JS, Møller N. Abnormalities of whole body protein turnover, muscle metabolism and levels of met-

150. McIntegart MB, Awede B, Petrie MC, Sattar N, Dunn FG, MacFarlane NG, McMurray JJ. Increase in serum adiponectin concentration in pa-
ients with heart failure and cachexia: relationship with leptin, other cy-

154. Nydas S, Rosen NS, Ng C, Mercando M, Cohen J, DiTullio M, Magnano A, Marboe CC, Mancini DM, Naka Y, Oz MC, Maybaum S. Mechanical unloading leads to echocardiographic, electrocardiographic, neurohori-

155. Thompson JO, Sander CA, Looe M, Lafforin IA, Reber RE, Akugal A, Jones V, Bruckner BA, Thohan V, Noon GP, Yousker KA. Plasma neuro-
horome levels correlate with left ventricular functional and morpho-

158. Wang Y, Lau WB, Gao E, Tao L, Yuan Y, Li R, Wang X, Koch WJ, Ma XL. Cardiomyocyte-derived adiponectin is biologically active in pro-

159. Ding G, Qiu H, He N, Francis-David SC, Hou J, Liu J, Riess E, Yang Q. Adiponectin and its receptors are expressed in adult ventricular car-
diomyocytes and upregulated by activation of peroxisome proliferator-

160. Schürmann C, Wittechen H, Fechter M, Schuler PC, Schulze PC. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and enhances the production of adiponectin in human adi-

161. Wang Y, Lau WB, Gao E, Tao L, Yuan Y, Li R, Wang X, Koch WJ, Ma XL. Cardiomyocyte-derived adiponectin is biologically active in pro-

165. Stamou SC, Nussbaum M, Siegel RM, Reames MK, Skipper ER, Robicsek F, Lobdell KW. Effect of body mass index on outcomes after car-

166. Lancefield T, Clark DJ, Andrianopoulos N, Brennan AL, Reid CM, Johns T, Freeman M, Charter K, Duffy SJ, Ajani EA, Proietto J, Farooque O; MIG (Melbourne Interventional Group) Registry. Is there an obesity parado-

Turer AT. Using metabolomics to assess myocardial metabolism and energetics in heart failure. *J Mol Cell Cardiol*. In press.
Adipose Tissue Biology and Cardiomyopathy: Translational Implications
Aslan T. Turer, Joseph A. Hill, Joel K. Elmquist and Philipp E. Scherer

Circ Res. 2012;111:1565-1577
doi: 10.1161/CIRCRESAHA.111.262493

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/111/12/1565

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/