NOX4 Is a Janus-Faced Reactive Oxygen Species Generating NADPH Oxidase

To the Editor:

Hardly any chemical factor in biology serves only good or bad purposes in the body, and this is particularly true for some of the simplest biologically active molecules, the reactive oxygen species (ROS). As our understanding of their functions deepens, it is becoming apparent that ROS subserves both protective and damaging functions, depending on the actual reactive species, the amounts formed, and their subcellular locations.1–3 This Janus-faced role for ROS extends to their enzymatic sources and particularly applies to the only dedicated source of ROS, the NADPH oxidases. We were therefore surprised to read the article by Schröder et al in Circulation Research4 with the assertive title: “NOX4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase,” which implies that the NOX4 isoform in blood vessels always serves a “protective” function. We need to consider whether or not NOX4,5,6 should indeed be excluded from the general principle above and be regarded as always and entirely beneficial. The growing body of literature tells us that we should be more cautious than to paint NOX4 as a key signaling system that is universally cytoprotective or beneficial and NOX1 and 2 as negative counterparts.

First, NOX4 may not be universally beneficial. Although the authors present interesting evidence for previously unrecognized roles of NOX4 in 2 rodent models of cardiovascular disease, several other studies have reported a damaging influence of NOX4 in other disease models. Importantly, the data on a deleterious or pathological influence of NOX4 are neither cited nor discussed in sufficient detail in the Schröder article. For example, using NOX4 KO and transgenic animals, 2 independent studies suggest that it is endothelial NOX4 that mediates this detrimental effect on infarct size.8 Furthermore, in a severe and acute model of ventricular pressure overload (induced by thoracic aortic constriction) and a type 1 diabetes model, NOX4 appears to contribute to cardiomyocyte damage9 and diabetic cardiomyopathy.10 In contrast, in a less severe and subacute model of abdominal aortic banding, NOX4 facilitates angiogenesis and improves cardiac function.11 Thus, there appear to be mechanisms by which NOX4 can both harm and protect the cardiovascular system under stress. Moreover, deleterious roles for NOX4 have been shown for the induction of lung inflammatory renal14 and cardiac fibrosis as well as heart failure.15 Even physiological vascular functions may be not regulated by NOX4 as simply as portrayed. Schröder et al report that NOX4 increases eNOS expression, suggesting enhanced NO-cGMP signaling. However, NOX4 also upregulates phosphodiesterases (PDE) 4A, B, and D, which increases hydrolysis of cAMP, a mechanism that might be central to vasculopathies associated with endothelial dysfunction,16 and as well inhibits NO in arterial smooth muscle of the prediabetic Zucker rat.17

Second, the inference that the NOX1 and NOX2 isoforms represent the vascular dark side of NADPH oxidases is not totally supported by the published literature. With respect to angiogenesis the literature is at least discrepant, with several proangiogenic effects reported for these isoforms as well.18–21 It is also unlikely that NOX1 and NOX2 have no physiological or beneficial functions in blood vessels, and, to their credit, Schröder et al acknowledge that other NOX proteins are “important for physiological signaling under normal conditions.”

In short, the results reported by Schröder et al are interesting but raise a lot of questions. We would argue that more studies on the role of NOX4 in different disease settings, using various animal models, are required to fully elucidate the likely diverse roles of NOX4. One of the most fascinating questions to answer may be why evolution has preserved such a potentially dangerous enzyme family. Based on the current published data, it seems that not only NOX4, but also NOX1 and NOX2, can be helpful in some settings and damaging in others.

Disclosures

None.

References

6. Clempus RE, Sorensen D, Dikalova AE, Pounkova L, Jo P, Sorensen GP, Lassegue B, Griendling KK. Nox4 is required for maintenance of the...
differentiated vascular smooth muscle cell phenotype. Arterioscler
induced NADPH oxidase type 4 prevents oxidative stress and neurode-
8. Arimura K, Ago T, Kuroda J, Ishitsuka K, Nishimura A, Sugimori H,
Kamouch M, Sasaki T, Kitazono T. Role of NADPH oxidase 4 in brain
NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the
10. Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S,
Abbad HE. Nox4-derived reactive oxygen species mediate cardiomyo-
302:C597–C604.
11. Zhang M, Brewer AC, Schröder K, Santos CXC, Grieve DJ, Wang M,
NADPH oxidase-4 mediates protection against chronic load-induced
stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci
Pennathur S, Martinez FI, Thammickal VI. NADPH oxidase-4 mediates
myofibroblast activation and pro-fibrogenic responses to lung injury. Nat
13. Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O,
Guichard C, Arbiser JL, Banfi B, Pache J-C, Barazzzone-Argiroff C,
Krause K-H. A key role for Nox4 in epithelial cell death during develop-
Page P, Kennedy CRJ, Burns KD, Touyz RM, Heber RL. Critical role of
Nox4-based NADPH oxidase in glucose-induced oxidative stress in the
15. Xu Q, Dalic A, Fang L, Kriaizis H, Ritchie RH, Sim K, Gao XM,
Drummond G, Sarwar M, Zhang YY, Daur AM, Du XJ. Myocardial
oxidative stress contributes to transgenic β2-adrenoceptor activation-
induced cardiomyopathy and heart failure. Br J Pharmacol. 2011;162:
1012–1028.
16. Muzaffar S, Jeremy JY, Angelini GD, Shukla N. NADPH oxidase 4
mediates upregulation of type 4 phosphodiesterases in human endothelial
17. Tong X, Hou X, Jouard’heuil D, Weisbrod RM, Cohen RA. Upregulation
of Nox4 by TGFβ1 oxidizes SERCA and inhibits nitric oxide arterial smooth
18. Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N,
Alexander RW. Role of gp91phox (Nox2)-containing NAD(p)h oxidase
in angiogenesis in response to hindlimb ischemia. Circulation. 2005;111:
2347–2355.
Ushio-Fukai M. Role of Nox2-based NADPH oxidase in bone marrow
and progenitor cell function involved in neovascularization induced by
20. Garrido-Urbani S, Jemelin S, Deffert C, Carnesecchi Sp, Basset O,
Szyndralewicz CD, Heitz F, Page P, Montet X, Michalik L, Arbiser J,
Rüegg C, Krause KH, Imhof B. Targeting vascular NADPH oxidase 1
blocks tumor angiogenesis through a pparÎ± mediated mechanism. PLoS
ONE. 2011;6:e14665.
21. Distasi MR, Case J, Ziegler MA, Dinauer MC, Yoder MC, Haneline LS,
Dalsing MC, Miller SJ, Labarrere CA, Murphy MP, Ingram DA, Unthank
JL. Suppressed hindlimb perfusion in rac2−/− and Nox2−/− mice does not
result from impaired collateral growth. Am J Physiol Heart Circ
NOX4 Is a Janus-Faced Reactive Oxygen Species Generating NADPH Oxidase
Harald H.H.W. Schmidt, Kirstin Wingler, Christoph Kleinschnitz and Greg Dusting

_Circ Res._ 2012;111:e15-e16
doi: 10.1161/CIRCRESAHA.112.271957

_Circulation Research_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/111/1/e15

_Permisions:_ Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

_Reprints:_ Information about reprints can be found online at:
http://www.lww.com/reprints

_Subscriptions:_ Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/