Platelet-derived growth factor (PDGF) signaling is implicated in a wide range of diseases, and PDGF drives the pathological responses in many vascular disorders and fibrotic diseases such as atherosclerosis, restenosis, pulmonary arterial hypertension, and pulmonary fibrosis. In vascular smooth muscle cells (VSMC), PDGF is a potent mitogen which promotes proliferation and migration and contributes to pathological vascular remodeling. Recent studies have demonstrated a role for PDGF in stromal interaction molecule 1 (STIM1)/Orai1-mediated Ca\(^{2+}\) influx in VSMC.\(^1\) Regulation of cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{cyt}\)) is critical for many cellular processes. A rise in [Ca\(^{2+}\)]\(_{cyt}\) is a major trigger for VSMC proliferation and contraction. One of the major routes of Ca\(^{2+}\) entry into cells is through store-operated Ca\(^{2+}\) (SOC) channels. On depletion of Ca\(^{2+}\) from the stores (sarcoplasmic or endoplasmic reticulum, SR/ER), a Ca\(^{2+}\) deficiency signal is transmitted to the SOC channels in the plasma membrane via STIM1. This causes the SOC to open, allowing Ca\(^{2+}\) to flow into the cytosol, a process referred to as store-operated Ca\(^{2+}\) entry (SOCE). The cytosolic Ca\(^{2+}\) is then sequestered into the stores by the sarco(endo)plasmic reticulum Ca\(^{2+}\) ATPase (SERCA), thus replenishing the stores. Studies have demonstrated a role for Ca\(^{2+}\) release-activated Ca\(^{2+}\) (CRAC) channels in SOCE, with STIM1 and Orai1 as the major components.\(^2\)

The majority of STIM1 is expressed in the SR/ER membrane, where it senses decreased Ca\(^{2+}\) concentration in the SR/ER when inositol 1,4,5-triphosphate (IP\(_3\))-mediated activation of IP\(_3\) receptor induces Ca\(^{2+}\) release. STIM1 then undergoes a conformational change allowing STIM1 to multimerize and translocate to discrete puncta near the plasma membrane where it interacts with and activates Orai1, the pore-forming unit of the CRAC channel.\(^3\) In this issue, McKeown et al\(^4\) investigate the relevance and importance of STIM1/Orai1 redistribution and clustering in PDGF-mediated Ca\(^{2+}\) entry through Orai1 channels. The redistribution and clustering of STIM1 and Orai1 was observed in this study using fluorescently-tagged STIM1 and Orai1. The authors demonstrate that, under normal conditions, Orai1 localizes to intracellular vesicles and has a reasonably uniform distribution in the plasma membrane except in dynamic membrane structures such as membrane ruffles or spiny protrusions, where Orai1 is highly expressed. Additionally, they show that STIM1 can be found in the SR/ER and associated with comet-like structures under nonstimulated conditions. Passive depletion of Ca\(^{2+}\) stores with the SERCA inhibitor thapsigargin (TG) causes significant redistribution and clustering of STIM1 and Orai1 in VSMC, which is clearly demonstrated with the fluorescently-tagged STIM1 and Orai1 used in this study. Interestingly, this study shows that PDGF fails to cause significant STIM1/Orai1 redistribution and that PDGF activates Orai1 channels in the absence of STIM1/Orai1 clustering. The data indicate that PDGF causes significant STIM1/Orai1 redistribution when Orai1 channels are blocked, either by Synta 66 or by 2 loss-of-function mutations (R91W and E106A). Furthermore, the authors show that under conditions of SR/ER stress (such as acidosis), PDGF-mediated Ca\(^{2+}\) influx is associated with redistribution and clustering of STIM1 and Orai1. Based on these data, the authors conclude that (1) PDGF-mediated Ca\(^{2+}\) entry through Orai1 channels is independent of clustering of STIM1 and Orai1, (2) nonclustered Orai1 channels serve to maintain Ca\(^{2+}\) in the stores and prevent store depletion, (3) redistribution and clustering of STIM1 and Orai1 becomes apparent and important when Orai1 channel activity is compromised by Orai1 channel inhibitors or Orai1 mutations, and (4) redistribution and clustering of Orai1 and STIM1 are important for situations where there is SR/ER stress, such as acidosis, and a risk of store depletion.

Given that STIM1 is an SR/ER Ca\(^{2+}\) sensor whose response to store depletion is redistribution and clustering, McKeown et al\(^4\) suggest that PDGF causes Ca\(^{2+}\) release, but not store depletion, because STIM1 does not cluster in response to PDGF exposure. The authors propose that non-clustering Orai1 channels maintain the stores replete preventing STIM1 clustering. While the exact mechanism by which PDGF activates Orai1 channels without redistribution and clustering is still an unknown, there are several possibilities. It is possible that PDGF binding to the PDGF receptor, a receptor tyrosine kinase, may release a second messenger which activates Orai1 (Figure, A). This indicates that Orai1 channels may also function as a receptor-operated Ca\(^{2+}\) channel (ROC)-like channel following activation by PDGF. Under conditions which cause store depletion, such as acido-
sis, inhibition of the SERCA pump, or in the absence of extracellular Ca^{2+}, Orai1 channels cluster with STIM1 and participate in classical SOCE. This suggests that the roles of these voltage-independent Ca^{2+} channels (eg, ROC and SOC) may overlap. Indeed, several studies have shown previously that TRPC channels are important for both receptor- and store-operated Ca^{2+} entry.5,6 That these channels have overlapping functions underlies the critical importance of regulation of Ca^{2+} to the cell.

Another possibility for the mechanism by which PDGF activates Orai1 in the absence of clustering involves STIM1. McKeown et al4 provide evidence that inhibition of STIM1 with siRNA blocks PDGF-mediated Ca^{2+} influx suggesting that even in the absence of clustering, activation of Orai1 still requires STIM1. It is possible that nonclustering Orai1 channels interact with STIM1 located on the plasma membrane (Figure, A). STIM1 has been previously shown to be localized in the plasma membrane, where it can interact with TRPC1 and contribute to Ca^{2+} influx.7 The authors suggest it is possible that a fraction of Orai1 and STIM1 proteins are constitutively coassembled in nonclustered units that do not function until being activated by PDGF (Figure, A). A recent study identified a splice variant of STIM1 in skeletal muscle which forms permanent clusters with Orai1.8 PDGF may activate these Orai1/STIM1 units under normal conditions (eg, 1.5 mmol/L extracellular Ca^{2+}, no SR/ER stress or store depletion) without redistribution or clustering of Orai1 and STIM1 (Figure, A).

Another interesting concept proposed by McKeown et al is the dual response of Orai1 channels to PDGF. Under normal conditions (eg, 1.5 mmol/L extracellular Ca^{2+}, no SR/ER stress or store depletion), PDGF activates Orai1 channels without clustering. However, PDGF causes STIM1/Orai1 clustering under conditions of store depletion or ER stress. If Orai1 channels are open and allowing Ca^{2+} entry without clustering in response to PDGF, what advantage does STIM1/Orai1 clustering bring under conditions of ER stress? The authors propose this serves to maximize efficiency of store-filling and minimize store depletion. This suggests that there may be a mechanism by which STIM1/Orai1 clusters...
allow for direct funneling of Ca\(^{2+}\) to the SERCA pump in order to replenish the Ca\(^{2+}\) stores and prevent an increase in cytosolic Ca\(^{2+}\) (Figure, B). Release of Ca\(^{2+}\) from the stores has been shown to alter the distribution of SERCA and the IP\(_3\) receptor. STIM1 and Orai1 may also cluster with SERCA in the SR/ER puncta to more efficiently funnel Ca\(^{2+}\) directly into the SR/ER under conditions of store depletion or ER stress (Figure, B).

In summary, the data from McKeown et al\(^4\) provide evidence of PDGF-mediated activation of Orai1 channels without redistribution or clustering with STIM1. Under normal conditions PDGF activates Orai1 channels in the absence of clustering; however, during times of store depletion or ER stress, STIM1/Orai1 clustering occurs. This dynamic regulation of Orai1 activation may be important for efficiently replenishing the Ca\(^{2+}\) stores and demonstrates the importance of regulation of Ca\(^{2+}\) signaling.

Sources of Funding

This work was supported in part by grants from the National Heart, Lung, and Blood Institute of the National Institutes of Health (HL066012 and HL098053).

Disclosures

None.

References

KEY WORDS: platelet-derived growth factor ■ stromal interaction molecule 1 ■ Orai1 ■ clustering ■ Ca\(^{2+}\) channels ■ Ca\(^{2+}\) regulation ■ calcium signaling ■ growth factors
CRACing the Cluster: Functionally Active Orai1 Channels in the Absence of Clustering With STIM1

Kimberly A. Smith and Jason X.-J. Yuan

Circ Res. 2012;111:9-11
doi: 10.1161/CIRCRESAHA.112.271791

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/111/1/9

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/