Inhaled nitric oxide (iNO) is approved by the Food and Drug Administration for the treatment of persistent pulmonary hypertension of the newborn, largely as a result of the pioneering research efforts of Warren Zapol. Inhaled nitric oxide (NO) dilates pulmonary resistance vessels to improve ventilation–perfusion matching before being inactivated by reactions with hemoglobin (Hb) in blood exiting the lung. Inhaled NO therefore is a selective pulmonary vasodilator.1 Notwithstanding the validity of this model, investigators including Claes Frostell2 and David Wessel3 noted early on that high therapeutic doses of iNO led to subtle decreases in blood pressure. It had recently been discovered that albumin could be S-nitrosylated by NO,4 endowing it with long-lived vasodilatory activity. So, when presented with the quandary of systemic vasodilatory activity and thus acting in an endocrine-like manner, S-nitrosoalbumin since has been implicated in protection by iNO against reperfusion injury in systemic vessels,5,6 but also may form within airways of iNO-treated patients,5,9 potentially contributing to “pulmonary selectivity.” In subsequent studies, the family of circulating S-nitrosylated proteins (SNO-proteins) was expanded to include S-nitrosohemoglobin (SNO-Hb),10 which exhibits the remarkable ability to mediate hypoxic vasodilation,11 the selective vasodilation in proportion to degree of hypoxemia. A number of recent studies have provided evidence that iNO may utilize SNO-based pathways12 to confer protection against ischemic insults,13–18—none more remarkable than the report by Terpolilli et al19 in this issue of Circulation Research, which illustrates beautifully in cerebral vessels the principles of endocrine NO bioactivity and hypoxia-coupled delivery of NO bioactivity. Their demonstration that iNO promotes dilation of cerebral resistance vessels selectively in hyperperfused tissue, without changes in systemic blood pressure, points to new strategies to ameliorate damage after ischemic insult.

Endocrine Nitric Oxide Bioactivity and Hypoxic Vasodilation by Inhaled Nitric Oxide

Jonathan S. Stamler, James D. Reynolds, Douglas T. Hess
One interpretation of these data is that SNOs in the lung may be viewed as part of an intermediate that is displaced from NO bioactivity generated in skeletal muscle. The delivery of vasoregulatory SNO-based bioactivity to peripheral sites, including the brain, may be described as a set of equilibria whereby SNO generation at a site of origin is coupled to the release of bioactivity in tissues. Release of SNO-based bioactivity may be regulated by neural stimuli, and the response to hypoxic stimulation is conveyed primarily by SNO-Hb.

Low yields of these reactions aside, there is still something remarkable about the fact that increasing SNO levels in the lungs results in increased SNO levels in the brain (this property is not unique to NO bioactivity generated in the lung, because NO bioactivity generated in skeletal muscle is also delivered to the brain). One interpretation of these data is that SNOs in the lung may be viewed as part of an integrated system in which the relationship between SNOs in the lung, blood, and peripheral vasculature, including that of the brain, represents a set of coupled equilibria. Under this model, delivery of NO bioactivity via sequential transnitrosylation reactions represents a shift across these equilibria that would allow for the rapid delivery required for physiological signaling on short time scales—in effect, a "bucket brigade" whereby an incoming NO group at one end displaces an NO group at the other end, by analogy to the flow of electrons in conducting wires or the movement of protons in water. Thus, there would be no requirement that the NO molecule picked up in the lung is the same as that delivered in the tissue.

Misconceptions surrounding the possible role and function of nitrite merit comment. Nitrite is relatively inert, being orders of magnitude less potent as a vasodilator than SNOs. Nitrite at concentrations observed in the circulation under normal physiological conditions—and in the amounts observed after administration of iNO in this study—does not appear to exert biological activity in its own right. Claims of nitrite-induced vasodilation under physiological (as opposed to pharmacological) conditions are not well-justified, and although the case for nitrite in NO-based signaling under ischemic conditions may be stronger on both empirical and mechanistic grounds, ischemic enhancement of the vasoactive potency of nitrite is inevitably commensurate with production of SNOs. Indeed, in cells and tissues, nitrite-forming reactions will almost always produce SNOs and the generation of NO bioactivity from nitrite will almost inevitably involve SNOs. Thus, the evidence for an alternative nitrite-based but SNO-independent mechanism of hypoxic vasoregulation in ischemia is, at best, circumstantial and the notion that nitrite may operate independently of SNOs is difficult to sustain. In addition, nitrite-based vasodilatory activity often is claimed to involve a nitrite reductase activity of Hb or xanthine oxidase, which reduces nitrite to NO. However, the available data would seem to rule out a role for a nitrite reductase activity of Hb in vasodilation, and xanthine oxidase evidently exerts a vasoconstrictive rather than vasodilatory influence in humans. With the exception of the SNO synthesis function of Hb, an enzymatic activity that may promote the vasodilatory activity of iNO remains to be identified.

Measurements of NO bioactivity in the blood of Tibetans show that levels of SNO-Hb are markedly increased compared with those of sea-level dwellers, commensurate with increases in peripheral blood flow. Additional potential benefits of SNO-Hb include roles in ventilation–perfusion matching in the lung and the centrally mediated hypoxic respiratory drive. Notably, SNO-Hb levels increase in normal subjects acclimatizing to high altitude, and levels of both Hb and SNO-Hb predict distance walked at 6 minutes. Human blood gas measurements show that O₂ content (O₂ saturation) of Hb is intimately linked to its SNO content, and recent studies highlight the centrality of S-nitrosylation–based signaling in transducing ambient O₂ signals in both anemic and hypoxic conditions. Taken together, these observations emphasize that O₂ delivery within the respiratory cycle is a function of both O₂ content of blood (Hb O₂ saturation) and blood flow (tissue perfusion, regulated by SNO-Hb). Current efforts in medicine to improve O₂ delivery are focused on O₂ content of blood without consideration of NO bioactivity. In contrast, the findings of Terpolilli et al suggest therapeutic opportunities for iNO operating through SNO-based mechanisms, particularly in the setting of cerebral ischemia. As important, their findings point to the importance of developing new strategies that more effectively manipulate NO-based vasoactivity through SNO-based pathways.

Sources of Funding

Supported by National Institutes of Health grants R01HL059130, R01HL095463, R01HL091876, P01HL75443 and by DARPA N66001-10-C-2015.

Disclosures

J.S.S. has a financial interest in N30 Pharma, Adamas Pharma, Life Health, and Vindica Pharm. J.D.R. has a financial interest in N30 Pharma.
Acknowledgments

The authors acknowledge Dr Irwin Fridovich for thoughtful comments and discussion.

References


Key Words: respiratory cycle ■ S-nitrosohemoglobin ■ S-nitrosylation
Endocrine Nitric Oxide Bioactivity and Hypoxic Vasodilation by Inhaled Nitric Oxide
Jonathan S. Stamler, James D. Reynolds and Douglas T. Hess

doi: 10.1161/CIRCRESAHA.111.263996

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/110/5/652

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/