Mitochondria are semiautonomous cellular organelles with their own genome, which not only supply energy but also participate in cell death pathways. MicroRNAs (miRNAs) are usually 19 to 25 nt long, noncoding RNAs, involved in posttranscriptional gene regulation by binding to the 3′-untranslated regions of target mRNA, which impact on diverse cellular processes.

Rationale: Mitochondria are involved in many other essential cellular processes, such as signaling, cellular differentiation, growth, and cell death. More than 2000 proteins are found in the mitochondria, in addition to supplying energy, are also involved in posttranscriptional gene regulation by binding to the 3′-untranslated regions of target mRNA, which impact on diverse cellular processes.

Objective: To determine if nuclear miRNAs translocate into the mitochondria and regulate mitochondrial function with possible pathophysiological implications in cardiac myocytes.

Methods and Results: We find that miR-181c is encoded in the nucleus, assembled in the cytoplasm, and finally translocated into the mitochondria of cardiac myocytes. Immunoprecipitation of Argonaute 2 from the mitochondrial fraction indicates binding of cytochrome c oxidase subunit 1 (mt-COX1) mRNA from the mitochondrial genome with miR-181c. Also, a luciferase reporter construct shows that mi-181c binds to the 3′UTR of mt-COX1. To study whether miR-181c regulates mt-COX1, we overexpressed precursor miR-181c (or a scrambled sequence) in primary cultures of neonatal rat ventricular myocytes. Overexpression of miR-181c did not change mt-COX1 mRNA but significantly decreased mt-COX1 protein, suggesting that miR-181c is primarily a translational regulator of mt-COX1. In addition to altering mt-COX1, overexpression of miR-181c results in increased mt-COX2 mRNA and protein content, with an increase in both mitochondrial respiration and reactive oxygen species generation in neonatal rat ventricular myocytes. Thus, our data show for the first time that miR-181c can enter and target the mitochondrial genome, ultimately causing electron transport chain complex IV remodeling and mitochondrial dysfunction.

Conclusions: Nuclear miR-181c translocates into the mitochondria and regulates mitochondrial genome expression. This unique observation may open a new dimension to our understanding of mitochondrial dynamics and the role of miRNA in mitochondrial dysfunction. (Circ Res. 2012;110:1596-1603.)

Key Words: microRNA ■ mitochondria ■ cytochrome c oxidase ■ reactive oxygen species ■ miR

MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. Several groups have proposed that miRNAs play critical roles in cardiovascular physiology and disease pathogenesis. Powerful cardioprotective interventions, such as ischemic preconditioning, also induce changes in miRNAs.

The goal of this study was to determine if miRNA, like protein, could translocate into the mitochondria and regulate mitochondrial function with possible pathophysiological implications in cardiac myocytes. Others have found miRNA in the mitochondria of liver cells, HeLa cells, and human myoblasts, but the significance and functional consequences were not characterized.

Methods

Animals

Sprague-Dawley rats were used in this study. All experimental procedures were approved by the Institutional Animal Care and Use Committee of Johns Hopkins University.
RNA Isolation
Hearts from adult male rats were perfused with RNA-later (Qiagen) after washing out the blood. Mitochondria were isolated by differential centrifugation as described previously. RNA was extracted with miRNeasy kit (Qiagen) as per company instruction. miRNA-enriched RNA was also isolated by Qiagen protocol from both heart and the mitochondrial fraction.

Microarray Analysis
An expanded Methods section is available in the online Data Supplement.

Quantitative Real-Time PCR
cDNA was made using the miScript Reverse Transcription Kit (Qiagen). PCR was performed using the miScript SYBR green PCR kit (Qiagen) and the q50 detector (Bio-Rad). All reactions were performed in triplicate. The data were analyzed following Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines.

Cell Culture
Neonatal rat ventricular myocytes (NRVMs) were isolated from the whole heart of 1- to 2-day-old rats. After isolation, myocytes were transfected using an electroporator (Nucleofector, Amaxa, Gaithersburg, MD), following the protocol for neonatal rat myocytes.

Immunoblot Analysis
After blotting gels onto PVDF membranes, membranes were incubated with antibodies that recognize Dicer, Prohibitin, cytochrome c oxidase (mt-COX)-1, Cadherin, and α-actinin, all from Santa Cruz. The mt-COX2 antibody was from Invitrogen. Immunoreactive proteins were visualized using an enhanced chemiluminescence analysis kit (GE HealthCare).

Mitochondrial Respiration Assay
Mitochondrial respiration was measured polarographically with a Clark-type electrode. NRVMs were permeabilized with saponin, inside the sealed chamber, and N,N,N,N-tetramethyl-p-phenylenediamine (TMPD)-ascorbate was used as a complex IV specific substrate.

Reactive Oxygen Species Production Assay
Hydrogen peroxide (H2O2) production from transfected intact NRVMs was monitored fluorimetrically by measurement of oxidation of Amplex red to fluorescent resorufin (Life Technologies, Carlsbad, CA).

Results
Integrity and Purity of Mitochondrial miRNA
We perfused adult rat hearts with a RNA stabilization reagent, RNA-later, in a Langendorff apparatus, and differential centrifugation was carried out to isolate mitochondria. We isolated pure and high integrity RNAs from the mitochondria (Figure 1A and 1B). Total RNA isolated from heart shows the 18S and 28S rRNA, and the absence of these peaks in the RNA isolated from mitochondria indicates that there is no measurable cytosolic RNA contamination in our mitochondria preparation. Figure 1B also shows that RNA from mitochondria is not degraded. Our RNA isolation procedure delivered a high RNA integrity number (RIN) for the total heart sample. Since the RIN number is calculated from cytosolic rRNA, there is no equivalent measure of mitochondrial RNA integrity, but the peaks in the mitochondrial RNA chromatogram are as sharp as in the total heart sample, suggesting that RNA integrity is similar in all fractions. We used a microarray approach to analyze the miRNA expression profile from total heart and from the mitochondrial fraction (Figure 1C). Several miRNAs are highly expressed in the mitochondrial fraction compared with whole heart, and in particular, miR-181c was enriched 2-fold in the mitochondrial RNA compared with the total heart RNA (Figure 1C). Figure 1C includes all miRNAs that are relevant to rat. In some cases, the miRNAs were derived from other species, but if the human or mouse miRNA is conserved in the rat, we then included the conserved miRNA data even if it was originally derived from another species.

Mitochondrial Localization of miR-181c
We validated our microarray data using quantitative real-time PCR (qRT-PCR). 12S rRNA, a mitochondrial gene product, served as our internal control. We confirmed that miR-181c was predominantly localized to the mitochondrial fraction; its expression in the mitochondrial fraction was similar to that in the total heart fraction (Figure 2A). In addition, fluorescence in situ hybridization (Figure 2C) shows colocalization of miR-181c with the mitochondrial marker, mitoTracker red. We also examined miR-181c expression in both cytosolic and mitochondrial fractions (Figure 2B, left panel), using qRT-PCR, and found that miR-181c was enriched primarily in the mitochondrial fraction. We evaluated several other miRNAs as negative controls for mitochondrial localization, and miR-1192 data are included in Figure 2B (right panel). We used 5S rRNA as an internal control for these sets of qRT-PCR data, as it is known that this gene is present in both the cytosol and mitochondrial fractions.

Biogenesis of miR-181c
miRNAs derived from nucleus are transcribed as pri-miRNA, cleaved by Drosha to form premiRNA, and then exported from the nucleus to cytoplasm, where the complex with Dicer leads to the mature form of miRNAs. Since miR-181c is located on chromosome 19, we looked for premiR-181c in different cellular compartments to study this processing. We observed that there is little premiR-181c in the mitochondria or nuclear fractions compared with the total heart homogenate (Figure 3A). This suggests that the premiR-181c is present predominantly in the
cytosolic fraction and largely absent from the nucleus or mitochondria (Figure 4A). In addition, Dicer, which generates the mature form of miRNA, is only present in the cytosolic fraction and not in mitochondria (Figure 4A). These data support the concept that biogenesis of miR-181c is by the conventional pathway using nuclear and cytosolic processing with Drosha and Dicer.\(^5,6\) This is consistent with the hypothesis that after undergoing maturation within the cytosol, miR-181c translocates into the mitochondria.

Mitochondrial Target of miR-181c

To determine mitochondrial targets of miR-181c, we looked for conventional cytosolic RNA-induced silencing complex (RISC) components in the mitochondria and found that only the key component of RISC, Argonaute 2 (Ago2) is present in the mitochondria (Figure 3A). We then immunoprecipitated Ago2 from the mitochondrial pellet and found that miR-181c was coimmunoprecipitated (Figure 3B). We also identified mt-COX1 mRNA in the immunoprecipitate (Figure 3C) but

![Figure 1. RNA isolation and identification of miRNA in heart-derived mitochondria. A, Capillary electrophoresis of total heart versus mitochondrial fraction. B, Gel electrophoresis of mitochondrial RNA (marked in red) versus total heart. C, Heat map representation of the miRNA microarray analysis in mitochondrial fraction (Mt) and total heart homogenate (total), using Affymetrix Chip. The log2 expressions of each gene are mean-centered, based on all the data from that gene.](http://circres.ahajournals.org/)

![Figure 2. Mitochondrial localization of miR-181c. Quantitative RT-PCR shows that miR-181c is mainly present in the mitochondria. A, miR-181c expression is almost the same in total RNA derived from the mitochondrial fraction and the total heart fraction. 12S rRNA is the internal control to normalize these data. B, miR-181c expression is mainly detected in the mitochondrial fraction and not in the cytosolic fraction (left panel), whereas miR-1192 is mainly present in the cytosolic fraction (right panel). 5S rRNA is the internal control to normalize these data, as this RNA is present in both cytosol and mitochondrial fractions. *P<0.05 versus cytosol. C, Fluorescent in situ hybridization demonstrating intramitochondrial localization of miR-181c. Mitochondria are labeled with mito-tracker red (left); miR-181c is green (GFP, middle); the merged image is shown in the right panel.](http://circres.ahajournals.org/)
no other mitochondrial RNAs, such as mt-COX2 mRNA or 12S rRNA were found (Figure 3D and 3E, respectively). This suggests that mt-COX1 is a primary target of miR-181c in the mitochondria. To determine the direct effect of miR-181c on the 3′/5′ untranslated region (UTR) of mt-COX1 mRNA, we cloned the entire 3′UTR of mt-COX1 into the firefly luciferase (f-luc) reporter construct, pG13, and then transfected HeLa cells along with either a scrambled short RNA sequence or miR-181c, and evaluated luciferase activity. As shown in Figure 4B, with the miR-181c mimic group, the luciferase activity significantly decreased, suggesting that the 3′UTR of mt-COX1 mRNA is a binding site of miR-181c.

miR-181c Regulation of mt-COX1 Translation

To examine the effects of miR-181c on mt-COX1 we used primary cultures of NRVMs and overexpressed miR-181c or a scrambled sequence as a control (Figure 4C). Since it is known that miRNA can both inhibit mRNA translation and/or induce mRNA degradation, we looked at both, the mRNA for mt-COX1 and protein expression. No difference was found in mt-COX1 mRNA level between cells overexpressing miR-181c and the control group, using qRT-PCR (Figure 5A, left panel). We then investigated mt-COX1 protein expression and found that overexpression of mir-181c decreased mt-COX1 content compared with control (Figure 5A, right panel). This indicates that miR-181c regulates translation of mt-COX1.

miR-181c Effects on Mitochondrial Transcription

Mitochondrial DNA is a super coiled double-stranded closed circular molecule composed of 37 genes, encoding 2 ribosomal RNAs (12S and 16S rRNAs), 22 transfer RNAs, and 13 mitochondrial proteins, all of which are components of the oxidative phosphorylation (OXPHOS) system. Mitochondrial RNA synthesis and processing is a highly regulated, coordinated, multistep process, although not fully characterized. RNA synthesis of mitochondrial genes occurs through 3 transcriptional units, 1 L-strand and 2 H-strands (H1 and H2), cleaved from the D-loop region. All 13 OXPHOS mitochondrial genes are sequentially transcribed from the H2-strand. This polycistronic primary transcript is then processed by specific endonucleolytic cleavages. Since mt-COX2 and mt-COX3 are directly after mt-COX1 on the polycistronic primary transcript, we analyzed their mRNA content to evaluate if mir-181c would affect other OXPHOS components. Indeed, overexpression of miR-181c in NRVMs significantly increased mRNA of mt-COX2 and mt-COX3 (Figure 5B, left panel and Figure 3. Active involvement of miR-181c in the mitochondrial RISC complex. A, Western blot shows that only Ago 2, and not Dicer or TRBP, is present in the mitochondria. Prohibitin is used as a mitochondrial marker. Quantitative RT-PCR shows both (B) miR-181c and (C) mt-COX1 mRNA, and no other mitochondrial gene products, like (D) mt-COX2 mRNA or (E) 12S rRNA; in the Ago 2 immunoprecipitate from the mitochondrial fraction.

Figure 4. Biogenesis and target of miR-181c.

A, Quantitative RT-PCR shows the amounts of premiRNA-181c in the total heart sample versus the different fractions. *P<0.05 versus total heart and †P<0.05 versus nucleus. B, Luciferase activity derived from the COX-1 3′ UTR reporter after transfection into HeLa cells with negative or miR-181c mimic. All values were normalized to Renilla luciferase activity produced from a cotransfected control plasmid. *P<0.05 versus negative control. C, Neonatal cardiomyocytes were transfected with precursor miR-181c or a scrambled sequence. Quantitative RT-PCR shows increased miR-181c after 48 hours. 12S rRNA served as the internal control to normalize these data. *P<0.05 versus negative control.
Online Figure VI, respectively). Thus, mir-181c not only regulates mt-COX1 protein translation but also affects other cytochrome oxidase subunits.

The explanation for an increase in mRNA for mt-COX-2 and mt-COX-3 compared with mt-COX-1 could involve differences in mRNA stability, with an increased rate of degradation of mt-COX1 mRNA relative to mt-COX2 and mt-COX3 mRNA. One mechanism that contributes to mRNA stability is polyadenylation at the 3'UTR of the cleaved mitochondrial mRNAs. Polyadenylation could be inhibited by mir-181c binding to the 3'UTR of COX1 mRNA, leading to accelerated degradation. Since mir-181c does not bind the 3'UTR of mRNA for COX2 and COX3, these 2 transcripts would not be affected. Recent findings support the role of cleavage and polyadenylation at the 3'UTR on posttranscriptional gene regulation. Thus, increased synthesis of mRNA for mt-COX1 and mt-COX2, but translational inhibition and enhanced degradation of the mt-COX1 mRNA prevents increased mt-COX1 protein expression whereas mt-COX2 processing is not similarly affected and mt-COX3 mRNA prevents increased mt-COX1 protein expression whereas mt-COX2 processing is not similarly affected and protein expression increases. A previous study of in vivo ischemic stress in monkeys also demonstrated a relationship between decreased mt-COX1 and simultaneously increased mt-COX3, which ultimately impaired mitochondrial function. Our results are consistent with the hypothesis that mir-181c is affecting H2-strand transcription and mt-COX1 mRNA stability, as well as inhibiting translation of mt-COX1.

miR-181c Regulates Mitochondrial Function

Both mt-COX1 and mt-COX2 are required for mitochondrial respiration; a reduction in cytochrome oxidase activity could affect mitochondrial metabolism, and mitochondrial dysfunction is important in many diseases. To determine whether miR-181c regulates mitochondrial energy metabolism, 48 hours after transfection, we selectively permeabilized the plasma membrane of NRVM, and measured O2 consumption using a Clark-type oxygen electrode. To focus specifically on complex IV, we used the complex IV substrate, TMPD/Ascorbate. The rate of O2 consumption is significantly increased in miR-181c transfected NRVMs compared with the negative control group, after adding complex IV substrate (Figure 6A). To further evaluate how miR-181c affects mitochondrial function, we considered that the increase in oxygen consumption could be...
related to increased ROS production. To test this hypothesis, we measured ROS production in the intact NRVMs using the fluorometric Amplex Red assay. As shown in Figure 6B and 6C, overexpression of miR-181c significantly increased the rate of ROS generation in NRVMs. The data suggest that the increase in oxygen consumption in miR-181c overexpressing NRVMs is due to increased ROS production.

Discussion
Our study shows for the first time, the existence and functional significance of a specific miRNA in heart-derived mitochondria, miR-181c. miR-181c originates from the nuclear genome, is processed in the cytosol and translates to the mitochondria. We have also shown that miR-181c regulates mitochondrial energy metabolism by targeting mt-COX1 mRNA, which is a product of the mitochondrial genome. Overexpression of miR-181c results in a loss of mt-COX1 protein and an increase in mt-COX2 and mt-COX3, resulting in complex IV remodeling. The imbalance among the core components of complex IV results in increased ROS production. Thus, perturbations induced by miR-181c could have important consequences in myocardial pathophysiology.

miRNAs are small noncoding RNAs, which inhibit the stability and/or translation of a mRNA by binding to the 3'UTRs of target mRNA by forming a multiprotein complex called the RISC. Recently, miRNAs have been found to play a powerful role in various diseases. In 2005, it was shown that miR-1 plays an important role in the cardiovascular system. Over the past few years, there have been numerous studies that have pointed to a major role of these small, noncoding single-stranded RNAs in various heart diseases. Despite an enormous amount of data suggesting a pivotal role for miRNA in the regulation of protein synthesis from nuclear genes, little is known about the role of miRNAs in regulating the mitochondrial proteome.

There are 5 respiratory chain complexes in the inner mitochondrial membrane that generate a proton gradient across the membrane and produce ATP. Most of the subunits which form the respiratory chain complexes are encoded by nuclear genes, except for some of the subunits of complex I, III, and IV, which are encoded by mitochondrial DNA and synthesized on mitochondrial ribosomes. The most critical components of complex IV are the 3 mitochondrially encoded subunits of cytochrome c oxidase (mt-COX1, mt-COX2, and mt-COX3), and the remaining subunits (IV, Va, Vb, VIa, VIb, Vlc, VIIa, VIIb, VIIc and VIII) are encoded by nuclear genes, synthesized in the cytosol, and imported into the mitochondria. The mitochondrially encoded subunits, mt-COX1, mt-COX2, and mt-COX3, form the catalytic core of complex IV, and the nuclear encoded subunits have a regulatory role. Electron transfer involves cytochrome c donating one electron at a time to CuA, which is bound to mt-COX2. CuA transfers the electron to cytochrome a in mt-COX1, which transfers the electron to heme a, and then to oxygen to form water. As the terminal component of the electron transport chain, complex IV plays a critical role in mitochondrial function. The present study has found a very novel regulatory pathway which influences oxygen metabolism via complex IV remodeling, involving miR-181c, which is encoded in the nucleus, assembled in the cytoplasm, and finally translocated into the mitochondria. Binding of miR-181c to mt-COX1 mRNA results in an imbalance among the mitochondrially encoded subunits in complex IV, promoting ROS generation.

One of the novel findings from this study is the translocation of miRNA from cytosol into the mitochondria. It has already been shown that RNA produced in the cytoplasm from a nuclear gene can translocate into the mitochondria. In the same study, the authors concluded that the 5S rRNA resides primarily in the mitochondria once translocated from the cytosol, just like our finding that after maturation in the cytosol, miR-181c translocates into the mitochondria and is retained in that compartment. Our data further suggest that the major effect of this translocation is that miR-181c forms...
a functional RISC complex, a multiprotein complex that incorporates one strand of a miRNA, inside the mitochondria with the key component of RISC, Ago 2, and the mRNA for mt-COX1. A similar compartmentation phenomenon has already been shown for miR-29b. Because of the affinity of the localization sequence of miR-29b for a nuclear gene, miR-29b translocates into the nucleus from the cytosol and is retained in the nucleus; even though miR-29a and miR-29b are both synthesized in the cytosol.

Even though the transcription of mitochondrial DNA has been studied for more than 35 years, several aspects of this process are poorly understood. The process of mitochondrial RNA synthesis and processing is a highly-regulated, multistep process with significant differences between transcription of nuclear genes and mitochondrial genes. The mitochondrial genome consists of a circular DNA molecule and RNA synthesis of mitochondrial genes occurs through 3 transcription units, 1 L-strand and 2 H-strands (H1 and H2), which are cleaved from the D-loop region. All the OXPHOS genes are sequentially transcribed from the H2-strand. The polycistrionic primary transcript is then processed by specific endonucleolytic cleavage and mitochondrial mRNAs are then polyadenylated by adding 55 adenylate bases to the 3′ end. It has been shown that the polyadenylation process helps to increase mRNA stability. The secondary structure of the mitochondrial mRNAs can play an important role in the synthesis of that particular gene. For example, mt-COX3 has a CCA sequence in its 3′ end, and it was reported that the secondary structure controls the synthesis of mature mRNA for mt-COX3. Anchoring proteins, such as Pet309, Mss51, Pet 111, and so on, then bind to the 5′ end of the mature mRNA and facilitate appropriate placement of the respiratory chain complexes in the inner mitochondrial membrane. Because of the polycistrionic transcription process in the mitochondria, a microRNA can affect multiple proteins.

In this case, miR-181c in NRVM binds to the 3′ UTR of mt-COX1 mRNA, and when miR-181c is overexpressed, mt-COX1 protein expression is reduced, due to either direct steric interference with protein synthesis or the polyadenylation process, which is necessary to prevent rapid mRNA degradation. As a consequence of the decrease in mt-COX1 protein synthesis, mt-COX1 protein levels fall. This could stimulate a compensatory increase in the synthesis of the H2 strand and mt-COX1, and mt-COX2 and mt-COX3 mRNA synthesis would increase. Without a corresponding increase in the rate of degradation, mt-COX2 and mt-COX3 mRNA and protein would increase, resulting in complex IV remodeling. This would largely be a consequence of the polycistrionic transcription process in the mitochondria.

Mitochondria play an important role in cardiovascular health. Energy production by the mitochondria is critical for cardiac function and mitochondrial ROS production, a byproduct of electron transport, can lead to cellular and mitochondrial dysfunction. Numerous recent studies have shown that increased ROS production can result from damage to electron transport chain components resulting in inefficient electron transfer among the five different complexes, generating superoxide which ultimately leads to mitochondrial dysfunction where mitochondrial oxygen consumption rate is significantly altered. It seems that low levels of ROS generation are important in generating some cardioprotective signaling, whereas, high levels of ROS can lead to oxidative modification of enzymes and proteins and damage to mitochondrial electron transport chain components. Being the terminal respiratory complex, complex IV plays an important role in the transfer of electrons from cytochrome c oxidase to its bimetallic catalytic core and then to oxygen. This electron transfer reaction helps to generate the mitochondrial membrane potential by pumping protons out of the matrix and ultimately driving ATP synthesis. The mitochondrial genes, mt-COX1, mt-COX2, and mt-COX3, are the components of this catalytic core of complex IV. The present study has found a very novel and interesting pathway that influences mitochondrial function by upregulating ROS production via targeting mt-COX1 and complex IV remodeling. This could have important ramifications for many different cardiovascular disease processes.

Summary and Conclusions

Taken together, the results demonstrate that miR-181c has a role in mitochondrial metabolism after translocation by targeting the 3′-UTR region of mt-COX1 mRNA, which ultimately leads to complex IV remodeling. The present study reveals a very novel and interesting aspect of miRNA biology. It has already been shown that miRNA, specifically miR-29b, can translocate into the nucleus from the cytosol and is retained in the nucleus. Our study suggests a novel related concept, with translocation of miRNA derived from the nuclear genome into the mitochondria and regulating mitochondrial protein synthesis from mitochondrial genes. Over the past few years, there have been numerous studies that have pointed to the significant role of these small, noncoding single-stranded RNAs in various heart diseases. This study shows for the first time the existence of a specific miRNA in heart-derived mitochondria, miR-181c, and its effects on mitochondrial function and ROS generation, which could be major factors in various disease processes. Ultimately, better understanding of these processes may lead to the creation of innovative new therapies and diagnostics for heart disease.

Acknowledgments

We thank Dr Peter Munson (Mathematical & Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD) for his generous advice on the microarray and statistical analysis.

Sources of Funding

This work was supported by a grant from the National Institutes of Health, HL39752 (C.S.), and by a grant from the American Heart Association, 0830395N (M.F.), R.W., D.L., N.R., Y.Y., and E.M. were supported by the National Heart, Lung, and Blood Institute Intramural program.

Disclosures

None.

References

2. Murphy E, Steenbergen C. What makes the mitochondria a killer? Can we condition them to be less destructive? Biochim Biophys Acta. 2011;1813: 1302–1308.
Novelty and Significance

What Is Known?

- miRNAs have been shown to regulate the expression of ~30% of nuclear genes and to play a significant role in a variety of heart diseases.
- Like proteins, RNAs, particularly rRNAs, can also translocate into the mitochondria.
- miRNAs have been found in mitochondrial extracts of liver cells, HeLa cells, and human myoblasts.

What New Information Does This Article Contribute?

- miRNA derived from the nucleic genome can translocate into mitochondria in the heart.
- miRNA can regulate mitochondrial gene expression in cardiac myocytes.
- miR-181c, expressed from the nuclear genome, can translocate into mitochondria and affect mitochondrial function and ROS generation by remodeling complex IV.

Small noncoding RNA (microRNA) can regulate nuclear gene expression and play a major role in many different physiological and pathological processes. Although it has been suggested that miRNAs exist in non-heart mitochondria, it is not known whether miRNAs are also present in heart mitochondria or whether mitochondrial miRNAs exert biological effects. We show that miRNA derived from the nuclear genome can translocate into the mitochondria in cardiac myocytes, regulate mitochondrial gene expression, and affect mitochondrial function. We found that nuclear miR-181c can translocate into the mitochondria and affect the synthesis of proteins that are encoded by the mitochondrial genome. Increased miR-181c expression results in remodeling of complex IV and increased ROS production. These findings show the potential role of miRs in regulating cardiac function through influencing mitochondrial function.

Das et al. miR-181c Regulates Mitochondrial Genome 1603
Nuclear miRNA Regulates the Mitochondrial Genome in the Heart
Samarjit Das, Marcella Ferlito, Oliver A. Kent, Karen Fox-Talbot, Richard Wang, Delong Liu, Nalini Raghavachari, Yanqin Yang, Sarah J. Wheelan, Elizabeth Murphy and Charles Steenbergen

Circ Res. 2012;110:1596-1603; originally published online April 19, 2012;
doi: 10.1161/CIRCRESAHA.112.267732

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/110/12/1596

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2012/04/19/CIRCRESAHA.112.267732.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIALS and METHODS

Animals: Male Sprague-Dawley rats (250-275 g, Harlan Sprague-Dawley) were used in this study. They were provided with food and water *ad libitum*. Rats were treated humanely and all experimental procedures were approved by the Institutional Animal Care and Use Committee of Johns Hopkins University.

Langendorff Rat Heart Preparation: After sufficient anesthesia was achieved with sodium pentobarbital (80 mg/kg b/w i.p. injection) (Abbott Laboratories, North Chicago, IL) and the rat was anticoagulated with heparin sodium (500 IU/kg body weight, i.v. injection) (Elkin-Sinn Inc., Cherry Hill, NJ), rat hearts were excised, cannulated, and perfused with Krebs-Henseleit buffer containing (in mmol/L) NaCl 120, KCl 5.9, MgSO4 1.2, CaCl2 1.25, NaHCO3 25, and glucose 11. The buffer was aerated with 95% O2 and 5% CO2, to give a pH of 7.4 at 37°C as described previously (1). All hearts are perfused to wash out blood and stabilize for 15 minutes, followed by perfusion with RNAlater (Qiagen, Valencia, CA), 10 ml diluted in Krebs-Henseleit buffer, for another minute.

Isolated Mitochondria Protocols: Freshly isolated mitochondria were prepared from hearts after perfused with RNAlater, by differential centrifugation (1). Briefly, at the end of perfusion, the left ventricle was dissected out and placed in Buffer A (in mM: 180 KCl, 2 EGTA, 5 MOPS, 0.2% BSA; pH: 7.25). The tissue was then digested with trypsin (0.0001 g/0.1 g tissue) in 0.7 ml of ice-cold Buffer B (in mM: 225 Mannitol, 75 sucrose, 5 MOPS, 0.5 EGTA, 2 Taurine; pH: 7.25) and finally homogenized with Buffer B with a protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN) using a Polytron. To further separate the heart mitochondria from other cellular components and tissue debris, a series of differential centrifugations were performed in a Microfuge 22R centrifuge (Beckman Coulter, Fullerton, CA) at 4°C. The crude pellet was then lysed with QIAzol (Qiagen, Valencia, CA).
RNA isolation: Total RNA and miRNA enriched fraction were isolated, from whole hearts, mitochondrial fraction of the hearts or cultured primary myocytes, NRVMs, using a miRNeasy kit (Qiagen, Valencia, CA), as per company’s instruction. To avoid genomic DNA contamination, DNase digestion was performed using RNase free DNase kit (Qiagen, Valencia, CA), as per company’s instruction.

To characterize the integrity of the isolated RNA, spectrophotometric evaluation was performed, using Nanodrop (Thermo Scientific, Wilmington, DE). All the RNA whose A_{260} (absorbance at 260 nm) value is more than 0.15 is used for further experiments. The ratio of the readings at 260 nm and 280 nm (A_{260}/A_{280}) was also measured in order to check the purity of the isolated RNA. For further and more accurate purity and integrity estimation of the isolated RNA, especially the RNA isolated from mitochondrial fractions, Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) was used.

miRNA Profiling: The miRNA microarray profiling was performed using Affymetrix GeneChip miRNA 1.0 arrays (Santa Clara, CA, USA) according to manufacturer's recommended protocol. Briefly, 100 ng of total RNA enriched with miRNA was labeled by polyA polymerase addition using the Genisphere FlashTag HSR kit following the manufacturer's recommendations (Genisphere, Hatfield, PA). Labeled miRNA was hybridized to the Affymetrix miRNA 1.0 array for 16 hours. Following hybridization, the array was washed and stained according to the manufacturer’s protocol. The stained array was scanned using an Affymetrix GeneChip Scanner 3000. Feature extraction was performed using Affymetrix Command Console software with miRNA QC tool software. Probesets with no detectable signal in all 6 arrays were excluded from further analysis. 15 probesets were identified with 1.5 fold-change and 20% false discovery rate (FDR) from the comparison of Mitochondrial Fraction (MC) vs Total Heart homogenate (Total).

Analysis on Gene 1.0 ST arrays: 50 ng of total RNA was amplified using the Ambion Whole-Transcript (WT) Sense Target Labeling Protocol without rRNA reduction. cDNA was regenerated through a random-primed reverse transcription using a dNTP mix containing dUTP. The RNA was hydrolyzed with RNase H and the cDNA was purified. The cDNA was then fragmented by incubation with a mixture of UDG and APE1 with restriction endonucleases; and
end-labeled using the Affymetrix terminal labeling kit following the manufacturer’s directions via a terminal transferase reaction incorporating a biotinylated deoxynucleotide. 5.5 μg of the fragmented, biotinylated cDNA was added to a hybridization cocktail, loaded on an Affymetrix Rat Gene 1.0 ST GeneChip, and hybridized for 16 hours at 45 ºC and 60 rpm. Following hybridization, the array was washed and stained according to the manufacturer’s protocol. The stained array was scanned using an Affymetrix GeneChip Scanner 3000, generating CEL files for each array.

The Affymetrix microarray raw data were preprocessed by Bioconductor affy package (www.bioconductor.org). Normalized gene expression values were generated from the RMA procedure which consists of three preprocessing steps: background adjustment, quantile normalization, and median polish summarization. Significance Analysis of Microarrays (2) (SAM) analysis implemented in Bioconductor "siggenes" package was applied for identifying significant changes between overexpressed miR-181c and control groups. Application of statistical filters (50% FDR) did not yield any significantly differentially expressed genes between the two groups (Online Figure IV).

qRT-PCR: After performing the purity and integrity test, the RNA was reverse transcribed using miScript Reverse Transcription Kit (Qiagen, Valencia, CA). PCR was performed using a miScript SYBR green PCR kit (Qiagen, Valencia, CA) and detected with a iQ5 detector (Bio-Rad, Hercules, CA). All reactions were performed in triplicate.

Primary culture of neonatal rat ventricular myocytes: Neonatal Rat Ventricular Myocytes (NRVMs) were isolated from the whole heart of 1-2 day old rats as described previously (3). In brief, the hearts were minced, digested with trypsin overnight at 4ºC. The day after, tissue was dissociated by stepwise collagenase treatment for a few minutes at 37ºC. Cells were pre-plated twice for 60 minutes to eliminate fibroblasts and enrich the culture for cardiac myocytes. The non-adherent myocytes were then plated at a density of 1200 cells/mm2 in plating medium consisting of 199 medium supplemented with HEPES, MEM non-essential amino acids, glucose, glutamine, 10% FBS, vitamin B12, penicillin, streptomycin, on fibronectin coated plates. The next day cells are washed and fresh medium with 2% FCS is added. The cells are maintained at 37ºC in the presence of 5% CO2 in a humidified incubator.
Transfection: After isolation, myocytes were immediately transfected using an electroporator (Nucleofector, Amaxa, Gaithersburg, MD) following the protocol for neonatal rat myocytes. Transfection efficiency was monitored by GFP expression and by FACS analysis (Online Figure II).

Mitochondrial Respiration Assay: The ADP-dependence of mitochondrial respiration was assessed at 25°C in a chamber containing respiration buffer (in mM) KCl 140, EGTA 10, HEPES 20, Oxalic Acid 5, K2HPO4 5 and pH 7.25 and connected with a Clark-type O2 electrode (Instech) and O2 monitor (Model 5300, YSI, Inc) (1). After addition of transfected NRVMs (1.5X10^6 cells) into the air sealed chamber, the respiratory rate was measured by addition of ADP. In order to convert ADP into ATP, the cells were permiabilized with Saponin (50 µg/ml) (Sigma-Aldrich, Corp, St. Louis, MO). After addition of TMPD/Ascorbate (0.2 mM and 5 mM), the maximum respiratory rate was determined (4).

Reactive Oxygen Species (ROS) Production Assay: Hydrogen peroxide (H2O2) production from intact NRVMs was measured fluorimetrically by measurement of oxidation of Amplex Red to fluorescent resorufin (Life Technologies, Carlsbad, CA). After 48 hr of transfection, either with scambled RNA or miR-181c, NRVMs were washed and incubated in buffer containing 140 mM NaCl, 3.6 mM KCl, 1.2 mM MgSO4, 2 mM CaCl2, 20 mM HEPES, 1.2 mM K2HPO4 and 11 mM glucose (pH 7.4). All incubations also contained 50 µM Amplex Red and 5 U/ml of horseradish peroxidase. The increase in fluorescence at an excitation of 544 nm and an emission of 590 nm was monitored. Standard curves were generated using known amounts of hydrogen peroxide (5).

NRVMs Preparation for Western Blot: Transfected NRVMs were lysed with RIPA buffer and protein content was measured using Bradford assay (1). Cell homogenate protein was separated by 1D gel electrophoresis. After transfer to a PVDF membrane, the membrane was incubated with antibody that recognizes proteins such as Dicer, Prohibitin, mt-COX-1, Cadherin and a-actinin from Santa Cruz Biotechnologies Inc., Santa Cruz and mt-COX2 (Life Technologies, Carlsbad, CA) in Tris-Buffered Saline (pH 7.4) with 1% TWEEN 20 (TBS-T) with 5% BSA or nonfat dry milk at 4°C overnight. Membranes were incubated with the
secondary antibody, appropriate horseradish peroxidase–conjugated IgG in TBS-T with 5% nonfat dry milk for 1 hour at room temperature. Immunoreactive protein was visualized using an enhanced chemiluminescence analysis kit (GE HealthCare, Piscataway, NJ).

Fluorescence In-Situ Hybridization (FISH): After isolation, NRVM were immediately plated for 2 days to attach with the plates. Mitochondria were labeled by exposing to live cell-staining solution containing mitochondrial membrane potential dye (MitoTracker Red, Invitrogen, Grand Island, NY) for 30 min (6). Cells were then fixed in acid methanol (60% methanol and 10% Acetic Acid) and allowed to dry overnight. Detection of miR-181c was performed by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification (7). Cells were then hybridized with LNA microRNA probe double dig-labeled has miR-181c (Exiqon, Woburn, MA) for 1 hour at 56°C followed by a series of posthybridization stringent washes with SSC buffer (Invitrogen) at 56°C. After a DIG buffer wash (Roche Diagnostics, , Mannheim, Germany) , endogenous peroxidase activity of the cells was quenched with a 3% hydrogen peroxide solution followed by a TNB block (Perkin Elmer, Waltham, MA). Anti-DIG POD (Roche) was applied to the cells for 30 minutes. Finally, cells were incubated with TSA Plus Fluorescein Amplification Reagent. After a series of washes with TNT buffer, the chambers were removed and the slides were cover slipped with Vectashield with DAPI (Vector Labs, Burlingame, CA). Control slides underwent hybridization with no probe or received no TSA Plus Fluorescein Amplification reagent.

Luciferase reporter assays. 0.8X10^5 HeLa cells were plated in triplicate wells of a 24-well plate and transfected 16 hours later with 50 ng of pGL3-control COX-1 UTR reporter construct with firefly luciferase (f-luc) and 0.5 ng of phRL-SV40 (Promega) using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. 24 hours after transfection, cells were lysed and assayed for firefly and renilla (served as internal control) luciferase activity using the Dual-Luciferase Reporter Assay System (Promega). Where indicated, control or miR-181c miScript mimics (QIAGEN) were co-transfected at 15 nM final concentration.
Online Table I. Primer Sequences for qRT-PCR

a) 12S rRNA
Forward: 5’-AAACTGCTCGCCAGAACACT-3’
Reverse: 5’-TAGGCTGAGCAAGAGGTGGT-3’

b) mt-COX1
Forward: 5’-AGCCGGGGTGTTCTTCTATCT-3’
Reverse: 5’-AAAGGATTGGGTCTCCACCT-3’

c) mt-COX2
Forward: 5’-GCTTACAAGACGCCACATCA-3’
Reverse: 5’-GAATTCTAGGGAGGAGGAAGG-3’

d) mt-COX3
Forward: 5’-AGCCCATGACCACCTAACAGG-3’
Reverse: 5’-TGGCCTTGGTATGTTCCTTC-3’

e) ND-2
Forward: 5’-AACCCAAGCTACAGCCTCAA-3’
Reverse: 5’-GGGAATTCCTTGGGTGACTT-3’

f) ATPase8
Forward: 5’-TGCCACAACCTAGACACATCCA-3’
Reverse: 5’-TGTGGGGGTAATGAAAGAGG-3’
Online Figure I. Comparison between Mitochondrial (Mt) and Total heart (Total) miRNAs.

Volcano Plot representation of the two groups where 15 probes in red were selected that were considered to be expressed in the mitochondrial fraction with 1.5 fold change, 20% FDR (False Discovery Rate) and present call filtering. There are 3 miRNAs from rat, 7 from mouse and 5 miRNAs from human.
Online Figure II. Transfection Efficiency, measured by GFP expression using FACS analysis

A) A field of GFP transfected myocytes and its corresponding phase contrast.

B) Representative FACS analysis of cells transfected without plasmid (upper panel) or with GFP plasmid (lower panel). Percentage of fluorescent positive cells is shown.
Online Figure III. Transfection of miR-181c in NRVMs

Using qRT-PCR, 12S rRNA (upper panel) mRNA expression was determined. The consistency of mRNA levels of 12S rRNA among the two groups (100 nM scrambled RNA and miR-181c transfected NRVM), makes 12S rRNA a useful internal control. In the lower panel, the dose response curve of miR-181c was analyzed. Among the three different doses (20 nM, 50 nM and 100 nM), 50 nM was picked for further experiments.
Online Figure IV. Comparison between miR-181c overexpressed and control on Rat Genome Affymetrix Gene Array

SAM Plot shows an insignificant finding on the differential expression of genes between the miR-181c overexpressed and control. The observed relative difference (di) represented in the Y-axis is almost identical with the expected relative difference (di) represented on the X-axis.
Online Figure V. Comparison of between miR-181c overexpressed and negative control transfection by Western blot Analysis.

Overexpression of miR-181c significantly increases the protein expression of ND-1 (NADH-ubiquinone oxidoreductase chain 1) compared to the negative control. Content of ND-1 was normalized to Cadherin. *<p 0.05 vs Neg Control. Mean ± SEM (n=4) are shown.
Online Figure VI. Comparison of some mitochondrial genes between miR-181c overexpressed and negative control transfection by qRT-PCR.

Overexpression of miR-181c increased ND-2 (NADH-ubiquinone oxidoreductase chain 2) and significantly increased mt-COX3 mRNA (right side pair) content. On the other hand, there is practically no change of ATPase8 mRNA content with overexpression of miR-181c (middle set) compared to negative control. Content of ND-2, ATPase8 and mt-COX3 were normalized to 12S rRNA. *<p 0.05 vs Neg Control. Mean ± SEM (n=6) are shown.
Online Figure VII. Validating the mitochondrial purity by western blot.

Western blot shows that both cytosolic proteins, Actin and GAPDH, are almost negative in our mitochondrial preparation. Additionally, our cytosolic fraction barely contains any mitochondrial protein, such as Voltage Dependent Anion Channel (VDAC) or mt-COX1.
Online Figure VIII. miR-181d is not present in the mitochondrial fraction.

qRT-PCR shows that miR-181d expression is mainly detected in the RNA derived from Total heart and not in the mitochondrial fraction. Content of miR-181d was normalized to 5S rRNA. *<p 0.05 vs Total Heart. Mean ± SEM (n=3) are shown.
Online Figure IX. Validation of mt-COX1 as a direct target of miR-181c.

(A) From the UCSC genome browser (www.genome.ucsc.edu), we analyzed the sequence located in the 3'UTR of rat mt-COX1 (rno-COX1) in chromosome M, where miR-181c potentially binds in a complementary reverse sequence manner. The solid blue region clearly demonstrates that this sequence region in the 3'UTR of mt-COX1 is conserved across species. Below that shows the DNA sequence for 5 different species where the seed sequence of miR-181c binds. The binding site between human, rat, and dog shares 100% homology while other species have 1 nt difference compared to rat.

(B) This cartoon shows the secondary structure of the 3'UTR of mt-COX1 mRNA and miR-181c (generated from www.RNAhybrid.com). The green chain represents miR-181c and the red one represents the 3'UTR of mt-COX1. The blue arrow indicates the potential binding site of the “seed” sequence of miR-181c.
REFERENCES

