In this issue of *Circulation Research*, Lingrel and colleagues describe the phenotype of myeloid-specific Klf2 knockout mice. Although this transcription factor has long been known to be involved in protection from atherosclerosis, the cell type responsible was not clear.

Article, see p 1294

Chronic inflammatory diseases, such as atherosclerosis, are associated with imbalanced recruitment of monocytes and neutrophils to the impaired tissue. Neutrophils are among the first cells detected in developing atherosclerotic plaque. As early as in fatty streaks, monocytes enter the nascent lesions and can differentiate into macrophages. Lineage and microenvironmental stimuli determine the macrophages’ phenotypic and biological functions, with proinflammatory classically activated (M1) and tissue remodeling alternatively activated (M2) as the 2 extremes. Both M1 and M2 macrophages have been shown to be present in atherosclerotic lesions. M1 macrophages were shown to localize in lipid-rich zones whereas M2 macrophages reside in low lipid areas with high cellularity.

Krüppel-like factor (Klf)-2 belongs to the zinc finger family of DNA-binding transcription factors. Klf family members are homologs to the *Drosophila* protein Krüppel. *Drosophila* Krüppel embryonic (homozygous knockout) have defective anterior abdominal and thoracic segments causing lethality. There have been 17 mammalian KLFs identified (Klf1 to Klf17). KLFs have been recognized as playing key roles in controlling cellular processes in many different cell types; however, the best-established role is KLF2 in endothelial cells. Klf2 was shown to be a potent inhibitor of cytokine-mediated induction of VCAM-1 and E-selectin expression in endothelial cells. Interestingly, several studies suggest a link between KLF2 and statins in atherosclerosis. Statins have been reported to induce expression of endothelial NO synthase and thrombomodulin in a KLF2 dependent manner. Statins were shown to induce KLF2 expression in endothelial cells as well as T cells. In mice, Klf2 deficiency is lethal, because it is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Hemizygous deficiency of Klf2 intensifies atherosclerosis in hypercholesterolemic mice.

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association. From the Division of Inflammation Biology (I.S., K.L.), La Jolla Institute for Allergy and Immunology, La Jolla, CA. Correspondence to Klaus Ley, MD, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037. E-mail klaus@liai.org

© 2012 American Heart Association, Inc. *Circulation Research* is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.112.270991

Lingrel et al describe a 22% increase in aortic root lesion size in myeloid-specific Klf2 knockout mice on the *Ldlr*−/− background (a standard model of atherosclerosis), with no change in blood lipids. Although monocyte polarization to M1 (IL-6, NOS2) and M2 (Fizz1) was slightly reduced, the authors attribute enhanced atherosclerosis to increased adhesion of peritoneal macrophages and neutrophils to an endothelial cell line. Such static adhesion assays do not predict recruitment under flow conditions, but increased numbers of macrophages and neutrophils in atherosclerotic lesions of the aortic root suggest that myeloid-specific ablation of Klf2 might enhance recruitment of these cells, associated with increased detection of myeloperoxidase, chlorotyrosine, and nitrotyrosine in the tissue. Other mechanisms could include reduced egress or reduced apoptosis of myeloid cells. Because neutrophil viability in Klf2-deficient is actually slightly reduced, the latter seem less likely.

The present report does not identify the mechanism by which absence of Klf2 in myeloid cells enhances atherosclerosis, but it describes an important new tool, the myeloid-specific Klf2 knockout mouse. This mouse will be instrumental for future work in the atherosclerosis field.

Disclosures

None.

References

Protective Role for Myeloid Specific KLF2 in Atherosclerosis
Iftach Shaked and Klaus Ley

Circ Res. 2012;110:1266
doi: 10.1161/CIRCRESAHA.112.270991
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/110/10/1266

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/