Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue

Rationale: Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth.

Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation and maturation of immature cardiomyocytes, and (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth.

Methods and Results: We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring.

Conclusions: This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models. (*Circ Res.* 2011;109:1105-1114.)

Key Words: cardiac myocytes ■ caspase activation ■ extracellular matrix ■ maturation ■ hypertrophy ■ sarcomere ■ tissue engineering

Different myocardial tissue engineering formats have been developed throughout the past decade. However, a low degree of cell maturation remains a key caveat in cardiac muscle engineering. A detailed understanding of “developmental” processes in tissue engineered myocardium probably is essential to guide tissue formation and maturation in vitro and to enhance the applicability of tissue engineered myocardium in substance screening, target validation, and tissue repair.

Normal heart muscle growth encompasses processes of terminal differentiation and maturation by hypertrophic growth, leading to the formation of binucleated and rod-shaped myocytes. Physiological maturation entails a characteristic shift in gene expression, including a reduction of transcripts encoding for fetal isoforms of myofibrillar proteins while the proportion of adult isoforms increases. Terminal differentiation, for example, withdrawal from the cell cycle, is another hallmark of advanced maturation already reached very early during development.

Cardiomyocyte monolayer cultures show neither the distinct morphological (rod-shaped) nor the molecular (adult gene expression program) make-up of mature myocytes.
probably as a consequence of the lack of a 3D growth environment and inappropriate biomechanical loading. Despite some evidence for advanced maturation in 3D tissue engineering models, it remains unclear whether cardiomyocytes in tissue engineered myocardium can, and if so to what extent, develop "physiologically" ex vivo.8,9

Three fundamentally different myocardial tissue engineering concepts are presently explored: (1) the classic approach involves cell seeding on preformed scaffold material10–14; (2) an alternative strategy is based on stacking cell sheets to generate multilayered muscle constructs15; (3) we have developed another method, taking advantage of the inherent capacity of immature cardiomyocytes to reassemble into spontaneously beating tissue if maintained at high density in a spatially defined culture environment under defined load.9,16,17 This cell entrapment method was further refined yielding engineered heart tissues (EHTs) with functional properties of native myocardium.9

In the present study, we demonstrate that EHT cultures can support terminal differentiation and tissue-like cardiomyocyte maturation. This finding is underscored by the similarity of morphological and molecular features of EHT- and postnatal heart-derived cardiomyocytes. Interestingly, the process of cardiomyocyte maturation and EHT-development showed 2 distinct phases: (1) a consolidation phase during culture days 0–7 with high levels of apoptotic cell death as well as extracellular matrix (ECM) degradation and (2) a maturation phase during culture days 7–12 with myocyte binucleation, formation of anisotropically organized sarcomeres in preferentially rod-shaped cardiomyocytes, a shift from fetal-skeletal to adult-cardiac actin transcript expression, and ECM build-up. Exposure to different hypertrophic stimuli during the maturation phase elicited distinct hypertrophic phenotypes, that is, concentric or eccentric hypertrophy.

Methods

EHT Construction

EHTs were prepared from collagen type I, Matrigel, as well as neonatal rat heart cells (2.5×10⁶) and cultured for 12 days.9

³H-Thymidine Incorporation

EHTs were labeled with 1 μCi/mL ³H-thymidine for 6 hours on the indicated culture days. DNA was prepared using standard procedures and subjected to liquid scintillation counting.

Cell Isolation

EHTs or hearts were digested with Liberase Blendzyme III in the presence of 30 mmol/L 2,3-butanedione monoxime at 37°C to prepare cardiomyocytes for morphological assessment by confocal laser scanning microscopy and flow cytometry.

One-Dimensional Electrophoresis and Immunoblotting

EHT protein was separated by SDS-PAGE. For detection of myosin heavy chain (MHC), isoforms gels were stained overnight with SYPRO Rubyl. Blots were probed with monoclonal antibodies directed against indicated proteins and developed with ECL-plus.

Two-Dimensional Electrophoresis and Nanoflow Liquid Chromatography Tandem Mass Spectrometry

Protein extracts were separated by 2D electrophoresis. Protein spots were excised and enzymatically degraded. Peptides were separated by a nanoflow HPLC system on a reverse-phase column and applied to an LTQ ion-trap mass spectrometer.

³⁵S-Cysteine-/Methionine Incorporation and Autoradiography

EHTs were labeled with 100 μCi/mL ³⁵S-cysteine/-methionine for 18 hours on the indicated culture days and proteins were separated by SDS-PAGE. Gels were stained with Coomassie blue, immersed in Amplify Fluorographic solution (Amersham Biosciences), vacuum dried, and subjected to autoradiography.

An expanded Methods section can be found online at http://circres.ahajournals.org.

Results

Construction of Spontaneously Contracting EHT

We generated spontaneously contracting EHTs from an initially liquid reconstitution mixture composed of enzymatically dispersed neonatal rat heart cells, collagen type I, and basement membrane proteins (Matrigel).6 Cell clusters within condensing EHTs started to beat within 2–3 culture days (Online Video I). On culture day 7, all EHTs contracted spontaneously and in unison (Online Video II). After 12 culture days, EHTs demonstrated a solid composition and vigorous contractions (Online Video III).

Hypertrophic Growth of Cardiomyocytes in EHT

The changes in EHT morphology and function prompted us to assess indices of cell proliferation and hypertrophy. We observed a marked reduction in cell number to 30% of the input cells between EHT culture day 0 (day of EHT construction) and day 12 (2.5×10⁶ versus 0.8±0.03×10⁶ cells/EHT; n=10; Figure 1A). Despite the cell loss, DNA content decreased only by 42% (45±3 versus 26±1 µg/EHT; n=17–20; Figure 1B), implying a relative increase of DNA content per cell (~18 versus ~32 pg DNA/cell on culture days 0 and 12, respectively). Further analysis of cardiomyocyte (α-actinin–positive; Online Figure I, A) and fibroblast (vimentin-positive; Online Figure I, B) quantity indicated that the initial cell loss was mainly the consequence of high cardiomyocyte loss while fibroblast content remained stable.
Apoptotic Cell Death in Early EHT

The marked cell loss in EHT (Figure 1A) led us to investigate whether this was a consequence of apoptosis and represents a particular shortcoming of EHT versus conventional 2D cultures. Activated caspase-3, a surrogate for apoptosis, was especially high during early EHT culture (Figure 2A and Online Video IV). In agreement with this, high proapoptotic bax (Figure 2B) and low antiapoptotic Bcl-2 (Figure 2C) transcript abundances were observed, resulting in a markedly elevated bax/Bcl-2 ratio (Figure 2D). Notably, parallel cultures of EHT versus 2D showed similar levels of apoptosis (analyzed by flow cytometry). Trypan blue exclusion, and drop in cardiomyocyte number (Online Figure IV, A through C), collectively arguing against a unique apoptotic burden in EHT.

Lack of Evidence for Hypoxia in EHT

Hypoxia has been suggested as a limitation in tissue engineering and could have triggered apoptotic cell death. Surprisingly, we did not observe a regulation of highly sensitive hypoxia-response genes, for example, prolyl-4-hydroxylase domain isoforms 2 and 3 (prolyl-4-hydroxylase domain enzyme; PHD2/PHD3) mRNA and hypoxia-inducible factor-1α (HIF-1α) protein (Figure 3A through 3C). This led us to conclude that cells sensed normoxic conditions comparable to physiological tissue conditions throughout EHT culture and that elevated VEGF-A transcripts observed in late EHT culture (Figure 3D) were unrelated to hypoxia.

Sarcomere Maturation in EHT

A hallmark of maturation in terminally differentiated cardiomyocytes is the shift from a fetal to an adult gene expression program. This encompasses an increase in α-cardiac (α-cd) actin and a decrease in α-skeletal (α-sk) actin transcript concentration as well as a shift from β-(fetal/slow)-MHC to α-(adult/fast)-MHC in rodents. We could indeed observe an increase in α-cd actin and a parallel decrease in α-sk actin transcripts (Figure 4A and 4B), leading to an overall increase in total α-sarcomeric actin protein in late EHT cultures (Figure 4C). In contrast, α-MHC transcript expression was unchanged, whereas β-MHC transcripts were elevated, resulting in a lower α/β-MHC transcript ratio in EHT as compared with adult myocardium (7±2 versus 88±19-fold n=10/9; Figure 4D through 4F). Notably, also on protein level we identified a 4±0.8-fold (n=8) α-MHC excess in day 12 EHT (Figure 4F, inset). Direct comparison of atrial natriuretic peptide (ANP), α-sk actin, and α-cd actin transcript abundance in monolayer and EHT cultures documented that so called fetal genes (ANP, α-sk actin) were more abundant in monolayer as compared with EHT cultures (Online Figure V).
Dissection of the EHT Proteome

Increasing fluorescence intensity after α-actinin immunolabeling (in particular in day-12, EHT-derived cardiomyocytes; Online Figure 1, A) provided additional evidence for tissue maturation. Subsequently, we performed proteome analyses to obtain a more comprehensive snapshot of the EHT proteome on culture days 0 and 12 (Figure 5A). The identity of a select set of proteins was confirmed by mass spectrometry (Online Table I). In agreement with the notion of advanced organotypic and in particular ventricular maturation in EHT, we observed a markedly enhanced level of the ventricular isoform of myosin light chain (MLC2v) protein per cardiomyocyte in day 12 versus day 0 EHTs (Figure 5B). Robust detection of tropomyosin isoforms, desmin, and M-type creatine kinase provided further evidence for the presence of cardiomyocytes with an advanced degree of maturation. Vimentin protein, characteristically expressed in fibroblasts, did not significantly change during EHT culture (Figure 5C), indicating phenotypic stability in this most abundant cellular constituent of EHT.

Structural Properties of EHT-Derived Cardiomyocytes

The shape and size of cardiomyocytes changed dramatically during EHT maturation from round and unstructured directly after isolation (mean diameter: 10±0.2 μm; volume: 570±32 μm³, n=60) to rod-shaped and clearly cross-striated with sarcomeres in registry in 12-day-old EHTs (mean diameter: 5.8±0.1 μm, length: 72±2 μm, volume: 2,040±120 μm³, n=113; Figure 6). Compared with cardiomyocytes from 12-day-old rats, EHT-derived cardiomyocytes acquired a similar length but were thinner and consequently less voluminous (mean diameter: 9.2±0.1 μm, length: 67±1 μm, volume: 4,724±154 μm³, n=3 hearts, 80–100 cells each; Figure 6). Myocytes from adult rats were clearly larger than EHT- and 12-day-old, rat heart–derived myocytes (mean...
diameter: 24.7 ± 0.4 μm, length: 114 ± 1 μm, volume: 57 102 ± 1735 μm³, n=3 hearts, 80–100 cells each; Figure 6). Mean diastolic sarcomere length was similar in all groups (EHT-derived: 1.85 ± 0.04 μm [n=31]; day-12 rat heart: 1.83 ± 0.02 μm [n=28]; adult rat heart: 1.84 ± 0.02 μm, [n=27]).

Organotypic Response of EHT to Hypertrophic Stimuli
We cultured EHTs during the maturation phase (culture days 7–12) in the presence of phenylephrine (20 μmol/L; PE) and angiotensin II (100 nmol/L; Ang) to assess their responsive-
ness to simulated neurohumoral overstimulation. Compared with standard medium conditions (EHT, day 12), we observed a concentric hypertrophy at the cellular level with a marked increase in cell width without major changes in cell length (Figure 6). During the course of these experiments, we also identified dramatic differences in responses to serum (10% in the culture medium) with “hypertrophy-inducing serum” (HIS), leading to a remarkable elongation of cardiomyocytes without major changes in cell width (Figure 6). These findings highlight the necessity for rigorous serum screens but also indicate the opportunity to use EHT for phenotypic screens to identify hypertrophy inducing secretomes and/or specific hypertrophic factors. Importantly, the phenotypic changes induced by PE/Ang and HIS were accompanied by distinct patterns of hypertrophic gene expression with particularly high ANP in HIS and low α/β-MHC ratio as well as high α-sk actin transcript abundance in PE/Ang treated EHTs (Figure 7).

Figure 6. Hypertrophic cardiomyocyte growth in EHT and native heart. A, Length, B, mean width, and C, volume of EHT-derived cells at culture day 0 (n=60 cells) and day 12: (1) untreated (n=113 cells), (2) simulated neurohumoral overstimulation with phenylephrine (20 μmol/L; PE) and angiotensin-2 (100 nmol/L; Ang; n=111 cells), and (3) in the presence of hypertrophy-inducing serum (HIS; 10%; n=153 cells) during EHT culture days 7–12. Cell dimensions from postpartum day 12 (n=3 hearts, 80–100 cells each) and adult (n=3 hearts, 80–100 cells each) rat hearts are displayed for comparison. D, Immunostaining of cardiomyocytes from EHT culture days 0, 3, and 12 (untreated, PE/Ang, and HIS) and rat myocardium. Red: α-actinin, blue: DAPI-labeled nuclei; bar: 20 μm. The image is an assembly of individual photographs of representative cells from each group. *P<0.05 versus day-12 native heart; §P<0.05 versus EHT day 0; ANOVA followed by Bonferroni multiple comparison test.

Figure 7. Fetal gene transcription program in “hypertrophic” EHT. A, ANP transcripts per calsequestrin 2 (CSQ2) transcript. B, α/β-MHC transcript ratio. C, α-skeletal (sk) actin transcripts per CSQ2 transcript. D, α-cardiac (cd) actin transcripts per CSQ2 transcript. White bars: control EHTs; black bars: EHTs stimulated with 20 μmol/L phenylephrine and 100 nmol/L angiotensin-2 during culture days 7–12; gray bars: EHTs stimulated with HIS (10%) during culture days 7–12. Group size: n=7–10. *P<0.05 versus control (Ctr); ANOVA followed by Bonferroni multiple comparison test.
Intense Matrix Restructuring During EHT Culture

At the time of casting, EHT contained 0.5 \pm 0.05 mg rat tail collagen, 1.1 \pm 0.02 mg extracellular basement membrane protein, 2.7 \pm 0.1 mg serum protein (in 210 \mu L DMEM with 20% horse serum and 4% chick embryo extract), and a cell suspension containing 2.2 \times 10^6 cells in 377 \mu L DMEM with 10% fetal calf serum: cells, 0.5 mg; serum, 1.7 mg; n=4 in each group; Figure 8A). The nominal EHT protein content decreased from 6.4 \pm 0.1 mg (n=4) to 0.8 \pm 0.05 mg during culture (n=4; Figure 8A) despite elevated incorporation of 3H-phenylalanine (Online Figure III, B), 3H-proline (Figure 8B), and 35S-methionine/cysteine (Figure 8C). Experiments with the latter isotope mixture demonstrated pronounced incorporation especially in 40-kDa and \geq 200-kDa proteins probably resembling actin (molecular weight: 43 kDa; see also Figure 4C) and myosin/collagen (molecular weight: 220/290 kDa). High 3H-proline incorporation (Figure 8B) and high collagen type I/III transcript levels (Figure 8D) at later stages of EHT culture provided further evidence for endogenous ECM synthesis during the EHT maturation phase (culture days 7–12). Sirius red staining documented thick collagen fibers (orange in polarized light) aligned along the major force axis in 12-day-old EHTs and thin collagen fibers (green in polarized light), which represent freshly synthesized collagen (Figure 8E). Additional evidence for de novo collagen matrix production stems from transmission electron microscopy, which identified cross-striated mature collagen (Figure 8F), being absent in the original collagen hydrogel. Cell loss (Figure 1A) and matrix disaggregation were apparently key factors for EHT protein loss, especially during EHT consolidation (culture days 0–7). Upregulation of matrix metalloproteinases (MMP-2 and MMP-14; Online Figure VI, A and B) and their tissue inhibitors (TIMP-1 and TIMP-2; Online Figure VI, C and D) supported the hypothesis of intense matrix restructuring. MMP-3 and MMP-13 could not be reliably detected in
neonatal rat heart cells (Ct values: >40 [MMP-3] and >35 [MMP-13]; n=10/target), but were clearly present at EHT-culture day 3 (Ct values: 28 [MMP-3] and 25 [MMP-13]; n=10/target), supporting the general concept of strong MMP-based matrix remodeling, especially at early time points of EHT culture.

Discussion
We investigated the hypothesis that immature rat cardiomyocytes undergo terminal differentiation and a process of advanced organotypic maturation in 3D EHT cultures and made the following key observations: (1) cardiomyocytes matured in EHT in a partially organotypic manner as indicated by the formation of a clearly anisotropic and cross striated rod-shaped cell morphology, abundant binucleation, and a fetal-to-adult actin isoform shift; (2) the ventricular MLC2 isoform was identified in EHT and strongly upregulated on protein level, providing further evidence for advanced ventricular maturation; (3) cardiomyocytes in EHTs responded to different hypertrophic stimuli with distinct morphological (concentric versus eccentric hypertrophy) and molecular (fetal gene expression) changes; (4) apoptosis in enzymatically isolated myocytes limited cell and especially cardiomyocyte survival in EHT; (5) EHT resembled normoxic tissue at all investigated time points; (6) matrix restructuring paralleling EHT-development and resulted in at least partial replacement of ECM constituents. Collectively, our data documents that the EHT culture format induces at least partial organotypic maturation of initially immature cardiomyocytes to a “ventricle-like” phenotype in vitro. The process of EHT “development” can be classified as “EHT-consolidation” (culture days 0–7) followed by “EHT-maturation” (culture days 7–12). Demonstration of qualitatively different responses, for example, concentric versus eccentric hypertrophy, to distinct hypertrophic stimuli, for example, PE/Ang versus HIS, suggests that EHT can be exploited as a novel test-bed to dissect mechanisms of hypertrophic growth.

Using tissue-engineered myocardium as a model of myocardial development or in substance screening clearly depends on its close resemblance with bona fide heart muscle. Classical monolayer cultures display little structural, molecular, and also functional similarities with mature myocardium and do in general not respond reliably to hypertrophic stimuli, unless subject to inherently hostile serum starvation at low seeding density. Most notably, cardiomyocytes in monolayer cultures quickly lose their regular rod-shaped morphology and concomitantly reexpress fetal genes, indicating a molecular “resetting” to a prenatal state of development. Growth on patterned substrates may partially improve this condition and support anisotropic growth; yet, morphological and molecular data documenting advanced maturation and formation of 3D tissue on a macroscopic scale are limited.

Particular morphological hallmarks of advanced cardiomyocyte maturation are a rod-shaped geometry and binucleation. Cardiomyocytes enzymatically isolated from EHTs were rod-shaped and abundantly binucleated (37%), resembling to some degree a state of maturity observed in cardiomyocytes from 10- to 12-day-old rat hearts. However, compared with heart-derived cardiomyocytes, EHT-derived cardiomyocytes were thinner (length/width ratio, 12:1 in EHT versus 7:1 in 12-day-old rat hearts and 5:1 in adult rat hearts). This difference in aspect ratio was at least in part “normalized” under PE and Ang stimulation (length/width ratio, 10:1; Figure 6) but also paralleled by a “mild” induction of ANP, all in the presence of “normal” serum. Interestingly, HIS caused marked cardiomyocyte elongation and ANP upregulation, responses which have been implicated in “pathological” hypertrophy. Although additional studies are warranted to establish phenotype “serome” relationships and identify distinct underlying mechanisms, we believe that our data provide compelling evidence for EHTs as a robust and nearly “physiological” in vitro system, which could be used, for example, to decipher the complex paracrine regulation of physiological versus pathological growth. In line with this notion, we could recently provide confirmatory evidence for the role of the MEK1-ERK1/2 pathway in concentric versus eccentric myocyte hypertrophy, conditions associated with pressure and volume overload, respectively, by making use of the EHT system.23

During physiological myocyte development, elongation of cardiomyocytes precedes parallel sarcomere assembly. Subsequently, concentric hypertrophy, being the morphological correlate of parallel sarcomeric assembly, represents a compensatory mechanism to adapt to increasing load. Similarly, multinucleation and polyploidy have been reported to be enhanced under increasing load. Accordingly, DNA synthesis (Figure 1D and 1E) was markedly elevated particularly after day 7 of EHT culture, that is, the time when EHTs were subjected to phasic stretch. Interestingly, enhanced DNA synthesis did not go along with an increase in myocyte or nonmyocyte cell number, suggesting load-induced karyokinesis, in the absence of palpable cytokinesis.

On the molecular level, the shift from skeletal to cardiac actin transcript expression (Figure 4A and 4B and Online Figure V) and the detection of elevated ventricular MLC2 in 12-day EHT (Figure 5B) provided further evidence for advanced organotypic maturation of cardiomyocytes in EHT. In apparent disagreement with this notion was the absence of the commonly reported massive β to α-MHC transcript isoform shift. This may, however, be a consequence of the low (subphysiologic) endogenous beating frequency of EHT (~2 Hz), making faster actin-myosin kinetics dispensable. Whether electric stimulation of EHT at near physiological frequencies (6 Hz) would facilitate a shift from the observed ~7-fold α-MHC transcript excess in spontaneously beating EHTs to a ~88-fold excess as observed in adult heart muscle (Figure 4F), needs further investigation. Interestingly, PE/Ang and HIS lowered the α/β-MHC transcript ratio, as anticipated under hypertrophy-inducing conditions.

Abundant caspase-3 activation and elevated bax expression suggested that apoptosis limited cell survival in EHT. It is important to note that caspase activation does not always lead to fully executed apoptosis with nuclear fragmentation but is also involved in reversible myofilament breakdown after cell isolation. Induction of apoptosis during enzymatic cell isolation and cell loss during early culture are also commonly observed in monolayer cardiomyocyte cultures (Online Fig-
ure IV). This set of data collectively argues against the notion that the reported apoptosis represents a specific tissue engineering limitation. We could recently demonstrate that activation of prosurvival pathways such as the Akt pathway can protect cardiomyocytes in early EHT cultures from apoptosis.27

Hypoxia-induced apoptosis has been suggested as a main limitation for cell survival in tissue-engineered myocardium,28 and we initially interpreted VEGF-A transcript elevation as a sign of chronic hypoxia in particular in later stages of EHT culture. However, more comprehensive investigations of more sensitive biomarkers for acute (HIF-1α) and chronic (PHD2/3) hypoxia did not provide any evidence in support of EHT hypoxia during culture. We emphasize that cardiomyocytes are physiologically exposed to oxygen pressure below 40 mm Hg, which corresponds to <5% ambient oxygen,29 and that the provided oxygen supply (21% ambient oxygen) is apparently sufficient for normoxic EHT maintenance. Although the stimulus for enhanced VEGF-A expression has not been identified, one should consider that VEGF-A by itself may be cardioprotective30 and in fact may be an important prerequisite for the observed rapid vascularization of EHT grafts in vivo.31,32

Of particular interest for in vivo applications in regenerative medicine is also the apparent replacement of the original hydrogel by endogenously produced ECM. This remodeling process is on the one hand crucial for the formation of mechanically stable EHTs. On the other hand, it provides a perspective for the generation of nonimmunogenic “therapeutic” EHTs from autologous cells.

Taken together, cardiomyocyte maturation in EHT compares favorably to myocyte maturation in monolayer culture and does to some extent simulate physiological development in vivo. The observed differences in cardiomyocyte size and MHC isoform composition may be a consequence of “subphysiologic” loading and low intrinsic contraction frequency and thus may be interpreted as a “physiological” response to partially unphysiologic culture conditions. Interestingly, concentric and eccentric hypertrophic growth could be stimulated in EHT using simulated neurohumoral/serum activation. These data in particular suggest that EHT may constitute a unique model system to study mechanisms governing hypertrophic growth in cardiomyocytes. As a consequence of the observed differentiation and maturation inducing capacity, EHT cultures may also find a novel application as in vitro test-bed to define the fate of progenitor cells in a tissue-like context.

Acknowledgments

We thank M. Bauer and N. Feifel for designing qPCR primer-probe sets, B. Endress for excellent technical assistance, and C. Perske for help with light microscopy of Sirius red stained samples.

Sources of Funding

This study was supported by the German Research Foundation (DFG; ZI708/7–1, 8–1, 10–1, FOR604, and KFO155 to D.K., W.A.L., and W.H.Z.), the Federal Ministry for Education and Research (01GN 0520, 01GN0827, and 01GN0957 to W.H.Z.), the Deutsche Stiftung für Herzforschung (F29/03 to W.H.Z.), and the European Union (EU FP7 CARE-MI to W.H.Z.).

Disclosures

None.

References

Novelty and Significance

What Is Known?

- Tissue-engineered myocardium may be used as in vitro tool for drug development and as a surrogate for heart muscle for in vivo applications in myocardial repair.
- Cardiac myocytes dedifferentiate in culture, leading to a loss in organotypic cell morphology and reexpression of fetal genes.
- The validity of classical monolayer cultures as in vitro platform for modeling of hypertrophic cardiomyocyte growth is limited.

What New Information Does This Article Contribute?

- Engineered heart tissue (EHT) formation is a staged process comprising an early tissue consolidation phase with selection of the “fittest” myocytes and fibroblasts as well as comprehensive extracellular matrix (ECM) remodeling; this is followed by a phase of organotypic maturation.
- Organotypic maturation of cardiomyocytes in EHT includes terminal differentiation, abundant binucleation, development of an essentially rod-shaped morphology, and a fetal-to-adult shift in gene expression pattern.
- EHT may be useful in modeling of concentric versus eccentric cardiomyocyte hypertrophy.

Tissue engineering could potentially provide realistic heart muscle models and surrogate myocardium. However, cellular maturity in tissue-engineered myocardium has been sparsely documented. We show that a unique collagen hydrogel-based, cardiac tissue-engineering format, EHT, supports organotypic maturation in originally immature cardiomyocytes from neonatal rats. Our studies provide novel insight into the developmental properties of EHT, for example, hypertrophic growth under normoxic conditions and comprehensive ECM remodeling leading to replacement of the original hydrogel scaffold with ECM. The latter finding highlights the predicted but thus far unde-monstrated capacity of the cardiac fibroblast to function as a key “engineer” in myocardial tissue engineering. We have established appropriate experimental conditions that differentially affect cardiomyocyte growth (ie, concentric hypertrophy under simulated neurohumoral activation and eccentric hypertrophy in the presence of hypertrophy-inducing serum). Collectively, the results of this study enhance the utility of the EHT technology as methodological bridge between classic 2D cell culture and animal models. It may represent a useful tool for identifying specific environmental cues that facilitate organotypic maturation of cardiomyocytes from human (stem) cell sources as well.
Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue

Malte Tiburcy, Michael Didié, Oliver Boy, Peter Christalla, Stephan Döker, Hiroshi Naito, Bijoy Chandapillai Karikkineth, Ali El-Armouche, Michael Grimm, Monika Nose, Thomas Eschenhagen, Anke Zieseniss, Doerthe M. Katschinski, Nazha Hamdani, Wolfgang A. Linke, Xiaoke Yin, Manuel Mayr and Wolfram-Hubertus Zimmermann

Circ Res. 2011;109:1105-1114; originally published online September 15, 2011; doi: 10.1161/CIRCRESAHA.111.251843

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2011 American Heart Association, Inc. All rights reserved.

Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circres.ahajournals.org/content/109/10/1105

An erratum has been published regarding this article. Please see the attached page for:

/content/110/4/e41.full.pdf

Data Supplement (unedited) at:

http://circres.ahajournals.org/content/suppl/2011/09/15/CIRCRESAHA.111.251843.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:

http://circres.ahajournals.org//subscriptions/
Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue: Correction

In the article that appears on page 1105 of the October 28, 2011 issue, an author’s name is misspelled. The name should have appeared as Doerthe M. Katschinski.

The error has been noted and corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/109/10/1105.full.

Reference:

DOI: 10.1161/RES.0b013e31824ba3b2
Supplement Material:

Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue

Malte Tiburcy1, Michael Didiè1, Oliver Boy1, Peter Christalla1, Stephan Doeker1, Hiroshi Naito1, Bijoy Chandapillai Karikkineth1, Ali El-Armouche1, Michael Grimm2, Monika Nose2, Thomas Eschenhagen2, Anke Zieseniss3, Doerthe Katschinski3, Nazha Hamdani4, Wolfgang A. Linke4, Xiaoke Yin5, Manuel Mayr5 & Wolfram-Hubertus Zimmermann1

1Department of Pharmacology, Georg-August-University Goettingen, Germany; 2 Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany; 3Department of Cardiovascular Physiology, Georg-August-University Goettingen, Germany; 4Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, Germany; 5King’s BHF Centre, King’s College, University of London, United Kingdom

EXPANDED MATERIALS AND METHODS

Experimental animals were maintained in accordance with the guiding principles of the American Physiological Society. Animal experiments were approved by the local authorities (Regierung von Mittelfranken: 621.2531.31-2/00 and -17/01; BWG of the Freie und Hansestadt Hamburg; Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit).

EHT construction and treatment. Heart cells were isolated from neonatal rats (postnatal days 1-3) using a fractionated DNase/Trypsin digestion protocol without preplating to maintain the original cardiomyocyte:non-myocyte composition1, 2. EHTs (reconstitution volume: 0.9 ml) were prepared by pipetting a mixture containing the isolated heart cells (2.5x10^6 cells in DMEM with 10% fetal calf serum, 1 mmol/l glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin), pH-neutralized collagen type I from rat tails (0.5 mg/EHT – measured by the Sircol Collagen Assay; Biocolor), basement membrane protein containing Engelbreth-Holm-Swarm tumor exudate (10% v/v; BD Biosciences), and concentrated serum-containing culture medium (2xDMEM, 20% horse serum, 4% chick embryo extract, 200 U/ml penicillin, and 200 µg/ml streptomycin) in circular molds (inner diameter, 8 mm; outer diameter, 16 mm; height, 5 mm). Spontaneously beating EHTs were transferred to stretch devices on culture day 7 to continue culture under phasic load (from 100 to 110% of slack length at 2 Hz) for additional 5 days. EHTs were treated with 20 µmol/L phenylephrine and 100 nmol/L angiotensin-II from day 7-12 with daily medium change to induce hypertrophy. For 2D culture experiments neonatal heart cells were seeded in 6-well plates (5x10^5/well) coated with the EHT matrix (diluted 1:50 in PBS) and cultured in parallel to EHTs in standard primary cardiomyocyte culture medium (DMEM, 10% fetal calf serum, 100 µmol/L 5-bromo-2'-deoxyuridine, 100 U/ml penicillin, and 100 µg/ml streptomycin).

3H-thymidine incorporation. EHTs were maintained in standard culture medium with 1 µCi/ml 3H-thymidine for 6 hours on the indicated culture days. After washing in ice cold PBS, EHTs were dissolved in ice cold lysis buffer (10 mmol/L trishydroxylaminomethane [Tris; pH 8], 1 mmol/L ethylene-diamine-tetraacetic acid [EDTA; pH 8], 0.1% sodium dodecyl sulfate [SDS]) followed by 6 h proteinase K (0.1 µg/µl) digestion at 55 °C. DNA was precipitated in isopropanol after DNase-free RNase treatment (0.02 µg/µl for 60 min at 37 °C) and protein extraction in potassium acetate solution (3 mol/L potassium/5 mol/L acetate). After washing in 70% ethanol, DNA was resuspended in Tris/EDTA-buffer (100 mmol/L Tris, 10 mmol/L EDTA; pH 7.6). DNA content was measured by spectrophotometry and 3H-activity was assessed by liquid scintillation counting.

Cell isolation from EHT. EHTs were immersed in modified Bicarbonate-Free Hanks’ Balanced Salt Solution with HEPES (BFHH; NaCl 136.9 mmol/L, KCl 5.36 mmol/L, MgSO4 0.81 mmol/L, glucose 5.55 mmol/L, CaCl2 0.0125 mmol/L, KH2PO4 0.44 mmol/L, Na2HPO4 0.34 mmol/L, HEPES 20 mmol/L) containing 0.035 mg/ml Liberase Blendzyme III (Roche) and 30 mmol/L BDM (2,3-
butanedione monoxime) at 37 °C for 60 min. Enzymatic activity was stopped by addition of 10% FBS, 5 mmol/L EDTA. Isolated cells were fixed for immunostaining or flow cytometry as described below.

Histology. EHTs or dispersed single cells were fixed in neutral buffered 4% formaldehyde/1% methanol, pH 7.4 with 30 mmol/L BDM and subjected either to light (LM) or confocal laser scanning (CLSM; Zeiss 510 Meta or 710/NLO LSM) microscopy, as described recently. Cryo-sections (10 µm; Leica CM3050 S) were stained with phalloidin-Alexa 488 (3.3 U/ml; Molecular Probes) to label f-actin, DAPI (4',6-diamidino-2-phenylindole; 1 µg/ml) to label nuclei, and antibodies directed against α-actinin (1:1000; Sigma), and activated caspase-3 (1:250; Promega) with appropriate secondary antibodies. For Sirius red staining EHTs were embedded in paraffin, and sectioned at a thickness of 6 µm. After de-waxing in Roti-Histol (Roth) for 2x 15 min, the sections were hydrated through a decreasing ethanol series and washed with distilled water for 2x 5 min. Sections were incubated for 60 min in a solution of 0.5 g Sirius red F3B (C.I. 35782) in 500 ml of saturated aqueous solution of picric acid, briefly washed in acidified water (5 ml glacial acetic acid per liter of distilled water), dehydrated and mounted in Histokit. Sections were then subjected to polarized light microscopy (Olympus BX41). Green and red channels were separated by setting a threshold in the green-red distribution using the CIE lab function of ImageJ. Respective images of above and below threshold signals as well as merged image were computed applying identical settings. For transmission electron microscopy (TEM) EHTs were fixed in 2.5% glutaraldehyde (in PBS with 1 mmol/L CaCl₂ and 30 mmol/L BDM) overnight at 4°C. After extensive washing in PBS, EHTs were postfixed for 2 h in osmiumtetroxyd/PBS (1:1). After epon embedding, ultrathin sections (50 nm) were cut (Ultracut UCT, Leica), contrasted with uranyl acetate and lead citrate, and imaged with a Zeiss Leo 906 EM.

Flow cytometry. Dispersed cells from neonatal rat (P0-3) and EHTs at different time-points were fixed in ice-cold 70% ethanol. Staining for α-actinin (Sigma) or vimentin (Abcam) was performed in the presence of 0.5% Triton-X at 4°C for 45 min. Appropriate secondary antibodies were applied for 30 min at room temperature. Negative controls were incubated with the secondary antibody alone. DNA was stained with DAPI (1 µg/ml). Samples were run on a LSRII cytometer and analysed with FacsDiva software (BD Biosciences). The gating strategy to exclude cell clumps and multinucleated cells was based on the width of the DAPI signal. DNA content/cell cycle was analyzed using ModFit LT 3.2 software (Verity).

Cell isolation from native heart. After an intra-peritoneal bolus injection of heparin (500 IU) 12 day and 12 week old Wistar rats were euthanized. Hearts were quickly excised and cells were isolated using a modified Langendorff method. Briefly, hearts were digested with 0.1 mg/ml Liberase Blendzyme III (Roche) in oxygenized perfusion buffer (NaCl 113 mmol/L, KCl 4.7 mmol/L, KH₂PO₄ 0.6 mmol/L, Na₂HPO₄ 0.6 mmol/L, MgSO₄ 1.2 mmol/L, NaHCO₃ 12 mmol/L, KHCO₃ 10 mmol/L, HEPES 10 mmol/L, taurine 30 mmol/L, glucose 5.55 mmol/L, BDM 10 mmol/L, calcium 0.0125 mmol/L). Single cells were fixed for immunostaining as described above.

RNA/DNA isolation and quantitative RT-PCR (qPCR). RNA and DNA were isolated using the Trizol™-method (Invitrogen) and quantified by spectrophotometry. cDNA was prepared from 2 µg total RNA by reverse transcription with MMLV-RT (Invitrogen) utilizing random hexamer primers (Roche) following standard protocols (Invitrogen). qPCR was performed in a 384 well format ABI prism HT 7900 system (Applied Biosystems) using gene-specific primers and fluorogenic probes (5’ FAM and 3’ TAMRA; Online Table II) as described earlier, unless indicated otherwise (see below). The reaction mixture contained 20 ng input cDNA, 3 mmol/l MgCl₂, 0.4 µmol/l forward and reverse primer, 0.5 µmol/l probe, 0.8 mmol/l NTP (Applied Biosystems), and 0.05 U TaqGold polymerase (Applied Biosystems) in a total volume of 10 µl supplemented with TaqPolymerase buffer II (Applied Biosystems). We used following temperature protocol: 30 sec at 50 °C and 10 min at 95 °C followed by 45 cycles of 30 sec at 95 °C and 1 min at 58 °C. GAPDH expression was similar in all study groups and was therefore employed to normalize for differences in RNA quantity and RT-efficiency. Cardiomyocyte-specific transcript quantity was indexed to the expression of muscle specific calsequestrin 2 (CSQ2). The linearity of each PCR was confirmed by analyzing serial cDNA
dilutions, prepared from total RNA isolated from neonatal rat hearts. Quantification of transcripts was performed using the Standard Curve algorithm. PHD2 and PHD3 mRNA levels were quantified using 1 μl of cDNA (Fermentas) and a SYBR Green qPCR reaction kit (Clontech) in combination with a MX3000P light cycler (Stratagene) as described before. The initial template concentration of each sample was calculated by comparison with serial dilutions of a calibrated standard. Primer sequences: PHD2 forward TACAGGATATACGCGAGCAT and PHD2 reverse GGCTTGAGTTCAACCCTC; PHD3 forward GTTAACCGAGACTGGACGA and PHD3 reverse CATAACGTTAGGCTTTGCTC.

Development of a cardiomyocyte specific qPCR assay. To better account for cardiomyocyte loss we developed a PCR-assay allowing the quantification of 17,500-1,750,000 cardiomyocytes in a mixed heart cell population, based on the detection of muscle specific calsequestrin 2 (CSQ2) transcripts (Online Figure VII). We designed intron-spanning fluorogenic TaqMan probes (5’ FAM, 3’ TAMRA) and adjacent primer pairs to amplify muscle specific CSQ2, GAPDH, and 18S-RNA. Rat heart cells were isolated as described and cardiomyocytes were enriched by preplating, resulting in a cell suspension containing 70% cardiomyocytes as identified by α–sarcomeric actinin labeling. Subsequently, heart cells were mixed with defined numbers of cardiac non-myocytes. Non-myocytes were prepared by propagating a quickly adhering cell fraction from the original neonatal rat heart cell isolate. This cell fraction was grown to subconfluency (70%), trypsinized, frozen in 7.5% DMSO-containing cell culture medium, thawed, and re-grown. This procedure was repeated at least twice, yielding heart cell cultures free of beating or non-beating cardiomyocytes. Cell mixtures were subjected to RNA isolation (Trizol®, Invitrogen). Reverse transcription and qPCR were performed as described with different quantities of input cDNA (20 pg and 20 ng) to demonstrate that cardiomyocytes express constant levels of CSQ2 transcripts. This was further confirmed with two different CSQ2 primer-probe sets (see below). Similar cDNA loading was confirmed by GAPDH and 18S-RNA transcript analyses:

CSQ2: NCBI accession#: AF001334
Forward: TTT CTG ACG GAG ACG TTC AGG
Probe: TGG CTG CCT ACA GTA CGC TGG GAA C
Reverse: TAG CAG GAC AGA GAG GGT GCA

CSQ2: Ensemble accession#: ENSRNOG0000016243
Forward: CCA AGA GGC TGG GCT TCA G
Probe: CGA TCT CTA CTG GGT CCT CAA TGA GGT CCA A
Reverse: CCT CAT TCT TGA AAA AGC CAA GC

GAPDH: NCBI accession#: NC005103
Forward: AAC TCC CTC AAG ATT GTC AGC AA
Probe: ATG GAC TGT GGT CAT GAG CCC TTC CA
Reverse: CAG TCT TCT GAG TGG CAG TGA TG

18S-RNA: NCBI accession#: V01270
Forward: ACG ACC CAT TCG AAC GTC
Probe: CCT ATC AAC TTT CGA TGG TAG TCG CCG T
Reverse: CTT GGA TGT GGT AGC CGT TT

Immunoblotting. EHTs were washed thoroughly in ice cold PBS and rapidly homogenized in lysis buffer containing 30 mmol/L Tris (pH 8.8), 5 mmol/L EDTA (pH 8), 3% SDS, 10% glycerol, 30 mmol/L NaF, and 2 μg/ml aprotinin or 4 mmol/L urea, 140 mmol/L Tris (pH 6.8), 1% SDS, 2% Nonidet P-40, and protease inhibitors (Roche Applied Science). After centrifugation at 13,000 g for 10 min, supernatants containing soluble proteins were subjected to protein concentration measurement using modified Lowry or Bradford methods, respectively. Equal amounts of protein (30-100 μg) were resolved by SDS-PAGE and transferred onto polyvinylidene fluoride (sarcomeric actin) or nitrocellulose (HIF-1α, calsequestrin) membranes by semidy blotting. Primary antibodies used were:
anti-sarcomeric actin (clone 5C5; Sigma), anti-HIF-1α (Novus, NB100-479), anti-calsequestrin 2 (AffinititiBioReagents). Primary antibodies were detected with appropriate horseradish peroxidase coupled secondary antibodies. Sarcomeric actin immunocomplexes were enhanced with the ECL-plus kit (Amersham Biosciences) and recorded with a ChemiDoc system (Syngene). Signals were quantified with Gene-Tools software (Syngene). For detection of HIF-1α membranes were incubated with 100 mmol/L Tris-HCl (pH 8.5), 2.65 mmol/L H₂O₂, 0.45 mmol/L luminol, and 0.625 mmol/L coumaric acid for 1 min. Chemiluminescence signals were detected with the LAS-3000 Image Reader (Fujifilm).

Detection of myosin heavy chain isoforms. To assess myosin heavy chain isoform composition EHTs were homogenized in sample buffer containing 50 mmol/L Tris-HCl (pH 6.8), 5 mmol/L EDTA, 10% glycerol, 8 µg/ml leupeptin, 1% beta-mercaptoethanol, 20% SDS, 0.1% (w/v) dithiothreitol, 6 µmol/L bromophenol blue, and washing buffer (5 mmol/L Tris-EDTA, pH 8.0). The separating gel contained 7.5% total acrylamide (acrylamide to bis-acrylamide ratio, 30:0.8), the stacking gel contained 4% total acrylamide. To check for linearity, different amounts of EHT (0.5–3.0 µg) were loaded and the densities of the myosin heavy chain bands were analyzed; a load of 1.5 µg per lane was selected as it was found to be within the linear range. After separation of proteins, gels were stained overnight with SYPRO Ruby (Molecular Probes). Fixation and washing were performed according to the manufacturer’s guidelines. Gels were digitized using LAS-4000 Image Reader (Fujifilm; 460 nm/605 nm E₅/E₆) and signals were analyzed using Multi Gauge software (Fujifilm).

2D electrophoresis (2-DE). EHT samples were homogenized in 9 mol/L urea, 1% DTT, 4% CHAPS, protease and phosphatase inhibitors (Complete Mini, Roche), and 0.8% Pharmalytes 3-10. For difference in-gel electrophoresis (DIGE), proteins were precipitated (ReadyPrep 2D Clean-up kit, Biorad) and re-suspended using a lysis buffer (30 mmol/L TrisCl pH 8.5, 8 mol/L urea, 4% w/v CHAPS) compatible with DIGE labelling (GE healthcare). After centrifugation at 13,000 g for 10 min, the supernatant containing soluble proteins was harvested and the protein concentration was determined using a modification of the method described by Bradford. The fluorescence dye labelling reaction was carried out at a dye/protein ratio of 200 pmol/L / 50 µg. After incubation on ice for 30 min, the labelling reaction was stopped by scavenging non-bound dyes with 10 mmol/L lysine (L8662, Sigma) for 15 min. Protein extracts (30 µg/sample) were loaded on nonlinear immobilized pH gradient (IPG) 18-cm strips, pH 3-10 (GE Healthcare) using an in-gel rehydration method. Loaded IPG-strips were rehydrated in 8 mol/L urea, 0.5% w/v CHAPS, 0.2% w/v DTT, and 0.2 % w/v Pharmalyte pH 3-10 overnight in a reswelling tray. Strips were isoelectrically focused at 0.05 mA/IPG-strip and 35 kVh at 20 °C (IPGphor, GE healthcare) and subsequently equilibrated in 6 mol/L urea containing 30% v/v glycerol, 2% w/v SDS, and 0.01% w/v bromphenol blue, with addition of 1% w/v DTT for 15 min, followed by the same buffer without DTT, but with the addition of 4.8% w/v iodoacetamide for 15 min. Large-format gradient gels (5-10% stack, 10-16% linear, 16-20% stack) were cast using a 2-DE optimizer (NextGen Sciences, Huntingdon, UK). Gels were subsequently overlaid with water-saturated butanol (2:3) and left to polymerize overnight. SDS-PAGE was performed using the Ettan DaltSix system (GE healthcare). After electrophoresis, fluorescence images were acquired by using the Ettan DIGE Imager (GE Healthcare) with the following parameters: exposure time: Cy2, 0.8 sec, Cy3, 0.3 sec, Cy5, 0.5 sec, pixel size: 0.1 mm. Images were analyzed by DeCyder software (version 7.0, GE Healthcare). The 2-DE gels were fixed overnight in methanol:acetic acid:water solution (4:1:5 v/v/v) and visualized by silver staining using the Plus one silver staining kit (GE healthcare) without glutaraldehyde to ensure compatibility with subsequent mass spectrometry analysis. Silver-stained gels were scanned in transmission scan mode using a calibrated scanner (GS-800, Biorad).

Nanoflow liquid chromatography tandem mass spectrometry (LC-MS/MS). Gel pieces containing selected protein spots were treated overnight with modified trypsin (Promega) according to a published protocol modified for use with an Investigator ProGest (Genomic Solutions) robotic digestion system. Following enzymatic degradation, peptides were separated by a nanoflow HPLC system on a reverse-phase column (Acclaim PepMap100, C18, 25cm, 5µm, 100Å, Dionex) and applied to a LTQ ion-trap mass spectrometer (Thermo Fisher Scientific) with electron transfer...
dissociation (ETD). Spectra were collected from the ion-trap mass analyzer using full ion scan mode over the mass-to-charge (m/z) range 450-2000. MS-MS scans were performed on each ion using dynamic exclusion and alternating collision-induced dissociation (CID) and ETD. Database search was performed using the SEQUEST (Thermo Fisher Scientific) and X! Tandem software. Two missed cleavages per peptide were allowed and carbamidomethylation of cysteine as well as partial oxidation of methionine were assumed. Peptide identifications were accepted if they could be established at greater than 95% probability as specified by the Peptide Prophet algorithm. Protein identifications were accepted if they could be established at greater than 99% probability with at least two independent peptides.

3H-phenylalanine and 3H-proline incorporation. EHTs were maintained in standard culture medium with 1 µCi/ml 3H-phenylalanine or 3H-proline as indicated. Protein was precipitated in 10% ice-cold trichloroacetic acid (TCA) at 4 °C over night. The supernatant was collected and subjected to liquid scintillation counting to assess the non-incorporated fraction of the isotopes. The protein precipitate was washed twice in ice-cold PBS, suspended in 1 mmol/L NaOH containing 0.01% SDS for 2 h at 37 °C, and subjected to liquid scintillation counting. Total protein content was analyzed by a modified Lowry-Assay (Bio-Rad DC Protein Assay).

35S-cysteine/-methionine incorporation, PAGE, and autoradiography. EHTs were cultured in cysteine- and methionine-free EHT culture medium with 4.5 g/l glucose for 6 h and subsequently incubated for 18 h in fresh cysteine- and methionine-free EHT culture medium supplemented with 100 µCi/ml 35S-cysteine/-methionine on the indicated culture days. EHT protein was prepared and quantified as described above. Similar quantities of total proteins were loaded on 7% SDS-polyacrylamide gels and separated electrophoretically. Gels were stained with Coomassie blue, immersed in Amplify Fluorographic solution (Amersham Biosciences), vacuum dried, and subjected to autoradiography on intensifier screens (Expo Hyperfilm; Amersham Biosciences) for 6.5 h at -80 °C.

Statistical analyses. Data are presented as mean ± standard error of the mean (SEM). Statistical differences were determined using two-sided, unpaired Student’s t-tests or one-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison test. A P value < 0.05 was considered statistically significant.

Supplementary References

ONLINE FIGURE/TABLE/VIDEO LEGENDS

Online Table I. Protein identifications by tandem mass spectrometry (LC-MS/MS). The amino acid sequences and scores of the identified peptides are provided. The blue color highlights the number of unique peptides, unique spectra, total spectra, and the sequence coverage as obtained by CID. The corresponding values for ETD (if applicable) are given below, but are not highlighted.

Online Table II. qPCR primers and probes.

Online Figure I. Quantification of cardiomyocytes and fibroblasts during EHT culture by flow cytometry. Representative plots identify distinct α-actinin- (A) and vimentin-positive cell populations (B) at the indicated days of EHT culture. Panels resemble overlays of individual dot plots: in red cell pools labeled for actinin (A) or vimentin (B); in grey cell pools exposed to secondary antibody only.

Online Figure II. DNA content in mononucleated cardiomyocytes and non-myocytes during EHT culture assessed by flow cytometry. A, Representative plots of DNA content in mononucleated cardiomyocytes (actinin-positive, red) and non-myocytes (actinin-negative, dark grey) at day 0 and day 12 of EHT culture. B, Fractions of mononucleated cardiomyocyte (top panel) and non-myocyte (lower panel) populations at day 0 (n=6) and day 12 (n=4) of EHT culture with 2N, 4N, and 8N DNA content.

Online Figure III. Surrogate parameters suggesting hypertrophic growth in EHTs. A, RNA/DNA ratio in EHTs on culture days 0 (n=18), 3 (n=19), 7 (n=10), and 12 (n=16). B, 3H-phenylalanine incorporation during EHT culture days 0-3 (n=7), 3-7 (n=8), and 7-12 (n=5). *P<0.05 vs. EHT day 0 (A) and EHT days 0-3 (B); ANOVA and Bonferroni’s multiple comparison test.

Online Figure IV. Cell death in EHT and monolayer (2D) culture. A, Analysis of DNA content in EHT- and 2D culture-derived cells (n=3 each). Sub-G1 fraction (green) denotes dead/apoptotic cells with condensed nuclei. B, Trypan-blue exclusion in EHT- and 2D culture-derived cells at culture day 1 (n=5 [EHT], n=4 [2D]). C, Comparison of CSQ2 transcript abundance in EHT (black bars) vs. 2D culture (white bars), n=5-6/time-point. *P<0.05 vs. day 0 (grey bar); ANOVA and Bonferroni’s multiple comparison test.

Online Figure V. Molecular markers of maturation in monolayer (2D) vs. EHT culture. A, ANP transcripts per GAPDH transcript; B, skeletal actin transcripts per GAPDH transcript; C, cardiac actin transcripts per GAPDH transcript in isolated neonatal heart cells at day 0 (black bars; n=5), 2D cultured cells at day 12 (blue bars; n=6), and EHT at day 12 (green bars; n=5). D, Correlation of cardiac and skeletal actin transcript abundance in freshly isolated neonatal heart cells (d0; black), in 2D culture (culture days 3, 7, and 12 [left panel]) and EHT culture (culture days 3, 7, and 12 [middle panel]) - black arrows denote the trend in expression pattern change in 2D and EHT culture; right panel: direct comparison of 12 day 2D vs. EHT cultures and neonatal cardiomyocytes. *P<0.05 2D vs. EHT; Student’s t-test.

Online Figure VI. ECM restructuring during EHT development. A, matrix metalloprotease-2 (MMP-2; n=8-10); B, MMP-14 (n=7-10); tissue inhibitor of matrix metalloprotease-1 (C, TIMP-1; n=7-10), and TIMP-2 (D; n=7-10) transcripts per GAPDH transcript in EHT and native rat heart tissue. *P<0.05 vs. EHT day 0; ANOVA followed by Bonferroni’s multiple comparison test.
Online Figure VII. Development of a cardiomyocyte-specific qPCR assay to allow approximation of cardiomyocyte content in mixed cell populations. Detection of CSQ2 (NCBI accession#: AF001334; squares) and GAPDH (NCBI accession#: NC005103; circles) transcripts in 2.5x10^6 cells containing the indicated cardiomyocyte fraction by qPCR. High Ct-values indicate low transcript abundance. Symbols indicate individual Ct-values. Bars indicate the respective means. A Ct-value difference of 3.3 ideally represents a 10-fold difference in transcript abundance. Similar data could be obtained using alternative primer-probe pairs for muscle specific CSQ2 (Ensemble accession#: ENSRNOG00000016243) or 18S-RNA (NCBI accession#: V01270).

Online Video I: Spontaneous contractions in EHTs on culture day 3.
Online Video II: Spontaneous contractions of EHTs on culture day 7.
Online Video III: Spontaneous contractions of EHTs on culture day 12.
Online Video IV: Animated 3D reconstruction of adjacent optical sections from EHTs on culture days 0, 3, 7, and 12.
Online Table I

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Protein accession numbers</th>
<th>Protein molecular weight</th>
<th>Protein identification of uniprot_sprot database (267354 entries)</th>
<th>Digestion Enzyme</th>
<th>Max Missed Cleavages</th>
<th>Scaffold Version</th>
<th>Peptide Thresholds</th>
<th>Protein Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 3 3 3 0.07% 2.63%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 4 4 4 0.22% 3.97%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 2 3 3 0.78% 5.04%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 2 2 2 0.08% 1.98%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 5 6 6 0.22% 2.77%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 3 3 3 0.24% 1.06%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 4 5 5 0.23% 2.47%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 3 3 3 0.07% 2.63%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 2 3 3 0.78% 5.04%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 2 2 2 0.08% 1.98%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 5 6 6 0.22% 2.77%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 3 3 3 0.24% 1.06%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 4 5 5 0.23% 2.47%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 3 3 3 0.07% 2.63%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 2 3 3 0.78% 5.04%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Nidogen-1 precursor (Entactin) - Mus musculus (Mouse)</td>
<td>NID1_MOUSE</td>
<td>136603.6</td>
<td>100.00% 2 2 2 0.08% 1.98%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Collagen alpha-1(I) chain precursor (Alpha-1 type I collagen) - Mus musculus (Mouse)</td>
<td>COL1A1_MOUSE</td>
<td>1212.9</td>
<td>100.00% 5 6 6 0.22% 2.77%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Vinculin (Metavinculin) - Mus musculus (Mouse)</td>
<td>VINC_MOUSE</td>
<td>116701.4</td>
<td>100.00% 3 3 3 0.24% 1.06%</td>
<td>Trypsin</td>
<td>2</td>
<td>Scaffold-01_06_19</td>
<td>95.00% minimum and 2 peptides minimum</td>
<td></td>
</tr>
<tr>
<td>Amino Acid</td>
<td>Sequence</td>
<td>Identity</td>
<td>Gaps</td>
<td>Query Coverage</td>
<td>Needle Score</td>
<td>Expect</td>
<td>Identity</td>
<td>Gaps</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Vimentin</td>
<td>DGQVINETSQHHDDLE</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>53.40%</td>
<td>80.00%</td>
<td>4.56%</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>EEAESTLQSFR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>2.94%</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>ETNLESLPLVDTHSK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>EYQDLLNVK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>FADLSEAANR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>FADYIDK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>ISLPLPNFSSLNLR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>KVESLQEEIAFLK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>LGDLYEEEMR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>LQDEIQNMK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>LQEEMLQR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>MALDIEIATYR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>NLQEAEEWYK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>QVDQLTNDKAR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>QVQSLTCEVDALK</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>SLYSSSPGGAYVTR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>TNEKVELQELNDR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>TVETRDGQVINETSQHHDDLE</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>VELQELNDR</td>
<td>95.00%</td>
<td>0</td>
<td>100.00%</td>
<td>40.00%</td>
<td>80.00%</td>
<td>3.05%</td>
<td>2.06</td>
</tr>
<tr>
<td>Target</td>
<td>5’-Primer</td>
<td>TaqMan Probe (5’-FAM, 3’-TAMRA)</td>
<td>3’-Primer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>AAC TCC CTC AAG ATT GTC AGC AA</td>
<td>ATG GAC TGT GGT CAT GAG CCC TTC CA</td>
<td>CAG TCT TCT GAG TGG CAG TGA TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSQ2</td>
<td>TTT CTG ACG GAG ACG TTC AGG</td>
<td>TGG CTG CCT ACA GTA CGC TGG GAA C</td>
<td>TAG CAG GAC AGA GAG GGT GCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-cd actin</td>
<td>TGA TGC TCC CAG AGC TGT CTT</td>
<td>CCA CGC CAC CAG GGT GTC ATG GTA</td>
<td>GAT GCC TCG CTT GCT CTG AG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-sk actin</td>
<td>TAT GAG GGT TAT GCC CTG CC</td>
<td>AAT CTC ACG TTC AGC TGT GGT CAC GAA GG</td>
<td>GCT TCT CTT TGA TGT CGC GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-MHC</td>
<td>ACA GAG TGC TTC GTG CCT GAT</td>
<td>ACA GTG ACC GTC TTG CCG TTT TCA GT</td>
<td>CGA ATT TCG GAG GGT TCT GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-MHC</td>
<td>GCC TAC AAG CGC CAG GCT</td>
<td>TTC ATT CAG GGC CTT GGC GCC AAT</td>
<td>CAT CCT TAG GGT TGG GGA GCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bax</td>
<td>ATC CAC CAA GAA GCT GAG CG</td>
<td>ATC AGC AAT CAT CCT CTG CAG CTC CA</td>
<td>ACG GAA GAA GAC CTC TCG GG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bcl-2</td>
<td>CCT GGT GGA CAA CAT CGC T</td>
<td>AAC GGA GGC TGG GAT GCC TTT GTG</td>
<td>AAT CAA ACA GAG GTC GCA TGC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF-A</td>
<td>ACT GCT GTA CCT CCA CCA TGC</td>
<td>AAG TGG TCC CAG GCT GCA CCC A</td>
<td>AAG ATG TCC ACC AGG GTC TCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen α1(I)</td>
<td>TGG TCC TCA AGG TTT CCA AG</td>
<td>TGG CGG TCC AGG TCC AAT GG</td>
<td>TTA CCA GCT TCC CCA TCA TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen α1(III)</td>
<td>AAT GGT GGC TTT CAG TTC AGC T</td>
<td>TGG AAA GAA GTC TGA GGA AGG CCA GCT G</td>
<td>TGT AAT GTT CTG GGA GCC CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-2</td>
<td>CCGAGGAATATGACCGGGGATAA</td>
<td>TCTGCCCCGAGACCGCTATGTCCA</td>
<td>CTTGTTGCCAGGAAAGTGGAAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-3</td>
<td>CCGTTTCCATCTCTCTCAAGATGA</td>
<td>AGATGGATTTCAATCCCTCTATGGACCTCC</td>
<td>CAGAGATGATTGATTTGAGGTGTAACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-13</td>
<td>GGAAGACCTCTTCTCTACTCA</td>
<td>TCTGGTAGCATCATAACTCCACACGT</td>
<td>TCATAGACAGCATCTACTTTGTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP-14</td>
<td>GAACCTTTCAGACCGGTGCCAT</td>
<td>CAGAACCATCGCTCTTTGGAGACAACATC</td>
<td>CCGTCCATCACTTTGGTATTCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMP-1</td>
<td>TCCTTTCTTTGCTATCATTGAGGCTTT</td>
<td>TTCTGCAACTCGGACCGTGGTTAAGG</td>
<td>CGCTGATAGAGAGTGGTCGAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMP-2</td>
<td>GCTGGACGTGGAGGAAAGA</td>
<td>TCTCCTTCCGCTTTCCTGCAATTAGA</td>
<td>GCACAATAAAGTCACAGAGGGTAAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Online Figure I. Quantification of cardiomyocytes and fibroblasts during EHT culture by flow cytometry. Representative plots identify distinct α-actinin- (A) and vimentin-positive cell populations (B) at the indicated days of EHT culture. Panels resemble overlays of individual dot plots: in red cell pools labeled for actinin (A) or vimentin (B); in grey cell pools exposed to secondary antibody only.
Online Figure II. DNA content in mononucleated cardiomyocytes and fibroblasts during EHT culture assessed by FACS. A. Representative plots of DNA content in mononucleated cardiomyocytes (actinin-positive, red) and non-myocytes (actinin-negative, dark grey) at day 0 and day 12 of EHT culture. B. Fractions of mononucleated cardiomyocyte (top panel) and non-myocyte (lower panel) populations at day 0 (n=6) and day 12 (n=4) of EHT culture with 2N, 4N, and 8N DNA content.
Online Figure III. Surrogate parameters suggesting hypertrophic growth in EHTs.

A, RNA/DNA ratio in EHTs on culture days 0 (n=18), 3 (n=19), 7 (n=10), and 12 (n=16).
B, H-phenylalanine incorporation during EHT culture days 0-3 (n=7), 3-7 (n=8), and 7-12 (n=5). *P< 0.05 vs. EHT day 0 (A) and EHT days 0-3 (B); ANOVA and Bonferroni's multiple comparison test.
Online Figure IV. Cell death in EHT and monolayer (2D) culture. **A**, Analysis of DNA content in EHT- and 2D culture-derived cells (n=3 each). Sub-G1 fraction (green) denotes dead/apoptotic cells with condensed nuclei. **B**, Trypan-blue exclusion in EHT- and 2D culture-derived cells at culture day 1 (n=5 [EHT], n=4 [2D]). **C**, Comparison of CSQ2 transcript abundance in EHT (black bars) vs. 2D culture (white bars), n=5-6/time-point. *P<0.05 vs. day 0 (grey bar); ANOVA and Bonferroni's multiple comparison test.
Online Figure V. Molecular markers of maturation in 2D vs. EHT culture. A, ANP transcripts per GAPDH transcript; B, skeletal actin transcripts per GAPDH transcript; C, cardiac actin transcripts per GAPDH transcript in isolated neonatal heart cells at day 0 (black bars; n=5), 2D cultured cells at day 12 (blue bars; n=6), and EHT at day 12 (green bars; n=5). D, Correlation of cardiac and skeletal actin transcript abundance in freshly isolated neonatal heart cells (d0; black), in 2D culture (culture days 3, 7, and 12 [left panel]) and EHT culture (culture days 3, 7, and 12 [middle panel]) - black arrows denote the trend in expression pattern change in 2D and EHT culture; right panel: direct comparison of 12 day 2D vs. EHT cultures and neonatal cardiomyocytes. *P<0.05 2D vs. EHT; Student’s t-test.
Online Figure VI. ECM restructuring during EHT-development. A, matrix metalloprotease-2 (MMP-2; n=8-10); B, MMP-14 (n=7-10); tissue inhibitor of matrix metalloprotease-1 (C, TIMP-1; n=7-10), and TIMP-2 (D; n=7-10) transcripts per GAPDH transcript in EHT and native rat heart tissue. *P<0.05 vs. EHT day 0; ANOVA followed by Bonferroni's multiple comparison test.
Online Figure VII. Development of a cardiomyocyte-specific qPCR assay to allow approximation of cardiomyocyte content in mixed cell populations. Detection of CSQ2 (NCBI accession#: AF001334; squares) and GAPDH (NCBI accession#: NC005103; circles) transcripts in 2.5×10^6 cells containing the indicated cardiomyocyte fraction by qPCR. High Ct-values indicate low transcript abundance. Symbols indicate individual Ct-values. Bars indicate the respective means. A Ct-value difference of 3.3 ideally represents a 10-fold difference in transcript abundance. Similar data could be obtained using alternative primer-probe pairs for muscle specific CSQ2 (Ensemble accession#: ENSRNOG00000016243) or 18S-RNA (NCBI accession#: V01270).