Microparticles in Angiogenesis: Therapeutic Potential

M. Carmen Martinez, Ramaroson Andriantsitohaina

Abstract: Considered during the past decades as cell dust, microparticles are now deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. Recent studies have described microparticles as “cargos” of deleterious information in blood vessel wall under pathological situations such as hypertension, myocardial infarction, and metabolic syndrome. In addition, it has been reported that depending on their origin, microparticles also possess a therapeutic potential regarding angiogenesis. Microparticles can act directly through the interaction ligand/receptor or indirectly on angiogenesis by modulating soluble factor production involved in endothelial cell differentiation, proliferation, migration, and adhesion; by reprogramming endothelial mature cells; and by inducing changes in levels, phenotype, and function of endothelial progenitor cells. This results in an increase in formation of in vitro capillary-like tubes and the generation of new vessels in vivo under ischemic conditions, for instance. Taking into consideration these properties of microparticles, recent evidence provides new basis to expand the possibility that microparticles might be used as therapeutic tools in pathologies associated with an alteration of angiogenesis. (Circ Res. 2011;109:110-119.)

Key Words: biological vectors ■ neovascularization ■ endothelial cells ■ microvesicles ■ progenitor cells

Modulation of neovascularization represents a potential therapeutic tool against a large number of diseases. An increase of neovascularization leading to healing of wounds and reconstruction of hypoxic injury is an attractive approach during ischemia; however, clinical data show that tumor development can be delayed when neovascularization is targeted and blocked. Among the available therapeutic tools, recent studies report that small vesicles, called microparticles (MPs), released from the plasma membrane possess the capacity to increase or decrease angiogenesis depending on their composition and concentration. This review highlights the notion that circulating MPs and engineered in vitro or ex vivo MPs can modulate different steps leading to angiogenesis, including cells involved in this process, and in this way affect in vivo neovascularization and finally tissue repair.
Vasculogenesis, Angiogenesis, and Neovascularization: Different or Common Mechanisms?

Formation of new blood vessels depends on 2 processes, vasculogenesis and angiogenesis. Vasculogenesis refers to the de novo formation of blood vessels via the differentiation of endothelial progenitor cells (EPCs; initially identified as bone marrow-derived cells, which express endothelial cell-specific markers) into endothelial cells. One has to take into account that the EPC concept has evolved since their discovery and the phenotype and function of EPCs are still under debate. Despite the lack of consensus on surface expression of antigenic markers that are characteristic of EPCs, the same group currently describes EPCs as cells that: (1) show the ability for endothelial lineage commitment; (2) acquire an endothelial cell equivalent phenotype; (3) initially lack mature endothelial cell markers; (4) are capable of differentiation; and (5) present proangiogenic and vasculogenic properties, with a strong biological activity toward neovascular formation resulting in functional recovery and regeneration of the injured vessel. Angiogenesis is the formation of new capillaries from the preexisting vasculature, is controlled by a number of growth factors and signaling pathways, and is the balance between proangiogenic and antiangiogenic factors.

Thus, it is largely accepted that vasculogenesis may play a key role in embryogenesis, whereas angiogenesis occurs during both prenatal and postnatal life. However, recent evidence suggests that, in the adult, EPCs could be considered to participate in postnatal vasculogenesis. In addition, a third process, arteriogenesis, completes the expansion and growth of the vascular system in adults. Arteriogenesis describes the development and growth of preexisting arterioles into physiological relevant arteries that form collateral vessels. In the literature, the involvement of these mechanisms in the development of the cardiovascular system is frequently confounded.

Tissue homeostasis is dependent on a sufficient supply of oxygen and nutrients as well as the removal of metabolite products via blood vessels. Deregulation of vasculogenesis and angiogenesis have been indirectly involved in a number of pathological situations, such as ischemic diseases associated with a reduction in blood flow supply, which in some cases are secondary to the dysfunction of existing blood vessels resulting from atherosclerotic lesion formation and an increase in the requirement of oxygen and nutrient needs during tumor development. In both situations, tissue hypoxia is considered to be essential for the paracrine mechanism to induce the formation of new vessels. This ischemic effect has been shown to be mediated by a marked increase in paracrine signals, such as vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1. The release of soluble factors initiates a cascade that degrades the extracellular matrix, disrupts cell–cell contacts, allowing for the migration and proliferation and capillary tube formation of endothelial cells. The new capillary channel forms an anastomosis with a preexisting capillary, creating a new patent capillary. A growing body of evidence indicates that after mobilization of EPCs from the bone marrow into circulation, they are recruited to ischemic sites and tumor vasculature, where they differentiate into mature endothelial cells. This suggests that EPCs may play a critical role in adult postnatal endothelial repair and vasculogenesis. In addition, EPCs can indirectly contribute to vascular regeneration through the paracrine production of proangiogenic cytokines and growth factors that promote proliferation and migration of preexisting endothelial cells and activate angiogenesis.

In most cases, soluble factors, cellular steps leading to angiogenesis, or the different cell types implanted in these steps are the potential targets for novel therapeutic strategies. Thus, during pathologies associated with ischemia, an improvement of both angiogenesis and vasculogenesis may have beneficial effects; in contrast, antiangiogenic strategies could represent new approaches for treatment of tumor development.

Failed Angiogenesis in Metabolic Diseases

Among the metabolic diseases, diabetes mellitus is one with alterations in angiogenesis that represent a major problem. Diabetes-associated vascular complications are the most common major clinical problem that patients with diabetes exhibit. In addition to an elevated incidence of macrovascular complications (such as atherosclerosis), which increase the risk for myocardial infarction and stroke, patients with diabetes can have peripheral artery disease (that may lead to limb amputation) and microvascular complications (such as retinopathy and nephropathy) develop, which can cause blindness and renal failure.

Dysfunctional angiogenesis associated with diabetes can have several origins. Impairment of endothelial function can reduce tissue vascularization, leading to delayed wound healing in diabetic patients. Notably, expression of growth factors related to angiogenesis, such as VEGF and fibroblast growth factor, is reduced in db/db mice, probably as a consequence of an increased oxidative stress.

Also, patients with diabetes display impairment of re-endothelialization after vascular injury, associated not only with the reduction of number of EPCs but also with alterations of their functions (mobilization, homing, and endothelium repair). It has been shown that EPC levels in patients with diabetes are reduced compared to those of control subjects. Concomitantly, dysfunction in the recruitment of EPCs in the affected zones has been reported. In addition, EPCs from
patients with diabetes produce excessive superoxide anions, which results from the uncoupling of endothelial nitric oxide synthase.25 Another mechanism potentially implicated in the impaired function of EPCs is the downregulation of the production of soluble factors involved in neovascularization such as VEGF and insulin-like growth factor-1. Thus, a reduced release of these factors has been shown under in vitro high glucose conditions, as well as in diabetic animal models and patients with diabetes mellitus.26,27 In addition, hypoxia-inducible factor-1 transactivation is reduced, leading to decreased hypoxia-inducible factor-1α activity under exposure to high glucose28 and reduced expression of hypoxia-inducible factor-1α in skin wounds of db/db mice.29 Recently, it has been shown that long-term diabetes not only impairs repopulation of hematopoietic progenitor cells but also dysregulates the cytokine expression in the bone marrow microenvironment in mice, suggesting that diabetes alters the stem cell niche.30 Consequently, the improvement of failed repopulation of hematopoietic progenitor cells by increased hypoxia-inducible factor-1α activity under exposure to high glucose and the inhibition of EPC recruitment. Conversely, mesenchymal stem cells, isolated from bone marrow, can be used as therapeutic vehicles that deliver genes to promote antiangiogenic effects because they share the same property as EPCs to home tumor cells.41 Mesenchymal stem cells may then represent an alternative source of neural progenitor cells for organ regeneration through their differentiation into classical mesenchymal and neuronal lineages.41 These authors have obtained mesenchymal stem cells by infection with modified adenoviral vector encoding human interleukin-2. Intratumoral injection of these cells caused an antitumor effect accompanied by delayed tumor growth and prolonged the survival of tumor-bearing rats.41 These data suggest that engineered stem cells could be used as new therapeutic approaches for refractory tumors.

Exacerbated Angiogenesis in Cancer

Cancer progression is dependent on abnormal angiogenesis, in particular, exacerbated neovascularization forms new blood vessels that supply adequate nutrients, oxygen, and growth factors to facilitate the growth of the tumor and metastasis development.31 Tumor angiogenesis results from an imbalance of proangiogenic and antiangiogenic factors released from tumor cells, in turn leading to erratic and irregular angiogenesis, which is characterized by poorly formed vasculature.52 Elevated levels of proangiogenic factors have been detected in cancer patients and a negative correlation has been reported between the levels of proangiogenic factors and their poor outcome.33,34 For instance, circulating levels of soluble VEGF receptor-1 are increased in hepatocellular carcinoma and are associated with poor survival in these patients.35 Also, patients with breast cancer have higher plasma VEGF and angiogenin levels than control subjects;26 and in metastatic gastric patients, VEGF and regulated-on-activation normal T-cell-expressed and secreted levels correlate with the severity of the metastasis.57 Endothelial cells that are implicated in tumor angiogenesis divide more rapidly and express higher levels of immature phenotype markers such as the tyrosine kinase receptors Flk-1 and Tie-2 compared to normal endothelial cells, which is indicative of aberrant endothelial function in cancer.38,39

EPCs have been detected at increased frequency in the circulation of cancer patients. Also, tumor production of VEGF was found to correlate with EPC mobilization.40 A novel approach to block tumor angiogenesis may be through the inhibition of EPC recruitment. Conversely, mesenchymal stem cells, isolated from bone marrow, can be used as therapeutic vehicles that deliver genes to promote antiangiogenic effects because they share the same property as EPCs to home tumor cells.41 Mesenchymal stem cells may then represent an alternative source of neural progenitor cells for organ regeneration through their differentiation into classical mesenchymal and neuronal lineages.41 These authors have obtained mesenchymal stem cells by infection with modified adenoviral vector encoding human interleukin-2. Intratumoral injection of these cells caused an antitumor effect accompanied by delayed tumor growth and prolonged the survival of tumor-bearing rats.41 These data suggest that engineered stem cells could be used as new therapeutic approaches for refractory tumors.

Microparticles: Composition and Effects on Target Cells

During cell activation by chemical (apoptotic, proinflammatory, prothrombotic) or physical (shear stress) stimuli, intracellular events and plasma membrane changes occur, leading to plasma membrane blebbing and the subsequent MP release. MPs are heterogeneous in size (0.1 μm–1 μm) and their composition depends on both cell origin and stimulation implicated during their generation. Thus, all types of cells can theoretically release MPs at each stage of their lifecycle, but the intracellular mechanisms involved in MP formation are not completely elucidated. It is widely accepted that a sustained increase in intracellular calcium concentration and the disruption of proteins associated with cytoskeleton are essential for MP formation and release; however, the intermediary steps connecting extracellular stimulation with MP release are not entirely known. The aim of this review is not to describe the mechanisms implicated in MP formation, which has been developed by other authors,42,43 but rather to summarize the number of intriguing biological properties associated with angiogenesis exhibited by MPs.

MPs are detectable in plasma from healthy subjects and, in general, their circulating levels are enhanced in pathological situations.44–47 Based on the differential profiles of proteins, lipids, and nucleic acids (DNA, mRNA, microRNA) that they can convey depending on their origin (cell stimulation and healthy vs disease) and on their ability to create a communication network between cells, it is plausible to use MPs as therapeutic tools. In this context, ligands carried by MPs can directly interact with receptors in target cells and induce signal transduction. In addition, membranes of MPs can fuse with the plasma membrane of target cells, leading to the transfer of membrane components and delivery of MP cytoplasmic content. This results in the activation or inhibition of intracellular pathways of target cells or in the modification of their phenotype. Regarding the MP effects have on angiogenesis, they can induce production of proangiogenic or antiangiogenic factors,48,49 modify endothelial cell function concerning adhesion, migration, or proliferation,48 the 3 key steps in the formation of new vessels, and induce an increase in marker expressions of EPC differentiation toward endothelial mature cells. In this review, we summarized the therapeutic potential of MPs isolated using speed sedimentation <100 000 g and those of exosomes (<0.1 μm) that are secreted from multivesicular compartments by fusing with the plasma membrane, and their isolation requires ultracentrifugation (>100 000 g).52

Effects of MPs on Endothelial Cell Functions Leading to Angiogenesis

MPs can affect angiogenesis by inducing changes in the secretome of endothelial cells, either increasing the produc-
tion of proangiogenic factors or decreasing the production of antiangiogenic factors.48,49 Furthermore, MPs can modify all steps leading to angiogenesis (Figure 1, Table).

Few studies have analyzed the effects of total circulating MPs, the physiological or pathophysiological real conditions, on angiogenesis. Recently it has been shown that endothelial-derived MPs induce endothelial angiogenesis through the transfer of miRNA-126 and the subsequent activation of the CXCL12/CXCR4 pathway. MPs derived from apoptotic/activated T-lymphocytes through the interaction of Sonic hedgehog (Shh) carried by MPs and their receptors in endothelial cells are able to enhance nitric oxide production and VEGF release and induce angiogenesis.

It has been shown that platelet MPs are able to modify steps involved in angiogenesis, such as proliferation, migration, and adhesion of endothelial cells. Kim et al53 were pioneers to demonstrate that platelet MPs increased proliferation, chemotactic migration, and formation of capillary-like tubes of human umbilical vein endothelial cells through a mechanism implicating lipid components of platelet MPs. The effects reported by Kim et al53 were completely abolished by the treatment of platelet MPs with charcoal, a stripper of bioactive lipids, whereas heat treatment only slightly decreased these effects. Although these effects were obtained in vitro, it should be noted that the amount of platelet MPs used can be achieved in plasma from patients with metabolic diseases such as metabolic syndrome44 and diabetes.46

MPs from leukocytes can induce differential effects on endothelial function depending on the stimulation used for their generation. MPs generated from T-lymphocytes activated with phytohemagglutin in and phorbol ester and undergoing apoptosis with actinomycin D express the morphogen Sonic hedgehog (MPsShh48,55) on their surface and promote angiogenesis. In contrast, MPs obtained from T-lymphocytes treated with actinomycin D alone and therefore do not express Sonic hedgehog (MPsShh48) inhibit angiogenesis. Apparently, the different composition of these MPs may explain the observed differences on target cells.54 Regarding the effects of these 2 types of MPs, in vitro treatment of human umbilical vein endothelial cells with MPsShh48 induced proliferation and endothelial adhesion through the increase of

Table. Origins of Microparticles Depending on their Proangiogenic vs Antiangiogenic Properties

<table>
<thead>
<tr>
<th>Proangiogenic MPs</th>
<th>Antiangiogenic MPs</th>
<th>Involved Pathways</th>
<th>Cellular Mechanisms</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating (total) MPs</td>
<td>PPAR\textsubscript{α}-dependent</td>
<td>Akt and NF-κB activation</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Platelet MPs</td>
<td>CXCR4 transfer, ERK-dependent and PI3K-dependent</td>
<td>Akt activation, proangiogenic factors, lipid component</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MPs from Activated/apoptotic T cells</td>
<td>Shh-dependent</td>
<td>NO increase, VEGF production</td>
<td>48, 55</td>
<td></td>
</tr>
<tr>
<td>MPs from apoptotic T cells</td>
<td>LDLR-dependent</td>
<td>NO decrease, oxidative stress increase</td>
<td>56, 57</td>
<td></td>
</tr>
<tr>
<td>Apoptotic endothelial cells</td>
<td>miRNA-126</td>
<td>CXCR4 pathway</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>TNF-α-stimulated endothelial cells</td>
<td>Plasmin generation</td>
<td>ND</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MPs from vitreous</td>
<td>ND</td>
<td>VEGF-independent</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>MPs from atherosclerotic plaques</td>
<td>CD40/CD40L interaction</td>
<td>VEGF production</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

ERK indicates extracellular signal-regulated kinase; LDLR, low-density lipoprotein receptor; MP, microparticle; ND, not determined; NF-κB, nuclear factor kappa B; NO, nitric oxide; PPAR, peroxisome proliferator-activated receptor; Shh, sonic hedgehog; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
intercellular adhesion molecule-1 expression and the involvement of Rho kinase and Sonic hedgehog pathways. These effects were associated with an increase in mRNA and protein expression of several proangiogenic factors (hepatic growth factor, VEGF, and interleukin-1β), indicating that Sonic hedgehog carried by MPs acts on a large number of target genes that regulate angiogenesis at different phases. More interestingly, in vivo treatment of hind limb ischemic mice with MPsShh+ enhanced the neovascularization, as reflected by the improvement of both blood flow and number of capillaries in the ischemic leg when compared with the nonischemic leg. The effects evoked by MPsShh+ were attributable to an interaction ligand (Sonic hedgehog)/receptor (patched/smoothened receptors) and were associated with an increase in nitric oxide production as a consequence of the activation of endothelial nitric oxide synthase and endogenous Sonic hedgehog pathway in ischemic muscles. Moreover, the expression of a several proangiogenic factors was increased by MPsShh+ treatment, including fibroblast growth factor-5, fibroblast growth factor-2, and VEGF. Although the mechanisms by which MPsShh+ are able to induce endogenous Sonic hedgehog expression in ischemic mice from not fully elucidated, these studies suggest a relevant potential contribution of MPsShh+ to induce reparative neovascularization after ischemic injury.

In contrast, MPs that are generated from apoptotic T-lymphocytes and that do not express Sonic hedgehog54 act to inhibit angiogenesis. By using in vitro aortic rings and an in vivo model of cornea neovascularization in mice, Yang et al56 have demonstrated that MPsShh− suppress angiogenesis and inhibit both endothelial cell survival and proliferation through the increase of reactive oxygen species generation, probably associated with an increase of NADPH activity. Likewise, MPsShh− from apoptotic lymphocytes act through the downregulation of VEGF receptor-2 and extracellular signal-regulated kinase pathways. More recently, these authors proposed MPsShh− from apoptotic lymphocytes as promising antiangiogenic agents for the treatment of lung carcinomas. In fact, intratumoral injection of these MPs decreased tumor size and vascularization and VEGF levels in mice.

Endothelial cells undergoing apoptosis are able to release MPs that display vascular protective effects, promote proliferation of endothelial cells, and inhibit endothelial apoptosis. This elegant study shows that MPs from apoptotic endothelial cells abundantly express miRNA-126, which triggers chemokine (C-X-C motif) ligand (CXCL) 12 production through chemokine (C-X-C motif) receptor (CXCR) 4 pathway; thus, MPs released from apoptotic endothelial cells may act as paracrine elements necessary to protect endothelial cells during atherosclerosis.

MPs from origins other than circulating cells also can participate in regulating angiogenesis. Interestingly, Chahed et al46 have shown that MPs from vitreous from patients with diabetic retinopathy, derived from retina and vascular cells, stimulate both in vitro endothelial cell proliferation and formation of capillary structures on Matrigel, illustrating the potential involvement of MPs on the progression of this disease. The mechanism implicated is not clear but seems independent of direct action of VEGF because MPs from vitreous did not contain detectable levels of VEGF.

In addition, MPs from atherosclerotic plaques, primarily from macrophages infiltrated in the plaque, promote endothelial cell proliferation and in vivo formation of new vessels on Matrigel plugs. The mechanism involves the interaction between CD40-ligand carried by MPs from atherosclerotic plaques and CD40 expressed in endothelial cells, as deduced by the absence of effects in CD40 knockout mice. These results suggest that during atherosclerosis, macrophage-derived MPs may trigger neovascularization of atherosclerotic lesions and participate in the plaque vulnerability.

Another interesting aspect is the ability of tumor cells to generate MPs, suggesting that they could play a critical role in angiogenesis facilitating metastasis. In particular, MPs could be involved in the interaction between tumor and stromal cells, which can regulate the mechanisms governing tumor development. This is confirmed by the fact that MPs from prostatic carcinoma cell lines induce activation of fibroblasts (extracellular signal-regulated kinase phosphorylation and matrix metalloproteinase-9 upregulation) and promote MP shedding from activated fibroblasts, which, in turn, increases migration and invasion of highly metastatic cells via the interaction between chemokine (C-X3-C motif) ligand (CX3CL1)/fractalkine ligands and its receptor, CX3CR1.

Also, several antigens identified on breast cancer tissue are expressed in circulating MPs from patients with breast cancer and lymph node metastases, suggesting that MPs could have 2 facets: (1) MPs could be used as prognostic factors and (2) proteins carried by MPs could play an important role in the progression or metastatic spread of cancer by inducing angiogenesis or alternatively by distributing various oncogenes.

MPs and EPC Function

Correction of the EPC dysfunction observed in patients with diabetes is a challenge for cell therapy. Ex vivo or in vivo expansion of EPCs as well as enhancement of the reparative potential of EPCs constitute real approaches to improve EPC function. Among the ex vivo modifications of EPCs, genetic modification of cells or pharmacological treatment have been recently reviewed by Jarajapu and Grant.21 Ex vivo incubation of EPCs with MPs may represent an alternative tool to increase number and regenerative abilities of EPCs (Figure 2).

By incubating bone marrow-derived cells with MPs, Benameur et al50 have shown that independently of the increase of the number of EPCs, treatment for 7 days with circulating MPs from mice is able to increase differentiation of these cells toward the endothelial lineage, as reflected by the increase of markers of mature endothelial cells (Flk-1, vascular endothelial-cadherin, platelet endothelial cellular adhesion molecule-1, and intercellular adhesion molecule-1), but not toward the macrophage differentiation. Interestingly, peroxisome proliferator-activated receptor-α carried by circulating MPs seems to be essential for their ability of the proangiogenic reprogramming of EPCs through the Akt and NF-κB pathway activation, because MPs obtained from knockout mice had no effect on EPC differentiation. In-
creases in the expression of proangiogenic factors induced by MPs include VEGF, stromal cell-derived factor-1, and angiopoietin-2, whereas antiangiogenic factor expression (thrombospondin-1) was decreased. Because these angiogenic factors are involved in the homing ability of EPCs, the effects induced by MPs harboring peroxisome proliferator-activated receptor-α on EPCs suggest that MPs may be involved in enhancing EPCs proangiogenic abilities. These changes lead to the in vivo formation of new vessels in Matrigel plugs. Together, these data highlight the potential use of MPs carrying peroxisome proliferator-activated receptor-α as ex vivo expansion agents of EPCs.

Interestingly, similar results have been obtained by using platelet MPs. MPs obtained from in vitro activated platelets increase the ability of 7-day cultured angiogenic early outgrowth cells (which exhibit phenotypic features of myeloid and endothelial cells and are known as EPCs) isolated from peripheral blood to regenerate vascular injury. These effects include changes in the phenotype of these cells such as increased expression of the endothelial markers (CD31 and vascular endothelial-cadherin) and CXCR4, indicating their maturation toward endothelial cells. Furthermore, platelet MPs enhance Akt activation in response to CXCL12 on angiogenic early outgrowth cells, suggesting a sensitization of CXCR4 pathway by platelet MPs. Also, treatment of platelet MPs to promote new vessel generation and may constitute an effective therapeutic tool in pathologies associated with endothelium injury by inducing a sufficient recruitment of EPCs in the sites of the vascular lesion.

Several reports show that MPs from endothelial cells also can affect EPC function and angiogenesis. MPs from apoptotic endothelial cells are able to activate a proangiogenic program in 7-day cultured human EPCs isolated from peripheral blood, increasing their number and inducing differentiation toward mature endothelial cells. The mechanism involved is related to the phagocytosis of endothelial MPs by EPCs. Similarly, endothelial-derived MPs expressing urokinase-type plasminogen activator and its receptor served as a surface for the generation of plasmin and favored or inhibited tube formation by cord blood EPCs, depending on MP amounts; low amounts of endothelial-derived MPs increased tube formation and were associated with matrix metalloproteinase activation, whereas higher concentrations inhibited it.

Another in vitro study shows that MPs generated from murine apoptotic endothelial cells induce a strong differentiation of bone marrow-derived mononuclear cells from endothelial phenotype. These authors also have evaluated the effects of MPs isolated from mouse ischemic muscles. This type of MP promotes in vitro bone marrow-derived mononuclear cell differentiation and in vivo postnatal vasculogenesis through a mechanism implicating elevated reactive oxygen species production. These results suggest that MPs from ischemic tissues could act as endogenous survival signals responsible for vascular repair.

Finally, it has been recently described that stem cells can also generate MPs that may play both autocrine and paracrine roles. Interestingly, Chen et al have detected RNA and miRNA in the supernatant of mesenchymal stem cells after a 10 000g centrifugation step, suggesting that RNA was associated with MPs. Although the biological function of secreted miRNA is not completely determined, the fact that they are carried by MPs suggest that MP-associated membrane can protect miRNA against degradation by forming an adequate environment, and MPs may act as vectors of miRNA-dependent messages between cells.

Effects of Exosome-like Microvesicles on Angiogenesis

As described, cells can release another type of microvesicles named exosomes. The results published in recent years have
shown that exosomes modify the angiogenic program of endothelial cells or EPCs through the release of angiogenic factors and by acting at the different steps of angiogenesis in a similar manner to MPs. Although the aim of this review is not related to exosome effects, they represent a potential therapeutic tool; therefore, we briefly explain (by showing recent data) their potential use under several pathological conditions by acting on angiogenesis. It should be noted that the experimental protocols used to obtain exosomes do not allow the isolation of a pure population because they may contain MPs. Under this context, it is difficult to conclude whether the observed effects are induced by MPs or by exosomes.

Circulating exosomes obtained from plasma of glioma patients were positive for the mutant/variant mRNA of epidermal growth factor receptor (EGFRvIII), which defines a clinical subtype of glioma. Interestingly, these exosomes display proangiogenic properties, indicating that glioma-derived exosomes play a role in initiating angiogenesis.65 Exosomes generated from platelets present a dual effect in angiogenesis. Whereas an interesting beneficial proangiogenic potential, by delivering a cocktail of proangiogenic proteins, such as VEGF, basic fibroblast growth factor, and PDGF, has been demonstrated in a model of myocardial ischemia,46,47 Janowska-Wieczorek et al67 have shown that exosomes derived from platelets can induce angiogenesis in lung cancer, suggesting an implication in metastasis. These differences can be attributed to the different method of platelet activation to obtain exosomes and their different concentration used.

Recently, it has been shown that exosomes released by Delta-like 4–treated endothelial cells bear this protein, indicating that Notch signaling is regulated in these cells. Under these conditions, Delta-like 4–containing exosome increases capillary-like structure formation in vitro and in vivo by a mechanism that implicates the transfer of Delta-like-4 into the endothelium. This suggests that the Delta like/Notch pathway does not require direct cell–cell contact to expand its signaling potential on angiogenesis.68 Other proteins also can be carried by endothelial-derived exosomes and can be implicated in their proangiogenic potential. Taraboletti et al69 have shown that matrix metalloproteinases harbored by exosomes from endothelial cells are functionally active and lead to endothelial cell invasion and capillary-like formation. Microvesicles obtained by ultracentrifugation from EPCs isolated from peripheral blood mononuclear cells carry various mRNA associated with PI3K/Akt pathway and can exert proliferative effects and proangiogenic activity on endothelial cells, such as their organization in capillary-like structures.70 Finally, exosomes represent a delivery system that confers stability to mRNA and miRNA packaged by them and protects from external RNases by the surrounding membrane. Thus, miRNA-150 is actively secreted from monocytes into exosomes and evokes in vitro endothelial cell migration, whereas injecting mice with exosomes increases miRNA-150 in mouse blood vessels.71 Exosomes enriched in proteins72 and cell cycle-related mRNAs73 with the potential to facilitate angiogenesis and metastasis also can be released by squamous carcinoma and colorectal cancer cells, respectively. Taken together, generation of exosomes may represent an alternative approach to favor angiogenesis in pathological conditions.

Future Directions

Accumulating evidence described here suggests that MPs are important mediators of cell communication, especially between circulating cells, endothelial cells, and EPCs. Based on the effects induced by MPs on these cells, MPs represent a true therapeutic potential. An interesting aspect is the use of MPs as therapeutic tools based on the generation of in vitro-engineered MPs.74 Engineered MPs can be produced on request to modify their molecular composition and properties. Namely, it has been shown that engineered MPs can overexpress several proteins by inducing the cells from which they originate to increase protein synthesis. Two types of approaches could be considered. First, specific stimulation by pharmacological treatment of MP-producing cells evokes inclusive or exclusive protein sorting, leading to MPs with a particular composition. Thus, we have engineered MPs from activated/apoptotic T-cell lines bearing Sonic hedgehog.54

Figure 3. Future directions for the use of MPs or exosomes as therapeutic tools. Ex vivo modifications of composition of MPs48,55,75 and exosomes76,77 can be performed by inducing changes in the isolated cells through the overexpression of several desired proteins that may be transferred to EPCs or endothelial cells and, consequently, rescue the failed angiogenesis. (Illustration credit: Cosmocyte/Ben Smith).
which evoke nitric oxide production on endothelial cells, restore endothelium-dependent relaxation after ischemia-reperfusion injury, and favor in vitro angiogenesis and new vessel formation in an ischemic hind limb model.46–55 These findings suggest that MPs56—58 may represent a potent tool in stimulating neovascularization in disease states associated with impaired angiogenesis. In contrast, MPs from apoptotic T-cell line that do not express Sonic hedgehog46 inhibit angiogenesis, suggesting a potential therapy to reduce tumorigenesis via inhibition of tumor vascularization and possibly tumor development.56 Second, and because of the ability of MPs to transfer and incorporate mRNA into target cells and modify their phenotype, transfection of MP-producing cells with “new” proteins or mRNAs and their subsequent delivery to target cells may represent a new opportunity to transfer a “desired” biological message into target cells and modify their phenotype, for instance, recovering the function of mutated/failed protein (Figure 3). For instance, it has been reported that MPs from lung cells contain mRNA that can be released into bone marrow cells and induce their epigenetic reprogramming by transfer of genetic material, thereby modulating their phenotype.76 This promising approach has been validated, under pathological conditions, with other types of microvesicles. Akao et al77 have recently shown that transfected miRNA molecules in human monocytes are released from these cells as contents in microvesicles. In this form, microvesicle-entrapped miRNA remains degraded and are recruited into tumors. Likely, they could exhibit an antitumor effect in tumor-bearing mice. However, further experiments are needed to evaluate the therapeutic potential for patients.

Overall, MPs are complex entities that display a large number of activities affecting cells involved in angiogenesis. Although the mechanisms involved in these effects are not completely understood, considerable efforts are performed to attempt to use MPs as autologous therapeutic tools in diseases associated with altered angiogenesis. Future investigations should be addressed to combine beneficial effects of MPs and exosomes, because both are complementary in inducing angiogenesis regulation. Another important aspect is related to the complex composition of MPs and exosomes. Proteomic analyses are needed to identify all components of these microvesicles to provide extensive evidence about their side effects.

Acknowledgments

The authors thank Dr Melissa Page for critical reading of and English corrections in this article.

Sources of Funding

This work was partially supported by Agence Nationale pour la Recherche-07-PHYSIO-010-01 and Fondation de France (2007001918).

Disclosure

None.

References

Microparticles in Angiogenesis: Therapeutic Potential
M. Carmen Martinez and Ramaroson Andriantsitohaina

doi: 10.1161/CIRCRESAHA.110.233049

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/109/1/110

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/