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verge in the phosphorylation of several proteins (eg, both
enzymes specifically induce phosphorylation of Ser 23/24 in
Tnl'15144). With respect to organelle communication, PKA
and PKG phosphorylate proteins that are located in different
cellular compartments: SR (PKA/PKG: ryanodine receptor
and PLB); myofilaments (PKA/PKG: Tnl; PKA: myosin
binding protein C); mitochondria (PKA/PKG: mitochondrial
ATP-regulated potassium channel); and sarcolemma (PKA/
PKG: L-type Ca>" channel).!"145-147 Phosphorylation via
these kinase signaling cascades can be important in transmit-
ting signals throughout the cell and coordinating the action of
several organelles. Recently, an impressive 20 443 phos-
phopeptides where quantified in a single study.'#8 Although
this was done in HeLa cells, similar levels will most likely
occur in cardiomyocytes. Other PTMs that have been suc-
cessfully enriched for are acetylation, methylation, ubiquity-
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Figure 3. Proteomic to study PTM reg-
ulation of protein-protein interaction.
Proteins and protein complexes can be
alternatively separated from organelles,
such as mitochondria. As an example,
schematically presented, ATP-synthase
(complex V) can be denatured into its
individual subunits or separated as a
whole. The Prst approach is more suit-
able to monitor PTMSs, the latter provides
information on complex composition.
The integrated analysis of the two strate-
gies can indicate the role of PTMs in
complex formation. (lllustration credit:
Cosmocyte/Ben Smith).

lation, and glycosylation,'# but such investigation in the
cardiac system remains recent.

Organelles Physical Connection: One Ring to Rule
Them All

Organelles can also communicate through the physical con-
nection mediated by the cytoskeleton. For instance, the many
interactions between intermediate filaments (IFs), and all
major cell compartments make them strong candidates to
mediate organelles communication.'> In the heart, IFs are
constituted by desmin and have been found to regulate the
function of myofilaments,'5%!5! mitochondria,'> and gap
junctions.'s2 The central role of IFs in HF is corroborated by
recent proteomic studies that investigated all major subpro-
teomes of the cardiac cell and found that modified desmin
forms were altered as a common denominator. The increase

Figure 4. Organelle dyscoordination in
heart failure. Schematic presentation of
features in a failing cardiomyocyte:
increased neurohormonal stimulation
and mechanical stress affects cellular
contractility, energy metabolism, con-
duction, intracellular signaling, and cell
structure mislocalization. We propose
that dysregulation of various organelles
could be considered another feature of
the failing heart. We further hypothesize
that this is regulated through changes

in the homeostasis of second messengers,
resulting in dynamic regulation of PTMs,
and by the disruption of cytoskeletal
structures such as IFs. D indicates des-
mosome; G, gap junction; MT, mito-
chondrion; MYO, myoblament.
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of desmin PTM forms with disease is a consistent observation
from proteomic studies that investigated various human and
animal models of HF, so it is highly unlikely that its
alterations are nonspecific.%8153-162

Desmin coenriches with the myofilament fraction of the
proteome because IFs are “wrapped” around the sarcomeres
and keep them aligned.!>° Desmin mutations cause contractile
failure, and it was recently postulated that the misalignment
of the sarcomeres that arises when desmin cytoskeleton is
disrupted may represent a cause of contractile failure itself
(Figure 4).159.162 Qur group has recently reported that the
levels of PTM forms of desmin are altered in the mitochon-
drial fraction of a canine model of HF compared with both
shams and animals rescued by cardiac resynchronization
therapy.>® This observation opens an interesting line of
investigation, because desmin is known to regulate mitochon-
drial positioning and behavior through, albeit, an unknown
mechanism.>'>5> One potential explanation is that desmin,
maintaining the spatial organization between sarcomeres and
mitochondria, ensures that energy production and consump-
tion are properly coupled (Figure 4). In addition, the integrity
of IFs cytoskeleton plays a major role in cardiac conduction
because gap junction localization at the intercalated discs is
ensured by desmin through the interaction with the desmo-
somes (Figures 1 and 4).!52 Lateralization of gap junctions,
which is observed in the failing heart, may be a cause of
arrhythmias, and can be induced by mutation of desmin or
desmosomal proteins, at the sites of interaction with the IFs.!®
Moreover, a number of novel functions have been attributed
to the IFs in the heart, including the regulation of the cardiac
commitment of stem cells,'® of autophagy,'” and, more
recently, of translation.'® We believe that PTMs finely regu-
late these functions of the IFs.

Quantification of desmin in human HF, using immuno-
staining techniques, has generated controversial results be-
cause different groups reported either an increase or the
absence of desmin in the cardiomyocytes of HF patients
compared to healthy subjects.'®31%+ On the other hand,
desmin quantification by 2DE has shown that multiple PTM
forms of the protein are increased during human HF.!®* We
reported the increase of modified forms of the protein in
cultured cardiomyocytes that become hypertrophied with
endothelin-1 treatment.!>> Therefore, we postulate that the
discrepancy generated by immunodetection studies may be
attributable to PTMs. This exemplifies how proteomics could
help in deciphering the molecular reasons for this controversy
and, most importantly, the biological value of these modifi-
cations. A detailed characterization and quantification of
desmin PTM species not only would help elucidate the
functions of the IFs in the heart but could also highlight novel
candidate biomarkers for cardiac disease.!>”

Several groups have reported changes in desmin-modified
forms with disease, in vivo, and Capetanaki et al established
a causal link between desmin modification and the formation
of aggregates in a transgenic mouse model of HF.'S The
increase of an “acidic” form of desmin by 2DE was reported
in the same study. However, despite the existence of several
reported in vitro desmin modifications, desmin PTMs have
been characterized in detail in vivo only recently. We

identified the first phosphorylation sites of desmin in the
heart and linked them to HF in both a canine model and in
humans.’>” Desmin has also been found phosphorylated or
acetylated in noncardiac cells and tissue!'0%148:.165; this was
unexpected, because desmin is thought to be specifically
expressed in myocytes. The discoveries of desmin PTMs
open new and exciting lines of investigation to address the
functional roles of these modifications, particularly in HF.

In conclusion, the disruption of IF networks affects the
function of at least 3 of the most important cell compartments
in the heart and possibly regulates many other aspects of cell
function as well. Desmin phosphorylation and proteolysis
have been long-known regulators of its assembly and func-
tion in vitro,'0%167 yet without site information, in vivo,
progress has been hampered. Further study of the biological
role played by these PTMs will be helpful in elucidating the
mechanisms that lead to IF lattice modification during HF
and its effect on organellar interplay.

Conclusions and Future Perspectives
There is a need to develop novel, experimental approaches to
study HF. We have reviewed how proteomic studies and
technologies have enhanced our understanding and revealed
new levels of complexity in HF at the cellular, organelle, and
protein levels. Integration of data obtained from different
subproteomes and system-wide proteomic studies is impor-
tant in understanding cellular phenotypes. We have empha-
sized the need to understand the complex and coordinated
interplay between organelles. We hypothesize that the mech-
anisms involved in synchronizing different cellular compart-
ments may be disrupted with HF. Furthermore, we propose
that the regulation and end effectors of this communication
reside, at least in part, with the induction of PTMs of target
proteins. The quantification and characterization of proteome
changes are a necessity and will drive the development and
adaption of new proteomic approaches. In this way, we will
eventually understand the global communication that drives
the cellular phenotype.
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Online Figure I.LMRM quantification of modified and unmodified peptides by triple Q MS. (A)

Initial digestion of proteins into peptides. (B) The peptide mixture is injected in the triple quadrupole MS, where
the quadrupole Q1 is used to select a specific peptide (parent). The parent ion is fragmented in the Q2 and
transition (daughter) ions are monitored in the Q3. Relative quantification is obtained by comparing the spectral
count from different transitions. Normally, five to six pairs (parent and daughter) for each peptide are monitored

in order to achieve a reliable quantification. D: detector.
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Online Table llI: Selected protein databases

Database

Features

link

NCBI

Merging annotations from GenBank, RefSeq,
TPA, SwissProt, PIR, PRF and PDB

The most comprehensive resource of protein
sequences (ref Martens L. Methods Mol Biol.
2009)

Heterogenic in sequence reliability, annotation,
and peptide sequence redundancy (ref Martens
L. Methods Mol Biol. 2009)

Limited additional biological information
Curated by the National Center for
Biotechnology Information (NCBI) at the
National Institutes of Health (NIH)

ncbi.nlm.nih.gov/protein

Uniprot Protein
knowledgebase
(UniprotKB)

Including both manually (Swiss-Prot) and
automatically annotated (TrEMBL) entries
Currently containing more than 519 300 curated
entries

No particular focus regarding species or PTMs
Extensive additional biological information
Curated by UniProt comprising the European
Bioinformatics Institute (EBI), the Swiss Institute
of Bioinformatics (SIB) and the Protein
Information Resource (PIR)

www.uniprot.org

The human protein
reference database
(Hprd)

Manually curated

Currently comprising more than 93 700 PTMs
Restricted to the human proteome

Curated by The Pandey lab and the Institute of
Bioinformatics at Johns Hopkins University.

www.hprd.org

PhosphositePlus®

Manually curated

Currently containing more than 71 400 curated
entries on phosphorylation sites

Major focus on phosphorylation sites in mouse
and human

Including non published PTMs from Cell
Signaling Technology (CTS)

Curated by CTS

www.phosphosite.org




