Variability in Timing of Spontaneous Calcium Release in the Intact Rat Heart Is Determined by the Time Course of Sarcoplasmic Reticulum Calcium Load

Background: Abnormalities in intracellular calcium (Ca) cycling during Ca overload can cause triggered activity because spontaneous calcium release (SCR) activates sufficient Ca-sensitive inward currents to induce delayed afterdepolarizations (DADs). However, little is known about the mechanisms relating SCR and triggered activity on the tissue scale.

Methods and Results: Laser scanning confocal microscopy was used to measure the spatiotemporal properties of SCR within large myocyte populations in intact rat heart. Computer simulations were used to predict how these properties of SCR determine DAD magnitude. We measured the average and standard deviation of the latency distribution of SCR within a large population of myocytes in intact tissue. We found that as external [Ca] is increased, and with faster pacing rates, the average and SD of the latency distribution decreases substantially. This result demonstrates that the timing of SCR occurs with less variability as the sarcoplasmic reticulum (SR) Ca load is increased, causing more sites to release Ca within each cell. We then applied a mathematical model of subcellular Ca cycling to show that a decrease in SCR variability leads to a higher DAD amplitude and is dictated by the rate of SR Ca refilling following an action potential.

Conclusions: Our results demonstrate that the variability of the timing of SCR in a population of cells in tissue decreases with SR load and is dictated by the time course of the SR Ca content. (Circ Res. 2010;107:1117-1126.)

Key Words: arrhythmia ■ Ca\(^{2+}\) sparks ■ Ca\(^{2+}\) transients ■ sarcoplasmic reticulum

Delayed afterdepolarizations (DADs) were identified in the early 1970s as the cause of various triggered arrhythmias.\(^{1-4}\) It was subsequently reported that DADs themselves are caused by Ca-sensitive inward currents, primarily forward mode Na/Ca exchange (NCX) activity, in response to spontaneous Ca release (SCR) from the sarcoplasmic reticulum (SR), which typically occurs under Ca overload conditions.\(^{5-10}\) Further studies demonstrated that SCR\(^{11-13}\) is attributable to spontaneous Ca sparks, which induce subcellular Ca waves. More recently, using confocal microscopy, measurements of membrane potential and Ca have been made in individual myocytes in the intact heart under Ca overload conditions. This study\(^{14}\) showed that the latency to the first wave was the best predictor of DAD magnitude in individual myocytes and that faster heart rates shortened latencies and increased DADs in parallel. Triggered beats occurred as the result of faster waves and shorter latencies among myocytes, suggesting that shorter latencies occur during Ca overload and that DADs were the result of shortened latencies, just as anticipated from early microelectrode\(^{1,2,4}\) and voltage clamp\(^{5,15,16}\) studies. However, despite this and other extensive studies of the properties of SCR, the mechanisms that determine the timing of SCR within single cells and within a population of cells in intact tissue are not clear. A deeper understanding of these mechanisms is essential to understanding the emergence of Ca-mediated triggered arrhythmias in cardiac tissue.

The precise relationship between SCR and the formation of triggered activity in tissue is not well understood. One major reason is that depolarization in tissue is dependent on the activity of the population of cells within a volume dictated by the electrotonic length constant. Thus, the timing and morphology of a DAD is dictated by the average behavior of several hundreds to thousands of cells in tissue. Furthermore, the timing of SCR within an individual cell is a stochastic process, which is likely dictated by the random fluctuations of
Ryanodine receptor (RyR) channels and the local subcellular Ca concentration. Thus, to fully understand the timing of triggered activity in heart tissue, it is necessary to quantify the statistical distribution of SCR within a cell and also across a population of cells in myocardium. In particular, it is necessary to quantify the relative timing of SCR between cells and to determine the factors that dictate this timing. These studies will be crucial to uncover the underlying mechanisms that determine the timing of Ca-mediated triggered activity in cardiac tissue.

In this study, we used laser scanning confocal microscopy to image subcellular Ca events within individual myocytes and also within a population of cells in the intact heart. The goal was to understand the mechanism by which SCR across a wide cell population can summate to induce triggered activity on the tissue scale. To accomplish this, we measured key statistical properties of SCR across a large population of cells and under different SR loading conditions. In particular, we measured (1) the number and timing of spontaneous Ca waves which summate to form an episode of SCR within a single cell and (2) the first latency distribution of SCR across a population of cells in the intact heart tissue. To interpret our experimental data, we also implemented a detailed mathematical model of subcellular Ca at the cell and multicellular levels. We used this combination of experimental and computational approaches to investigate the underlying mechanisms that dictate the timing of Ca-mediated triggered activity in the heart.

Methods
An expanded Methods section is available in the Online Data Supplement at http://circres.ahajournals.org.

Confocal Imaging in Whole Rat Heart
Detailed methods used in this study have been provided in recent publications and are included in the Online Data Supplement. Briefly, male Sprague–Dawley rats were used in this study according to animal use protocols approved by the Northwestern University Institutional Animal Care and Use Committee and to NIH guidelines. Each heart was removed and placed on a Langendorff apparatus in an experimental chamber on the stage of a Zeiss LSM510 laser scanning confocal microscope (26°C). The heart was loaded with fluo-4 acetoxyethyl ester (10 to 15 μmol/L, 1 hour) and then washed in normal solution and recirculated with cytochalasin-D (50 μmol/L) and blebbistatin (7 μmol/L) to stop contraction. Line scan imaging of single cells and of multicellular sites was then initiated (1.92 ms/scan, 512 pixels/line) at basal pacing (basic cycle length [BCL]=500 ms) or during rapid pacing (BCL=200 ms) for 10 seconds followed by a 3-second pause. Each rapid pacing protocol was repeated 5 to 8 times at each test BCL to obtain accurate estimates of the mean and SD of the latency to first SCR. Extracellular [Ca] ([Ca]e) was increased sequentially by 1 mmol/L (until arrhythmias developed) and the pacing protocols were repeated at each test BCL. The timing from the last stimulated beat to the peak of each wave was measured using Zeiss LSM software in each myocyte for all replicate pacing trials.

Computer Modeling
To model the spatiotemporal distribution of calcium in cardiac cells, we implemented a recently developed mathematical model developed by Restrepo et al.20 The cardiac cell is represented as a collection of spatially distributed subcellular compartments that contain key elements of the Ca cycling machinery. Each element or Ca release unit (CRU) contains 1 to 5 L-type Ca channels and a cluster of 100 RyR channels. The stochastic dynamics of ion channels are simulated by computing the transition probabilities using experimentally based rate constants. To describe subcellular Ca dynamics, we model a cell as a linear array of 200 CRUs that are diffusively coupled. Details of the mathematical model are given in Chen et al.21

Results
Experimental Studies
Characteristics of Spontaneous Ca Release in Individual Myocytes in the Intact Heart
In the first series of experiments, we measured the characteristics of SCR under conditions of increasing SR Ca load, by increasing both [Ca]e and pacing rate. Figure 1A through 1C shows line scan images recorded from single myocytes in whole rat hearts paced at a BCL=500 ms at [Ca]e of 4, 5, and 6 mmol/L. Each image was recorded along the long axis of a single myocyte in the intact heart. Average fluorescence intensity is shown below each image. Figure 1D through 1F shows results at BCL=200 ms at the same [Ca]e. From these images, we can infer basic properties of SCR as a function of increasing SR load. First, SCR occurs as Ca waves that originate at distinct sources or initiation sites in the cell. We refer to these wave initiation sites as spontaneous Ca release sources (SCRS). Second, once a Ca wave is initiated, it propagates until it collides either with the cell boundary or with waves originating from other SCRS. Therefore, SCR can be divided into distinct episodes of wave initiation and propagation. For example, in Figure 1C where intermediate Ca overload is induced at high [Ca]e but low heart rate, SCR consists of one set of waves originating from two SCRS followed by a Ca wave from a single source that occurs after ≈1000 ms. In contrast, when Ca overload is maximal because of high [Ca]e and rapid pacing (Figure 1F), four distinct SCR episodes occur at intervals of roughly 500 ms. We will refer to an episode of SCR as a single occurrence of wave initiation, propagation and extinction. We found that, as [Ca]e was increased, there were distinct changes in the subcellular Ca release activity including an increase in the number of SCRS for all episodes of SCR and a decreased coupling interval from the last stimulated beat to the first SCRS. Note, however, that the peak average fluorescence of each Ca wave (red vertical lines) occurs earlier with increasing Ca overload induced by the combination of high [Ca]e and rapid pacing. In addition, the interval between episodes of SCR also decreased as Ca overload increased, especially during rapid pacing. When we measured the number of initiation sites and prop-
Agitation velocity for each wave, we found that increasing both
$[\text{Ca}]_e$ and heart rate increased both wave properties. The summary data in Figure 2A and 2B shows that the number of initiation sites increases significantly as $[\text{Ca}]_e$ increases, an effect that is exaggerated when SR load is further increased by rapid pacing. At slower pacing (BCL = 500 ms), there seems to be a plateau effect in which the number of sites no longer increases between $[\text{Ca}]_e$ = 5 and 6 mmol/L. Furthermore, the velocity of wave propagation increases with increasing SR Ca load, an effect that is more pronounced when additional SR loading is induced by rapid pacing (Figure 2C and 2D).

Timing of SCR in a Population of Myocytes in Intact Heart

To investigate the properties of SCR at the multicellular level, we performed transverse line scan recordings to image Ca cycling behavior in a large population of myocytes. In this way, we could record the spatiotemporal properties of SCR simultaneously in 10 to 12 cells per site, and then from multiple sites in each heart. Figure 3A through 3C shows a transverse recording of the last stimulated Ca transient following pacing at BCL = 500 ms, with the average fluorescence intensity profile shown below. Each image was recorded across the short axis of each myocyte (separated by dotted white lines) in the intact heart. At $[\text{Ca}]_e$ = 4 mmol/L (Figure 3A), a few myocytes demonstrate very late waves after pacing. Because $[\text{Ca}]_e$ was increased to 5 and 6 mmol/L (Figure 3B and 3C), more cells demonstrated SCR and the latency to the first wave was decreased. The time to peak of the average fluorescence intensity (red vertical line) was also

![Figure 1. Line scan images of SCR waves in single cells recorded in whole rat heart.](image1)

Figure 1. Line scan images of SCR waves in single cells recorded in whole rat heart. Each image was recorded along the long axis of a single myocyte in the intact heart. **A through C**, Line scan images at BCL = 500 ms, with the last 2 stimulated responses followed by a pause at $[\text{Ca}]_e$ = 4, 5, and 6 mmol/L, respectively. **D through F**, Results at BCL = 200 ms (pause following last 5 stimulated beats) at their respective $[\text{Ca}]_e$. Average fluorescence profiles are shown below each image, with vertical red dashed lines indicating timing of peak fluorescence, and ECG recordings are shown at the bottom of each panel. Red arrows indicate the peak of DAD on the ECG.

![Figure 2. Summary of properties of SCR in single cells.](image2)

Figure 2. Summary of properties of SCR in single cells. **A and B**, Summary data about Ca wave velocity during basal and rapid pacing in myocytes in situ at different $[\text{Ca}]_e$. **C and D**, Summary showing increase in the number of initiations sites recorded with increasing $[\text{Ca}]_e$ during basal and rapid pacing. Results were obtained from 3 to 5 hearts and 6 to 22 myocytes for each condition.
Figure 3. Line scan images of SCR waves in multicellular recordings of ventricular myocytes in whole rat heart. Line scan images of SCR waves in individual cells recorded with the scan line placed transversely across multiple cells on the epicardial surface. A through C, Line scan images at BCL=500 ms, with the last stimulated beat followed by a pause at [Ca]c=4, 5, and 6 mmol/L, respectively. D through F, Results at BCL=200 ms at the respective [Ca]c. White dotted lines separate individual myocytes. Average fluorescence profiles are shown below each panel, with vertical red dashed lines indicating timing of peak fluorescence. *Extrasystole.

Online Video S1 shows the timing of SCR during Ca overload induced by high [Ca]c (5 mmol/L) following rapid pacing. The first portion of the movie shows normal intracellular Ca transients in each myocyte in the field of view during pacing at BCL=500 ms and then during rapid pacing at BCL=200 ms. After pacing is stopped, there is a brief pause after which all myocytes demonstrate waves that occur over a short period of time (several hundred milliseconds) after which episodes of SCR occur randomly among all cells. There is also a single extrasystole that occurs after SCR events stop. Pacing is then resumed for the last few seconds of the video, as demonstrated by the resumption of simultaneous activation of all myocytes in the field. This video demonstrates clearly the fact that the first Ca waves occur with a short coupling interval and nearly simultaneously across many cells during SR Ca overload.

Timing of SCR at Higher Temperatures
Because most physiological processes are greatly accelerated at warm temperatures, we wanted to investigate how the timing of SCR is affected at normal body temperature.

Table. Summary of Latencies and SD for SCR in Whole Heart

<table>
<thead>
<tr>
<th>[Ca]c (mmol/L)</th>
<th>Mean Latency at BCL=500 ms</th>
<th>Mean Latency at BCL=200 ms</th>
<th>SD of Latency at BCL=500 ms</th>
<th>SD of Latency at BCL=200 ms</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1581 ± 379 (24)</td>
<td>821 ± 35 (63)</td>
<td>379 ± 32 (24)</td>
<td>155 ± 11 (32)</td>
<td><0.001</td>
</tr>
<tr>
<td>5</td>
<td>1481 ± 65 (58)</td>
<td>785 ± 35 (89)</td>
<td>333 ± 21 (58)</td>
<td>147 ± 11 (89)</td>
<td><0.001</td>
</tr>
<tr>
<td>6</td>
<td>1372 ± 42† (56)</td>
<td>551 ± 17† (69)</td>
<td>271 ± 14† (56)</td>
<td>103 ± 6† (69)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Results were obtained from 5 hearts. *P<0.05 compared with 4 mmol/L; †P<0.05 compared with 5 mmol/L. Numbers in parentheses indicate the number of myocytes.

Reduced with increasing [Ca]c. Figure 3D though 3F shows results from a heart paced at BCL=200 ms with increasing [Ca]c. Following the last 2 paced beats, most cells at [Ca]c=4 mmol/L show SCR events that are late and occur with a high degree of variability. At [Ca]c=5 mmol/L, SCR in most cells occurs with a shorter first latency and there is a greater coordination among myocytes so that time to peak of the average fluorescence occurs earlier. At [Ca]c=6 mmol/L, first latencies are reduced further and the timing of SCR occurs with less variability. Notice also that an early extrasystole (*) interrupts SCR in all cells in the field of study. It is not possible to determine the site of origin of the extrasystole but note that it coincides with the point when SCR occurs in most of the cells in the experimental field, indicating that either the site of origin is nearby or that SCR is occurring with fairly uniform timing throughout the heart. In either case, these results indicate that increasing SR Ca load causes the synchronization of SCR events among myocytes of intact heart by the same processes observed in individual cells.

Results summarizing timing of SCR are shown in the Table. The data demonstrate that the latency to the first SCR waves decreases and the SD of the first latency also decreases as [Ca]c and pacing rate increase. The net result is that SCR among many myocytes occurs earlier and over a shorter period of time and will therefore determine the spatiotemporal integral of Ca delivered to the NCX and the magnitude of the resulting DAD.

Because most physiological processes are greatly accelerated at warm temperatures, we wanted to investigate how the timing of SCR is affected at normal body temperature.
Because the extrusion of the fluo-4 acetoxymethyl ester is greatly enhanced at physiological temperatures, we chose to study SCR at a temperature that was nearly physiological (33°C) that allowed recordings of sufficient duration and signal strength to permit accurate measurements of SCR. Figure 4A shows confocal images from 1 heart in which $[\text{Ca}]_e$ was increased from 4 to 7 mmol/L at both BCL/11005 500 ms (Figure 4A, a through d) and BCL/11005 200 ms (Figure 4A, e through h). At the lowest level of Ca loading (Figure 4A, a), there were no Ca waves observed in any myocytes after cessation of pacing. As $[\text{Ca}]_e$ increased, more cells showed SCR events that became progressively earlier and with less variability until an extrasystole (*) was activated at $[\text{Ca}]_e/11005 7$ mmol/L. At the higher heart rate (BCL/11005 200 ms), every myocyte in the recording site gave at least one Ca wave even at $[\text{Ca}]_e/11005 4$ mmol/L. As $[\text{Ca}]_e$ was increased to 5 to 6 mmol/L (Figure 4A, f and g), SCR events occurred earlier and with less variability, often resulting in extrasystoles that occur earlier with increasing Ca load. At the highest level of Ca loading ($[\text{Ca}]_e/11005 7$ mmol/L, BCL/11005 200 ms; Figure 4A, h), SCR occurs extremely early and with such little variability that the result is an early extrasystole immediately (within 350 ms) of cessation of pacing. The summary data for all myocytes in Figure 4B show results that are nearly identical qualitatively to those presented at the lower temperature (Table). Because there were relatively few SCR waves at all $[\text{Ca}]_e$ when BCL/11005 500 ms (Figure 4A), there were not enough events to analyze statistically, so only the results at BCL/11005 200 ms are summarized in the table. Our results demonstrate that the decrease in the mean and variability of the timing for SCR with Ca load are nearly identical to those obtained at lower temperature but are greatly exaggerated at physiological temperature, which would have an enormous impact on the probability of triggered beats during SR Ca overload.

Numeric Simulation Studies

The First Latency Distribution for SCR Following an Action Potential

Here, we apply our mathematical model of the spatial distribution of subcellular Ca to uncover the underlying mechanisms which dictate the timing of SCR in cells and tissue. This model has been previously applied to understand the role of RyR coupled gating in the formation of SCR. In this context, we apply our model to investigate the shape of the first latency distribution of spontaneous Ca sparks. In Figure 5A, we show a space time plot of subcellular Ca and voltage during a simulated episode of SCR within a single cell containing 200 CRUs. In this simulation, we see that, following the last action potential (AP), an episode of SCR occurs in which spontaneous Ca sparks at two CRUs (small arrows) initiate Ca waves which propagate along the cell. To characterize the timing of SCR within a single cell, we measure the time, denoted by T, from the AP upstroke of the last stimulated beat to the first spontaneous Ca spark that initiates an episode of SCR (see large arrow in Figure 5A). To quantify this timing, we measured the first latency distribu-
tion denoted as $P(T)$, so that $P(T)dT$ is the probability that the first spontaneous Ca spark occurs in the time interval T, $T+dT$, within our spatially distributed cell model. To model the experimental results, we measured the probability distribution $P(T)$ following an action potential. To compute this probability distribution, our protocol was to fix the $[\text{Ca}]_{e}$ and then pace the cell to steady state (20 beats) at a cycle length of 500 ms, just as in the experiments described above. After the last paced beat, we measured the time T at which the first spontaneous Ca wave occurred. In Figure 5B, we plot the distribution $P(T)$ for external Ca concentrations of 4, 5, and 6 mmol/L. In Figure 5C and 5D, we plot the mean and SD of the first latency distribution as a function of $[\text{Ca}]_{e}$. These results show that both the mean and SD of the first latency distribution decrease as $[\text{Ca}]_{e}$ is increased. Thus, as in the experiments, the timing variability of SCR decreases substantially with increasing SR Ca content.

The SR Load Dependence of SCR

To understand the relationship between $[\text{Ca}]_{e}$ and the shape of the first latency distribution, we note that the timing of SCR is dictated by the statistical behavior of spontaneous Ca sparks following an AP. Thus, we first investigated the factors which control the probability that a single CRU will fire spontaneously. Our simulations demonstrate that the most important factor that regulates the timing of spontaneous Ca sparks is the SR load. As a starting point, we first evaluated the functional relationship between $[\text{Ca}]_{e}$ and the SR $[\text{Ca}]$ ([Ca]$_{sr}$). In Figure 6A, we plot the steady-state relationship between $[\text{Ca}]_{e}$ and $[\text{Ca}]_{sr}$ at a cycle length of 500 ms. As expected, we found that the steady-state $[\text{Ca}]_{sr}$ is directly proportional to the $[\text{Ca}]_{e}$. Thus, varying $[\text{Ca}]_{e}$ is effectively the same as changing the SR Ca content.

The previous results (Figure 5B) reveal that the timing of SCR is dependent on the SR load. However, it is difficult to discern the precise relationship because the SR load is changing in time following cell-wide release triggered by the AP. Thus, we have designed a set of simulations to compute the first latency distribution of SCR at fixed SR load. To investigate this relationship, our protocol was to pace the cell for 20 beats (BCL=500 ms) until steady state is reached. We then measured the maximum $[\text{Ca}]_{sr}$ and then clamped the SR load at that concentration. Holding the SR load fixed, we then proceeded to measure the timing of SCR. In this way, we could evaluate the first latency distribution of SCR at a fixed SR concentration that corresponds to steady state. In Figure 6B, we plot the first latency distribution of spontaneous Ca sparks in the absence of an AP and when the SR load was held constant. Here, we see that the first latency distribution can be well approximated by an exponential distribution $P(T)=\Gamma \exp(-\Gamma T)$, where the quantity Γ gives a measure of the rate at which spontaneous Ca sparks are formed in the cell, i.e., the quantity Γdt gives the probability that a spontaneous Ca spark is formed in the cell within a given time interval dt. To estimate the rate Γ, we fit an exponential curve to the distributions shown in Figure 6B and, in Figure 6C, we plot Γ as a function of SR load. This plot indicates that the spontaneous spark rate increases rapidly with SR Ca load.

Figure 6B and 6C shows that the first latency distribution of spontaneous Ca sparks in a cell is extremely sensitive to
the SR load. Thus, to understand the shape of \(P(T) \) (Figure 6A), it is necessary to track the time course of the SR load following an AP. In Figure 6D, we plot the time course of the SR Ca content during a 2500-ms pause after the 20th paced beat at a pacing cycle length of 500 ms. This shows that as the initial SR Ca concentration \([\text{Ca}^2+]_{sr}\) is increased, the rate at which Ca is pumped back into the SR and the maximum \([\text{Ca}^2+]_{sr}\) both increase. This result implies that the average and SD of the first latency distribution \(P(T) \) decrease with increasing initial SR load, because more spontaneous Ca sparks occur earlier and with less variability owing to the faster SR recovery rate at increasing SR loads. Furthermore, we also note that Figure 5B indicates that the first latency distribution for \([\text{Ca}^2+]_{e}=4 \text{ mmol/L}\) rises earlier than at \([\text{Ca}^2+]_{e}=6 \text{ mmol/L}\). This result is explained by the fact that there is greater SR depletion when the initial SR load is larger. Thus, the \([\text{Ca}^2+]_{sr}\) starts at a higher value following depletion at \([\text{Ca}^2+]_{e}=4 \text{ mmol/L}\) than it does at \([\text{Ca}^2+]_{e}=6 \text{ mmol/L}\). Therefore, spontaneous Ca sparks occur earlier when the SR is depleted at lower concentrations. These results indicate that the time course of the SR load, following Ca depletion of the SR, dictates the shape of the first latency distribution.

DAD Amplitude Is Correlated With the Variability of Timing of SCR

SCR is arrhythmogenic because Ca delivered to the cytoplasm activates Ca-sensitive inward currents that cause DADs. Here, we apply our mathematical model to explore the relationship between the timing variability of SCR events and the morphology of the corresponding DADs. In Figure 5A, we plot the voltage time course during SCR and indicate the corresponding voltage deflection \(\delta V \) (see inset), which is the voltage difference between the first minimum and maximum voltage after the last AP. In Figure 7, we plot the average voltage deflection \(\delta V \) as a function of the SD of the first latency distribution. To generate this curve, we compute the average voltage deflection for 500 independent simulations run for a range of initial SR loads. This result indicates that the average voltage deflection increases rapidly as the SD of the first latency distribution decreases. Thus, DAD amplitude increases substantially as the variability in timing of spontaneous Ca sparks decreases.

Discussion

Timing of SCRS Dictates Rate of Ca Release During SCR

In this study, we have investigated the spatiotemporal properties of subcellular Ca during SCR in the intact heart. At the single-cell level, overall SCR is dictated by the number and timing of SCRS and the propagation characteristics of Ca waves that emanate from these SCRS. Interestingly, in nearly all cases, we find that Ca waves propagate in the cell and only extinguish when they collide with waves that emanate from other SCRS or when they collide with the cell boundary.
Thus, our data indicate that essentially all CRUs in the cell
are recruited during an episode of SCR, at least in normal
heart. As the SR load is gradually increased by increasing
\([\text{Ca}^+]_c\), we found that the first episode of SCR occurs earlier
following the last AP, and the time between distinct SCR
episodes decreases. In addition, the number of SCRS per SCR
episode and the velocity of Ca waves both increase. These
findings shed light on the factors that govern the rate of Ca
release into the cytoplasm during SCR. An examination of
Figure 1 and the corresponding summary data (Table) reveal
that the duration of an episode of SCR is extremely sensitive
to \([\text{Ca}^+]_c\) and pacing rate. From these confocal images, we can
calculate the duration of an episode of SCR by computing the
time from the first SCRS to the time when the last wave was
extinguished at the cell boundary. For example, the duration
of the first episode of SCR in Figure 1C is roughly 500 ms,
whereas in Figure 1F, this time is substantially shortened to
\(\sim 160\) ms. Here, the underlying mechanism for this substan-
tial shortening of SCR duration is simply that more SCRS
events occurred within a shorter time interval. Thus, the
amount of time required to recruit most CRUs in the cell is
substantially reduced. Note that wave propagation speed is not
sufficient to explain this effect because the measured wave
velocity was roughly the same in both cases. Therefore, our
results suggest that the primary determinant of the rate of Ca
release during SCR is the number and timing of SCRS in the
cell.

Stochastic Recruitment of SCRS Is Dictated by
SR Load

To determine the factors that dictate the timing of SCRS, we
have applied a detailed mathematical model of subcellular Ca
cycling. In this model, SCRS correspond to Ca sparks that
occur at CRUs in which RyR channels make random transi-
tions to the open state. When this occurs, Ca flux from the SR
is sufficient to induce a spontaneous Ca spark. To character-
tize the timing of SCRS in our model, we measured the first
latency distribution of spontaneous Ca sparks within our
computational cell model of 200 CRUs. Our computational
results are consistent with our experimental findings showing
that SCRS events occur earlier and with less variability as the
SR load is increased. The underlying mechanism for this
effect is attributable to 2 basic features of SCR: (1) the rate at
which spontaneous Ca sparks occurs within a cell increases
rapidly with increasing SR load and (2) the uptake rate of the
SR and the diastolic SR Ca concentration are substantially
increased at elevated cytoplasmic \([\text{Ca}]_c\). These 2 features
alone are sufficient to explain why the average and SD of the
first latency distribution both decrease with increasing SR
load because the SR is depleted following an AP and
therefore the probability that spontaneous Ca sparks occur is
very low. However, because the recruitment rate of sponta-
neous Ca sparks increases rapidly with SR load (Figure 6B),
SCR events rapidly begin to occur as the SR recovers to its
maximum value. This behavior is consistent with our exper-
imental results showing that rapid pacing is followed by a
brief period where no SCR occurs before a burst of synchro-
nized activity across myocytes (see Online Video S1). There-
fore, the time over which SCRS occur will be dictated by the
rate of recovery of the SR Ca content. Now, as the cell is
loaded with more Ca, the SR content increases and the
amount of Ca released also increases, causing a larger rise in
Ca concentration in the cytosol. Furthermore, the rate at
which the SR content rises also increases because uptake
pumps are upregulated by cytosolic Ca concentration.22
Hence, increasing levels of Ca overload lead to a decrease in
the average and SD of the first latency distribution, so that
SCR events occur earlier and with less timing variability.

Role of SR Load in the Latency Distribution
of SCR

In this study, we applied confocal line scans in the transverse
direction to measure the latency distribution of peak SCR
across a multicellular population in our mapping field. Our
main finding is that the average and the SD of the latency
distribution decreased substantially with increasing SR load.
Thus, SCR occurs earlier and occurs with lesser timing
variability across the population of cells at higher SR loads.
Interestingly, we found occasional extra beats at the highest
load, which roughly coincided with the average latency of the
cells in the mapping field (example shown in Figure 3F). This
result suggests that the timing of triggered activity is dictated
by the timing variability of SCR. Thus, if the latency
distribution is peaked around a well-defined average time,
then a DAD is likely to occur close to that time.

To explain the mechanism for this effect, we again refer to
the first latency distribution of spontaneous Ca sparks com-
puted using our mathematical model (Figure 5B). Because the
timing of an SCR episode is determined by the timing of
SCRS, the timing of SCR across a population of cells is also
dictated by the first latency distribution. Thus, the reduction
of the average and SD of the first latency distribution also
explains why SCR in the population of cells in the mapping
field occurs earlier and with lesser variability as the SR load
is increased. Therefore, as in the case of the single cell, the
underlying mechanism for the decreased timing variability
of SCR in a population of cells is attributable to the recovery
rate of SR Ca load following an AP.

Role of Cell-to-Cell Diffusion in the Timing
Variability of SCR

Several studies have tried to address the issue of how SCR
within individual myocytes can lead to DADs on the tissue
scale. SCR in aggregates of connected Purkinje cells isolated
from the ischemic zone of the postinfarction dog heart23,24
showed micro-Ca transients (large nonpropagated wavelets)
that often triggered full waves, causing DADs to reach
threshold. There was evidence that waves spread between
cells but usually only over 2 additional cells, making Ca
spread an unlikely means of synchronizing SCR among cells,
although greater spread can occur in damaged myocardium.25
In contrast, our work in whole heart shows that waves can
start in virtually any intracellular region and that the propa-
gation of waves from cell to cell in normal myocardium must
be an extremely rare event and is not likely to influence the
timing distribution of SCR between cells. Indeed, as indicated
by our numeric simulations, active diffusion of Ca between
myocytes is not necessary to explain this effect. Note that we have confirmed that these properties of SCR represent intrinsic behavior of SR Ca release by performing experiments in isolated myocytes, where intercellular interactions are removed. These results were nearly identical to those obtained in whole heart (see Online Figure I and the Table), confirming that the timing of SCR is dictated by intrinsic properties of Ca cycling.

Timing Variability of SCR Between Myocytes Determines DAD Amplitude

A novel finding in this work is the demonstration that the amplitude of SCR-induced DADs is highly sensitive to the timing variability of SCR between cells. This occurs because DADs in tissue are caused by the summation of Ca-sensitive inward currents (particularly that of NCX) that are induced by the release of Ca during SCR. Thus, if SCR in a population of cells occurs with a broad distribution of timing, then Ca release will occur in some cells but not in neighboring cells because the electronic coupling between these cells will decrease the effective rise of voltage in that region of tissue. If SCR occurs with a narrow timing distribution (such as during Ca overload), then Ca release occurs simultaneously in many cells and the inward currents will summate to yield a larger depolarization in that region of tissue. This result is consistent with our observation of an extra beat that occurred close to the average time to peak of the cells in the mapping field (Figure 3F). In this case, it is likely that this extra beat was attributable to a DAD-induced ectopic beat that occurred somewhere in the heart. However, the coincidence of the timing suggests that cells at the source of the beat exhibited the same averaged properties as the cells in the mapping field. Thus, we expect that a suprathreshold DAD is activated by the coincident timing of SCR that occurs over a much larger scale than our mapping field.

Conclusions

It is now well known that various cardiac arrhythmias are caused by ectopic beats in the heart. In many cases, these ectopic beats have been traced to abnormalities in intracellular Ca cycling, which in some cases are known to be caused by mutations in specific Ca cycling proteins.26–28 However, to date, a detailed picture of how a Ca cycling abnormality leads to an ectopic beat at the tissue level is still not known. In this study, we have identified several key features that are crucial to understanding how SCR at the single-cell level can lead to a triggered beat in tissue. Our main finding is that the effectiveness of SCR to induce a triggered beat is critically sensitive to the probability distribution of the timing of SCRs within cells in tissue. Furthermore, this probability distribution is dictated primarily by the intrinsic properties of Ca cycling. These insights can potentially have applications in the treatment of cardiac arrhythmias. For example, our results suggest that it should be possible to decrease the likelihood of triggered activity by targeting those factors that decrease the timing variability of SCR. In particular, our results predict that downregulation of SERCA is potentially antiarrhythmic because it should broaden the distribution of timing of SCRs.

However, to date, there have been no therapeutic approaches that target factors that control the distribution of timing of SCR. Our experimental and theoretical findings should stimulate further exploration of therapeutic strategies based on this novel perspective.

Sources of Funding

This work was supported in part by American Heart Association Grant 0830298N (to Y.S.) and National Heart, Lung, and Blood Institute grants R01HL101196 (to Y.S.) and R01 HL 093490 (to R.A.).

Disclosures

None.

References

Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart. *Circ Res.* 2006;99:e65–e73.

Novelty and Significance

What Is Known?

- Spontaneous Ca release (SCR), in the form of intracellular Ca waves, occurs as a result of Ca overload of the sarcoplasmic reticulum (SR).
- SCR is responsible for delayed afterdepolarizations (DADs) that can reach voltage threshold and cause triggered beats and arrhythmias.
- SCR events and DADs occur earlier with increasing degree of SR Ca overload.

What New Information Does This Article Contribute?

- Increasing SR Ca overload causes progressively earlier SCR because initiation occurs from more intracellular sites within each myocyte.
- Increasing SR Ca overload decreases both the average latency and the variability in latencies for SCR, which are both responsible for the early coordination of SCR events among many cells and determine DAD timing and magnitude.
- Earlier and less variable SCR between cells occurs as the result of accelerated SR Ca reuptake during Ca overload and is an intrinsic property of SR Ca cycling.

SR Ca overload causes SCR in the form of Ca waves that produce subthreshold depolarizations in cardiac cells. During Ca overload, DADs are early and large enough to achieve threshold, producing triggered activity. The major unresolved issue is to determine how individual SCR events can occur in many cells over a short enough period of time to produce suprathreshold DADs. We used high-resolution confocal imaging to measure SCR in intact rat heart and found that Ca waves occurred earlier because more release sites were activated during Ca overload. Not only was latency reduced but the timing of SCR between cells became less variable, so that SCR events were more coordinated, which explains how intact tissue can produce early and large DADs. Computer simulations support this model and suggest that these properties of SCR result from an increased rate of SR Ca uptake during Ca overload. Our results offer the first complete explanation for how individual subcellular Ca release events are responsible for triggered activity and arrhythmogenesis in intact heart during Ca overload. Knowing the mechanism by which SCR causes triggered beats should allow us to develop new treatment strategies to prevent or terminate triggered arrhythmias.
Variability in Timing of Spontaneous Calcium Release in the Intact Rat Heart Is Determined by the Time Course of Sarcoplasmic Reticulum Calcium Load

Circ Res. 2010;107:1117-1126; originally published online September 9, 2010;
doi: 10.1161/CIRCRESAHA.110.229294

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/107/9/1117

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2010/09/09/CIRCRESAHA.110.229294.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
SUPPLEMENT MATERIAL

Methods

Male Sprague-Dawley rats were used in this study according to animal use protocols approved by the Northwestern University IACUC and to NIH guidelines. Rats were anesthetized with a ketamine/xylazine mixture (IP) and the heart was removed and placed on a Langendorff apparatus. The heart was aligned horizontally in an experimental chamber on the stage of the Zeiss Axiovert 100 stand so that the left ventricle was facing down toward the objectives of the inverted microscope. Temperature was maintained at 26°C. Higher temperatures do not allow long recording periods because of the loss of the fluo-4 dye from the cell. We have also found that Ca cycling behavior is qualitatively nearly identical at this temperature to physiological temperature, with major differences only in the kinetics of Ca cycling1,2. A modified Tyrode’s solution was maintained at pH 7.35 by constant bubbling with a mixture of 95% O\textsubscript{2} and 5% CO\textsubscript{2} and perfused the heart at about 8ml/min. The SA node was crushed and the heart was allowed to beat spontaneously for 15 minutes when fluo-4AM (15µM/L, Invitrogen) was added to the solution which was then re-circulated for 20min. An additional 12mM Fluo-4AM was added for another 20 min at which time another 10mM fluo-4AM was added for 20min. The heart was then washed for 15min with fresh solution. Re-circulation was then initiated with solution containing 50 µM/L cytochalasin-D and 7 µM/L blebbistatin (Sigma) in order to block contraction which is essential for high resolution Ca imaging. High concentrations of these agents are known to alter intracellular Ca cycling but we have previously reported that this combination of paralytic agents minimizes the secondary actions of each alone and is effective in inducing virtually complete paralysis of the heart while producing minimal effects on intracellular Ca cycling and the electrocardiogram1-4. Hooked platinum electrodes are then placed in the apex of the LV to mimic the normal breakthrough site of cardiac activation and the heart was stimulated at basic cycle lengths (BCL)
ranging from 500 to 200msec. Silver chloride electrodes were placed on either side of the LV to record a pseudo-ECG in order to monitor cardiac stability during the experiment.

After confirming that cells were loaded sufficiently with fluo-4, extracellular Ca concentration ([Ca]e) was increased to 4mM. Recordings were then made of SCR events following pacing protocols at which point [Ca]e was increased to 5mM and 6mM. Isolated rat ventricular myocytes were studied in separate experiments using the same approach.

Confocal measurements for high resolution intracellular Ca imaging
The methods used for measurements of intracellular Ca cycling with the Zeiss LSM510 laser scanning confocal microscope (Card Zeiss, Ltd) have been published previously. Briefly, fluorescence emission is measured through a 40x water immersion objective (Apochromat, NA 1.2) at wavelengths >520nm during excitation at 488nm with a 25mW argon laser (<10% laser power). Linescan imaging (1.92msec/line) was recorded during the last 4 beats at a basal CL of 500msec and during 10-sec trains of pacing at either BCL= 500 or 200msec, followed by a 3-sec pause to measure SCR events. In order to determine variability of latency to the first SCR wave following pacing, each protocol was repeated 5-8 times at each BCL. Identical protocols were applied to myocytes isolated from rat LV (loaded with 10 µM/L fluo-4AM for 15min) and studied under identical recording conditions.

Both single cell and multicellular recordings were used in this study. Individual myocytes were identified in whole heart or in isolated myocyte preparations and the scan line was placed along the cell length. This approach allowed high resolution within each cell. Each site of wave initiation was identified as the position along the cell length at which SCR occurred earliest. More initiation sites occurred as [Ca]e and pacing rate increased so that the typical V shape of each Ca wave showed more inflection points, each of which was counted as a separate site initiation for SCR. It
is possible that there might be several small sites of first release that are activated out of the plane of focus that integrate to cause SR and that could not be resolved using this approach. We chose to measure only those sites that induced an inflection point in the Ca wave as clearly defined initiation sites, thus ignoring the possibility that several wavelets might induce global SCR waves.

Multicellular recordings of SCR in whole heart were made by positioning the scan line across the short axis of the myocytes in the field of view. Up to 25 myocytes were imaged simultaneously using this approach, which allowed us to derive population behavior of SCR in adjoining groups of myocytes. Each rapid pacing protocol was repeated 5-8 times at each test BCL in order to obtain accurate estimates of the mean variability of the latency to first SCR.

The time from the last stimulated beat to the peak of SCR was measured separately in each myocyte. Data were collected from each myocyte and mean and standard deviation (SD) were calculated from the repeated trials at each test BCL. SD was used as an indicator of the variability of SCR for each cell. Data of mean and SD of first latencies were compared at each [Ca]e at each BCL. Groups were compared using a one-way ANOVA with appropriate secondary tests to allow paired comparisons between groups. Statistical significance between sample groups was determined at p<0.05.

Computer modeling

To model the spatiotemporal distribution of calcium in cardiac cells, we have implemented a recently developed mathematical model developed by Restrepo et al. In this model, the cardiac cell is represented as a collection of spatially distributed subcellular compartments which contain key elements of the Ca cycling machinery. Each element, referred to as the Ca release unit (CRU) contains 1-5 L-type Ca channels and a cluster of 100 RyR channels.
Here, the stochastic dynamics of ion channels are simulated by computing the transition probabilities using experimentally based rate constants. To describe subcellular Ca dynamics we model a cell as a linear array of 200 CRUs which are diffusively coupled. Details of the mathematical model are given in Chen et al. 6.

References

Online Figure I. Spatiotemporal properties of SCR in isolated rat ventricular myocytes. Panels A-B show three successive rapid pacing trains at BCL=1000msec and 600msec at 4mM [Ca^2+]. Panels C-D show results at 7mM [Ca^2+].
Online Table I

<table>
<thead>
<tr>
<th>[Ca]</th>
<th>Mean Latency at BCL=1000msec</th>
<th>Mean Latency at BCL=600msec</th>
<th>p <</th>
<th>SD of Latency at BCL=1000msec</th>
<th>SD of Latency at BCL=600msec</th>
<th>p <</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2899±218 (12)</td>
<td>2161±126 (19)</td>
<td>0.01</td>
<td>505±63 (12)</td>
<td>352±35 (19)</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>2573±162 (11)</td>
<td>2050±146 (10)</td>
<td>0.03</td>
<td>342±44 (6)</td>
<td>227±25 (7)</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>1851±174*** = (14)</td>
<td>1302±135 = (14)</td>
<td>0.02</td>
<td>250±36* (13)</td>
<td>158±23* (16)</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>1676±127** = (13)</td>
<td>914±95*** = (15)</td>
<td>0.001</td>
<td>162±20** = (13)</td>
<td>91±10** = (16)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* p<0.05 compared to 4mM/L
** p<0.05 compared to 5mM/L
*** p<0.05 compared to 6mM/L