Effects of Chronic Atrial Fibrillation on Active and Passive Force Generation in Human Atrial Myofibrils

Alexandra Belus, Nicoletta Piroddi, Cecilia Ferrantini, Chiara Tesi, Olivier Cazorla, Luana Toniolo, Maurice Drost, Giulia Mearini, Lucie Carrier, Alessandra Rossi, Alessandro Mugelli, Elisabetta Cerbai, Jolanda van der Velden, Corrado Poggesi

Rationale: Chronic atrial fibrillation (cAF) is associated with atrial contractile dysfunction. Sarcomere remodeling may contribute to this contractile disorder.

Objective: Here, we use single atrial myofibrils and fast solution switching techniques to directly investigate the impact of cAF on myofilament mechanical function eliminating changes induced by the arrhythmia in atrial myocytes membranes and extracellular components. Remodeling of sarcomere proteins potentially related to the observed mechanical changes is also investigated.

Methods and Results: Myofibrils were isolated from atrial samples of 15 patients in sinus rhythm and 16 patients with cAF. Active tension changes following fast increase and decrease in [Ca\(^{2+}\)] and the sarcomere length–passive tension relation were determined in the 2 groups of myofibrils. Compared to sinus rhythm myofibrils, cAF myofibrils showed (1) a reduction in maximum tension and in the rates of tension activation and relaxation; (2) an increase in myofilament Ca\(^{2+}\) sensitivity; (3) a reduction in myofibril passive tension. The slow \(\beta\)-myosin heavy chain isoform and the more compliant titin isoform N2BA were up regulated in cAF myofibrils. Phosphorylation of multiple myofilament proteins was increased in cAF as compared to sinus rhythm atrial myocardium.

Conclusions: Alterations in active and passive tension generation at the sarcomere level, explained by translational and post-translational changes of multiple myofilament proteins, are part of the contractile dysfunction of human cAF and may contribute to the self-perpetuation of the arrhythmia and the development of atrial dilatation. (Circ Res. 2010;107:144-152.)

Key Words: myosin ■ Titin ■ cardiac MyBP-C ■ cardiac troponin ■ atrial light chain-2

C hronic atrial fibrillation (cAF) is characterized by electric, structural, and contractile remodeling that leads to pronounced atrial contractile dysfunction and self-perpetuation of the arrhythmia (reviewed elsewhere\(^1\)). The persistence of atrial contractile disorder after cardioversion to sinus rhythm (SR) in patients with cAF has long been reported\(^2\) and may have dramatic consequences as it favors thromboembolic events.\(^3\) In spite of its clinical significance, the exact mechanism of cAF-induced contractile dysfunction is poorly understood.

Most investigations into the contractile dysfunction of cAF remodeled atria have concentrated on structural alterations\(^4,5\) or disorders of excitation–contraction coupling.\(^6,7\) Recent investigations high-light the role of sarcomere protein modifications in human cAF-associated contractile dysfunction.\(^8–11\) However, the functional impact of myofilament protein changes in cAF is weakly documented because it is difficult to obtain consistent measurements of functionally relevant parameters on human cardiac preparations.

Studies on single myofibrils can significantly document changes in the mechanical performance of human cardiac sarcomers because these preparations can be obtained in large amounts from very small cardiac samples.\(^12,13\) Single myofibrils are the smallest units of the contractile apparatus that retain the organized myofilament lattice and its entire ensemble of associated proteins. Mechanical measurements of myofibril force combined with rapid perfusion switching techniques have been developed recently to investigate fast
kinetic events related to cross-bridge action and regulation in human cardiac myofibrils.12–14

In this study, sarcomere mechanisms underlying passive and active tension generation and relaxation of atrial myocardium are dissected and compared in myofibrils from surgical samples of cAF and control (SR) patients. In the same samples, we also determined the myosin heavy chain (MHC) and titin isoform expression and the phosphorylation level of several myofibrillom proteins. The results show that myofilament proteins play a direct role in the altered atrial mechanics associated with cAF suggesting that sarcomere remodeling also contribute to the progressive nature of the arrhythmia.

Methods

Patients

The investigation conforms with the principles outlined in the Declaration of Helsinki and is approved by the local Ethics Committee (no. 2006/0023797). Samples of atrial appendages were obtained following informed consent from 13 SR patients (67±2 years; 72%); and 16 cAF patients (66±2 years; 92%) undergoing open heart surgery. In the cAF patients, established atrial fibrillation (AF) was documented for at least 8 months. No significant difference was present in ejection fraction and left atrial diameter between cAF and SR patients. Details for each patient group are given in Online Table I, available in the Online Data Supplement at http://circres.ahajournals.org.

Mechanical Measurements in Myofibrils

Fresh surgical samples were collected in a cold sterile saline solution for myofibril isolation according to previously described methods.12 Techniques for mechanical measurements in human cardiac myofibrils were as previously described.12–14 Briefly, myofibrils were transferred to a temperature controlled chamber filled with relaxing solution (pCa8, 15°C). The selected myofibril was horizontally mounted (initial sarcomere length 2.2 to 2.3 μm) between a cantilever force probe and a glass needle mounted on the lever arm of a length control motor. Myofibrils were activated and relaxed by rapid solution switching between 2 continuous streams of solutions. Ionic strength of the experimental solutions was 200 mmol/L and pH 7.0. All solutions contained a MgATP-regenerating system and a cocktail of protease inhibitors.12,13 To avoid the effects on myofibril force and force kinetics of variable levels of contaminant inorganic phosphate (P$_i$) in the solutions, [P$_i$] was reduced to less than 5 μmol/L using a P$_i$ scavenging system.12,13

Sarcomeric Protein Analysis

Myosin heavy chain isoforms

Polyacrylamide gel electrophoresis was used to determine MHC isoform composition (MHC-α and MHC-β) after denaturation in sodium dodecyl sulfate (SDS-PAGE) following a procedure described by Talmadge and Roy.15 Gels were silver stained for isoform recognition or stained with Coomassie Blue for quantitative analysis. Each band (MHC-α or MHC-β) was expressed as percent of the total MHC.

Titin Isoforms

Analysis of titin content in SR and cAF samples was adapted from Cazorla et al.16 Titin content was analyzed with SDS-PAGE (2.5% to 7% acrylamide gradient gels) and stained with 0.1% Coomassie Blue. The integrated optical density of MHC and titin peaks (both N2B and N2BA isoforms) were determined on wet gel images to measure both the total amount of titin relative to MHC and the ratio N2BA:N2B. For each sample a range of loadings was electrophoresed on the same gel. The optical density of titin and MHC peaks were determined and plotted against their loading volume. The linear part of this relation was fitted with a line regression and the slope determined. The slope ratio of titin:MHC was taken as relative amount of titin in the samples and used to determine the N2BA:N2B ratio. Western blotting was performed with the antibodies Z1/Z2 (kindly provided by Dr S. Labelt, University of Mannheim, Germany) to label the N-terminal of titin.

ProQ Phosphostaining

Atrial tissue samples from 8 SR and 8 cAF patients were TCA (trichloroacetic acid)-treated as described previously to fix phosphorylation status of myofilament proteins.17 Phosphorylation status of myofilament proteins separated on a gradient gel was determined using Pro-Q Diamond phosphostaining.17 All protein signals were within the linear range and were corrected for protein content determined by SYPRO Ruby staining.

Western Immunoblotting

Gel electrophoresis and Western immunoblotting were performed as described previously10,18 to analyze content and phosphorylation of cardiac myosin binding protein (cMyBP-C) and cardiac troponin (cTn).19

Results

Active Tension Generation and Relaxation

Thin bundles of myofibrils obtained from atrial samples of 7 SR and 8 cAF patients were maximally calcium activated at pCa 4.5 and relaxed at pCa 8.0 by rapid solution change. Representative force responses of SR and cAF myofibrils to full activation-relaxation cycles at 15°C are shown in Figure 1A. Average data for maximal isometric tension (P$_0$) and kinetic parameters of maximal tension generation (k_{ACT}, rate constant of tension generation following Ca$^{2+}$ activation; and k_{TR}, rate constant of tension redevelopment following release–restretch applied to the myofibril under steady-state conditions of force generation) for both SR and cAF myofibrils are in the Table.

P$_0$ in SR myofibrils was close to that previously reported for control human atrial myofibrils.15 P$_0$ was significantly depressed (~30%) in cAF compared to SR myofibrils. Both k_{TR} and k_{ACT} were markedly slower (~50%) in cAF than in SR myofibrils (Table). The difference is evident in Figure 1B (left) where tension activation traces of SR and cAF myofibrils are normalized to maximal tension and then superimposed.
As shown in Figure 1A, for both SR and cAF myofibrils, active tension fully relaxed on step reduction of \([\text{Ca}^{2+}]\) below the contraction threshold (pCa 8.0). The time course of full tension relaxation is shown in Figure 1B (right) where the normalized relaxation transients are superimposed on a faster time scale. In agreement with previous observations on skeletal and cardiac myofibrils,19 relaxation of both SR and cAF myofibrils is biphasic starting with a slow linear force decay (rate constant, slow \(k_{REL}\)) followed by a fast exponential relaxation phase (rate constant, fast \(k_{REL}\)). It has been shown that the slow force decay lasts as long as the sarcomeres remain isometric, whereas the fast exponential phase follows the "give" of one or more sarcomeres and is dominated by intersarcomere dynamics.19 Average values for the rates of both relaxation phases (Table) indicate that relaxation kinetics were slower or tended to be slower in cAF than in SR myofibrils. Fast \(k_{REL}\) was reduced (by 35% \(P<0.05\)) and slow \(k_{REL}\) tended to decrease (by 25% \(P<0.1\)) in cAF versus SR myofibrils.

Table. Mean Data for Passive Tension and Active Tension Generation and Relaxation in Myofibrils from Seven SR and Eight cAF Patient Samples

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>cAF</th>
<th>(t) Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting tension, mN·mm(^{-2})</td>
<td>7.98±0.59 (52)</td>
<td>3.26±0.38 (61)</td>
<td>(P<0.01)</td>
</tr>
<tr>
<td>Active tension generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_0), mN·mm(^{-2})</td>
<td>125±7 (52)</td>
<td>90±7 (61)</td>
<td>(P<0.01)</td>
</tr>
<tr>
<td>(k_{ACT}), sec(^{-1})</td>
<td>3.73±0.18 (54)</td>
<td>2.00±0.10 (72)</td>
<td>(P<0.01)</td>
</tr>
<tr>
<td>(k_{REL}), sec(^{-1})</td>
<td>3.55±0.10 (46)</td>
<td>1.90±0.10 (64)</td>
<td>(P<0.01)</td>
</tr>
<tr>
<td>Active tension relaxation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow phase duration, ms</td>
<td>126±6 (47)</td>
<td>139±8 (61)</td>
<td>NS</td>
</tr>
<tr>
<td>Slow (k_{REL}), sec(^{-1})</td>
<td>0.52±0.04 (47)</td>
<td>0.40±0.04 (61)</td>
<td>(P<0.1)</td>
</tr>
<tr>
<td>Fast (k_{REL}), sec(^{-1})</td>
<td>16±1 (47)</td>
<td>10±1 (62)</td>
<td>(P<0.05)</td>
</tr>
</tbody>
</table>

Resting sarcomere length: 2.25±0.01. Data are means±SE (no. of myofibrils).

Figure 1. Force activation and relaxation of SR and cAF myofibrils. A, Representative examples of maximum tension activation and full relaxation in response to sudden pCa changes by fast solution switching in SR (left) and cAF (right) myofibrils. Lower traces show fast release–restretch protocol for \(k_{TR}\) registration. B, Time courses of tension activation (left, \(k_{ACT}\)) and relaxation (right, slow and fast \(k_{REL}\)) of SR and cAF myofibrils superimposed after normalization to maximal tension (same traces as in A on faster time base).

MHC Isoform Expression

Slower force kinetics at maximal activation in the cAF myofibrils are consistent with previously described\(^8,9,20\) cAF induced changes in the motor protein. Of the 2 MHC isoforms expressed in human cardiac muscle MHC-\(\alpha\) is associated with higher actomyosin ATPase activity and faster cross-bridge kinetics than MHC-\(\beta\). Both SR and cAF myofibrils coexpress MHC-\(\alpha\) and MHC-\(\beta\) isoforms (Figure 2A). As expected from previous characterization of human atrial tissue\(^21\) MHC-\(\alpha\) represented the largest fraction (>50%) of the total amount of MHC. The...
MHC-α fraction was larger in SR samples (70%) compared to cAF (59%) (Figure 2B, n=8 for both groups, P<0.05). Total MHC, measured as MHC/actin ratio for each atrial sample, was the same in SR and cAF myofibrils (Figure 2C). The lower content in MHC-α in cAF myofibrils confirms the previously reported shift of MHC isoforms from MHC-α to MHC-β for cAF human atrial myocardium.8,9,20

Ca²⁺ Sensitivity of Active Tension

Ca²⁺ sensitivity of tension was investigated by activating myofibrils with various pCa solutions then assembling the pCa–tension relationship. Each preparation was exposed to up to 4 different pCa solutions. pCa 4.5 determined maximum Ca-activated tension and pCa 8 fully relaxed the preparation between each activation. Values of force at any given pCa were normalized to maximal force at pCa 4.5. pCa–tension points were fit to a Hill equation and the pCa at which tension was half maximum (pCa50) indicated pCa values.

The previously reported decrease in cMyBP-C phosphorylation found in human cAF using the Pro-Q Diamond phosphostaining (Figure 4B) is in sharp contrast with previously reported decrease in cMyBP-C phosphorylation measured with specific phospho-cMyBP-C antibody10 in human cAF atria. To determine whether the opposite result was attributable to the different measurement methods we analyzed the content and phosphorylation of cMyBP-C and cTnI of our cAF and SR samples using Western immunoblotting. The analysis revealed no changes in cMyBP-C (Figure 5A) and cTnI (Figure 5B) protein content in cAF samples compared to SR. In accordance with ProQ analysis of protein phosphorylation, the specific antibodies directed against phosphorylated protein kinase (PK)A sites in cMyBP-C (Ser282) and cTnI (Ser23/24) showed higher cMyBP-C phosphorylation in cAF compared to SR (P=0.08, Figure 5A) and confirmed no difference in cTnI phosphorylation at Ser23/24 (Figure 5B).

The previously reported decrease in cMyBP-C phosphorylation in cAF10 may reflect atrial dilatation rather than being a component of cAF because, at variance with the present study (see Online Table I), in the previous study10 the atrial size of SR patients was much less than that of cAF patients (see the table in the article by El-Armouche et al10). Consistent with this explanation, a recent study in goat models of atrial dilatation and atrial fibrillation22 has reported that reduction in PKA phosphorylation of cMyBP-C is a distinctive feature of atrial dilatation.

Passive Tension

Passive tension at optimum overlap was lower in cAF compared to SR myofibrils (Table), suggesting that passive stiffness differs in the 2 myofibril types. To better investigate passive properties, the force responses of relaxed SR and cAF myofibrils to various ramp elongations were recorded and the steady-state sarcomere length–resting tension relationship determined in the 2 myofibril groups (Figure 6). Sarcomere length and resting tension were measured 20 seconds after each length change was completed, ie, when most of the stress relaxation was over. Details of the length elongation protocol applied to myofibrils are shown in the inset of Figure 6 together with tension traces for a representative SR myofibril. The average sarcomere length–passive tension relationships of SR and cAF myofibrils (Figure 6) are evidence that passive stiffness is significantly reduced in cAF myofibrils.
tension in single myofibrils, we investigated whether the lower passive stiffness found in cAF myofibrils correlates with changes in titin isoform expression.

In Figure 7A, SDS-PAGE reveals that human atrium coexpresses N2B and N2BA titin isoforms; this is confirmed by Western blotting. Titin degradation product T2 was hardly detectable and T3 undetectable in our human atrial samples indicating a good titin preservation. As shown in Figure 7B, SR atrial tissue (n=6) expressed more N2BA (61%) than N2B (39%) and cAF (n=6 patients) expressed even more N2BA than SR (78%, P<0.01). The titin/MHC ratio was the same in SR and cAF patients (Figure 7C). Therefore, the total content of titin was not different in SR and cAF atrial tissue but the mean expression of N2BA in cAF was increased at the expense of N2B.

Discussion

Passive and active mechanics of human atrial myofibrils are significantly altered in cAF indicating that myofilament changes contribute to the atrial contractile dysfunction that persists after cardioversion. The decrease in passive stiffness in the cAF myofibrils can be entirely explained by the shift in titin isoform expression. Besides contributing to the altered mechanics of cAF atria, changes in sarcomere diastolic properties likely participate in the progressive atrial dilatation that often accompanies cAF. The contractile alterations found in cAF myofibrils can be only partly explained by the shift in the isoform expression of the cardiac motor protein. Altered phosphorylation of multiple myofilament proteins are likely related to most contractile alterations. Changes associated with increased myofilament Ca$^{2+}$ sensitivity may play a role in the self-perpetuation of cAF.

The observed mechanical changes seem to be a component of cAF rather than atrial dilatation because the atrial size of cAF patients, although relatively large, is not significantly different from that of SR patients (see Online Table I).

Changes in Titin and Diastolic Stiffness

To our knowledge titin isoform expression has never been studied in human atrial myocardium. We find that the N2BA:N2B expression ratio in the atrial myocardium of SR patients is 1.64±0.27, much higher than that reported for ventricular myocardium of normal human hearts (0.56±0.06).24 Interestingly, in humans as in other big mammals,16 the expression of N2BA dominates in atrial myocardium. It is an important finding that the N2BA isoform is significantly upregulated at the expense of the N2B isoform in cAF (N2BA:N2B 3.80±0.50). As expression shifts toward the N2BA isoform, because of the different compliance of the 2 titin isoforms, passive myofibril stiffness is expected to decrease. Consistent with this notion, passive stiffness of cAF myofibrils is significantly reduced (on average 2.5-fold) compared to SR myofibrils.

It has been reported that the length dependence of activation of cardiac muscle (that is the mechanism underlying the
Starling’s law of the heart) is titin-based and is reduced in preparations that express high levels of N2BA titin.25 One can speculate, therefore, that length dependence of activation is reduced in cAF myofibrils because of the increase in N2BA titin. A reduction in the length dependence of activation will contribute to cAF induced atrial contractile dysfunction and possibly to progressive dilation. Progressive atrial dilation in cAF26 may contribute to self-perpetuation of the arrhythmia.27 The mechanism behind cAF related increase in atrial size is unclear but increase in N2BA expression and reduction in myofibril resistance to elongation may contribute to it.

Alterations in Contractile Function

The major changes in contractile function of cAF compared to SR myofibrils are (1) a marked reduction in the maximum rate of tension generation, (2) a significant decrease in maximum active tension, and (3) a significant increase in myofilament Ca2+ sensitivity.

In both SR and cAF myofibrils, k_{ACT} was the same as k_{TR}. This similarity suggests that k_{ACT} is not limited by the rate with which thin filaments are switched on by Ca2+; rather it predominantly reflects the rate with which crossbridges enter their force generating states. Both k_{ACT} and k_{TR} were markedly reduced (~50%) in cAF compared to SR myofibrils indicating a slower cross-bridge turnover rate. Consistent with the present results, a significant reduction in k_{TR} was previously reported in permeabilized human atrial myocytes from cAF patients.9 Relaxation kinetics, determined by sudden Ca2+ removal from myofibrils, predominantly reflects the apparent rate with which attached crossbridges leave force-generating states.19 Relaxation rates were slower (25% to 35%) in the cAF myofibrils than in the SR myofibrils implying that both cross-bridge attachment and detachment rates contribute to the slower overall cross-bridge turnover in cAF myofibrils.

Increase in the relative amount of the slow MHC-β isoform expressed in cAF versus SR myofibrils (41% versus 30%), though smaller than in previous reports (63% versus 25%;20, 41% versus 23%), directly accounts for the reduction in activation and relaxation kinetics of cAF compared to SR myofibrils. The negative impact of the MHC isoform change on the power output and velocity of atrial contraction may contribute to atrial contractile dysfunction in cAF.

Maximal Ca2+ activated tension was reduced by ~30% in cAF compared to SR myofibrils. Similar effect of cAF on maximal active tension (33% reduction) was recently reported for permeabilized human atrial myocytes,9 though in that study the difference between cAF and SR maximal tension was not significant. A 75% reduction in twitch tension has been reported in intact atrial trabeculae from cAF patients compared to SR patients.6 In that study, however, following positive inotropic
interventions (high extracellular [Ca2+]i, postrest potentiation) the difference in twitch tension decreased to ~15% consistent with the AF-induced reduction in myofibril density per unit cross sectional area of the trabeculae (~14%). Those results suggested that most of the atrial contractile dysfunction of cAF is associated with impaired Ca2+ handling whereas the loss of atrial myofibrils plays a minor role. Here we directly determined the maximal tension of isolated myofibrils and eliminate contamination by either AF-induced excitation–contraction coupling dysfunction or myofibrillar loss. Thus, in cAF myofibrils reduction in maximal active tension must be attributable to defects in the myofilament themselves.

The shift in MHC expression toward the slow β isoform in the myofibrils of AF patients is an unlikely explanation for reduction in maximal tension of cAF myofibrils; maximal tension does not differ in human atrial and ventricular myofibrils that express quite different patterns of MHC isoforms.12 Though maximal active tension loss of cAF myofibrils may come from multiple sources, present results support a role for altered phosphorylation of myofilament proteins (see below).

We found evidence that regulation of contraction at the myofilament level is also altered in cAF. pCa50 of active tension was significantly increased, whereas the Hill coefficient (nH) was decreased in cAF myofibrils compared to SR myofibrils. No significant change in Ca2+ sensitivity of human cardiac myofibrils.14 However, in the present and previous studies9,31 no changes in troponin content were observed and cTnI degradation products were undetectable in atrial samples from cAF patients.

The most likely explanation for the increased Ca2+ sensitivity and reduced maximal force resides in the complex changes in myofilament protein phosphorylation found in cAF versus SR samples. As previously reported,9,10 phosphorylation of cTnI—the primary sarcomere target of PKA—was the same in cAF and SR atria. Our analysis revealed, instead, significantly higher Ca2+ sensitivity of human cardiac myofibrils.14 However, in the present and previous studies9,31 no changes in troponin content were observed and cTnI degradation products were undetectable in atrial samples from cAF patients.

The shift in MHC expression toward the slow β isoform in the myofibrils of AF patients is an unlikely explanation for reduction in maximal tension of cAF myofibrils; maximal tension does not differ in human atrial and ventricular myofibrils that express quite different patterns of MHC isoforms.12 Though maximal active tension loss of cAF myofibrils may come from multiple sources, present results support a role for altered phosphorylation of myofilament proteins (see below).

We found evidence that regulation of contraction at the myofilament level is also altered in cAF. pCa50 of active tension was significantly increased, whereas the Hill coefficient (nH) was decreased in cAF myofibrils compared to SR myofibrils. No significant change in Ca2+ sensitivity of human cardiac myofibrils.14 However, in the present and previous studies9,31 no changes in troponin content were observed and cTnI degradation products were undetectable in atrial samples from cAF patients.

The most likely explanation for the increased Ca2+ sensitivity and reduced maximal force resides in the complex changes in myofilament protein phosphorylation found in cAF versus SR samples. As previously reported,9,10 phosphorylation of cTnI—the primary sarcomere target of PKA—was the same in cAF and SR atria. Our analysis revealed, instead, significantly higher phosphorylation of other myofilament proteins in cAF. CaMKII (Ca2+/calmodulin-dependent protein kinase II) is overexpressed in human cAF15 and this may explain why cMyBP-C phosphorylation is increased because Ser282 is both a PKA and CamKII site. Increased phosphorylation of cMyBP-C in the absence of

Figure 6. Passive tension in SR and cAF myofibrils. Average sarcomere length–passive tension relationships for SR (●, continuous line) and cAF (○, dashed line) myofibrils. Data are means±SE of 9 to 15 myofibrils from 6 SR and 6 cAF patients. In the inset, representative passive tension responses (lower traces) to ramp elongations (upper traces) of SR myofibril in relaxing conditions (pCa 8.0).

Figure 7. Titin isoform expression in SR and cAF atrial myocardium. A, SDS-PAGE of SR and cAF myocardium. Rat cardiac degraded control (CD) was coelectrophoresed for isoform reference. Top right, Expanded titin region with evidence that degradation product T2 is hardly detectable and T3 undetectable in the human atrial samples. Bottom right, Western blot using the antibody Z1/Z2 for isoform band confirmation. B, Titin isoform percent distribution in SR and cAF (means±SE, n=6, P<0.01). C, Total titin content, expressed relatively to MHC in SR and cAF atrial tissue (means±SE, n=6, P>0.9).
increased PKA phosphorylation of cTnI may increase myofibril Ca2+ sensitivity,36 though the specific effect of cMyBP-C phosphorylation on Ca2+ sensitivity of tension is at present unresolved.37 Increased atrial light chain-2 phosphorylation by myosin light chain kinase or PKC has been associated with increased myofibril Ca2+ sensitivity,38,39 whereas increased cTnT phosphorylation by PKC has been implicated in reduced maximal force generating capacity.40 As conclusion, present cases and their cellular compartmentalization.

In isolated mouse heart myofilament Ca2+ phosphatase activity in cAF has been suggested in a previous specific protein phosphorylation changes. A role for altered rather than kinase activity, which would result in more proteins is increased favors a role for altered phosphatase phosphorylation status of multiple myofilament proteins.

The fact that phosphorylation of multiple myofilament proteins is increased favors a role for altered phosphatase activity rather than kinase activity, which would result in more specific protein phosphorylation changes. A role for altered phosphatase activity in cAF has been suggested in a previous study10 and warrants further investigation of protein phosphatases and their cellular compartmentalization.

In intact cAF myocardium, increased myofilament Ca2+ sensitivity may partly counteract the decrease in active force generation and impaired excitation–contraction coupling but may have detrimental effects on relaxation. Moreover, increase in Ca2+ sensitivity of cAF myofibrils may contribute to electric remodeling and self-perpetuation of atrial arrhythmia. Because Ca2+ binding to the troponin complex represents the largest component of dynamic Ca2+ buffering during the cardiac cycle, intracellular Ca2+ transients may significantly change with increased myofilament Ca2+ sensitivity.41,42 This, in turn, may lead to action potential remodeling and altered intracellular Ca2+ handling to create both an arrhythmogenic substrate and a trigger in atrial myocardium. In isolated mouse heart myofilament Ca2+-sensitization by drugs or troponin mutations associated with familial hypertrrophic cardiomyopathy are reported to induce arrhythmias by (1) shortening the effective refractory period and the action potential duration, (2) slowing conduction velocity, and (3) predisposing to early after-depolarizations and triggered activity.43

Clinical Implications

This study provides new insights into the alterations of myofilament function in cAF that may help us understand persistent atrial contractile dysfunction, a major contributor to atrial thrombogenesis. In cAF remodeled sarcomeres, we identified altered titin isoform expression and increased myofilament Ca2+ sensitivity as contributors to progressive and self-perpetuating arrhythmia. If mecanoelectric feedback between increased myofilament Ca2+ sensitivity and increased propensity for arrhythmias will be definitely established, restoration of sarcomere Ca2+ sensitivity (likely via restoration of myofilament protein phosphorylation levels) may become a novel therapeutic option for AF treatment.

Sources of Funding

This work was supported by the 6th and 7th Framework Programs of the European Union (STREP Projects “NORMACOR,” contract LSH M/CT/2006/018676 to E.C.; “BIG-HEART,” grant agreement 241577 to C.P., L.C., J.v.d.V.; Marie Curie EXT-014051 to L.C.); the Deutsche Forschungsgemeinschaft (FOR-604/2, CA 618/2 to L.C.); and Ministero Istruzione Università e Ricerca, Italy (PRIN2008 to A.M.).

Disclosures

None.

References

Novelty and Significance

What Is Known?
- Chronic atrial fibrillation (cAF) is associated with persistent atrial contractile dysfunction, a major contributor to atrial thrombogenesis.
- Mechanisms responsible for impaired contractility are poorly defined and available therapies do not address this dysfunction.
- Most studies focus on alterations in atrial myocyte Ca²⁺ handling, but we and others emphasize the role of myofilament protein remodeling.

What New Information Does This Article Contribute?
- We demonstrate that diastolic and systolic sarcosome mechanics and myofilament Ca²⁺ sensitivity are altered in atrial myofibrils from cAF patients.
- These mechanical changes are explained by shifts in protein isoforms and by increased phosphorylation of multiple myofilament proteins.
- Myofilament remodeling is part of atrial contractile dysfunction in human cAF and probably contributes to the progressive and self-perpetuating nature of the arrhythmia.

It is hypothesized that maladaptive remodeling of the myofilaments is responsible, at least in part, for human cAF-associated atrial contractile dysfunction. To document the functional impact of myofilament protein changes in human cAF we dissected the sarcomere diastolic and systolic properties of single atrial myofibrils from surgical samples of cAF and control patients. cAF myofibrils show (1) a reduction in diastolic stiffness, (2) a reduction in maximum active tension and in the rates of contraction and relaxation, and (3) an increase in myofilament Ca²⁺ sensitivity. These mechanical changes are associated with changes in myofilament proteins. In cAF remodeled sarcomeres we identify altered titin and myosin isoform expression and increased levels of phosphorylation of multiple proteins. The latter finding suggests that altered phosphatase activity leads to increased Ca²⁺ sensitivity that, in turn, may contribute to the self-perpetuation of the atrial arrhythmia. These results show that translational and post-translational changes in myofilament proteins play a direct role in the altered atrial mechanics associated with cAF and contribute to the progression of the arrhythmia. Restoration of sarcosome Ca²⁺ sensitivity (likely via restoration of myofilament protein phosphorylation levels) may become a novel therapeutic option for AF treatment.
Effects of Chronic Atrial Fibrillation on Active and Passive Force Generation in Human Atrial Myofibrils

Alexandra Belus, Nicoletta Piroddi, Cecilia Ferrantini, Chiara Tesi, Olivier Cazorla, Luana Toniolo, Maurice Drost, Giulia Mearini, Lucie Carrier, Alessandra Rossi, Alessandro Mugelli, Elisabetta Cerbai, Jolanda van der Velden and Corrado Poggesi

Circ Res. 2010;107:144-152; originally published online May 13, 2010;
doi: 10.1161/CIRCRESAHA.110.220699

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571
ONLINE SUPPLEMENT MATERIAL

DETAILED METHODS

Patients

The investigation conforms with the principles outlined in the Declaration of Helsinki and is approved by the local Ethics Committee (n. 2006/0023797). Samples of atrial appendages were obtained following informed consent from 15 SR patients and 16 cAF patients undergoing open heart surgery. In the cAF patients established AF was documented for at least 8 months. Samples from SR patients were used as controls. No significant difference was present in ejection fraction and left atrial size between cAF and SR patients. Details for each patient group are given in Online Table I.

Myofibril preparation

Fresh surgical samples were collected in a cold sterile saline solution for myofibril isolation. Myofibril suspensions were prepared according to previously described methods1-2.

Mechanical measurements

Techniques for mechanical measurements in myofibrils were as previously described1-3. Briefly, myofibrils were transferred to a temperature controlled chamber filled with relaxing solution (pCa8, 15°C). The selected myofibril was horizontally mounted between a cantilever force probe (compliance: 2–6 nm.nN⁻¹) and a glass needle mounted on the lever arm of a length control motor. Initial sarcomere length (SL) was adjusted to optimum myofilament overlap (2.2-2.3 µm). Average SL and width of mounted myofibrils were measured on video images acquired through a CCD camera (2000x; phase contrast optics).

Isometric force was measured photoelectronically by recording the force probe deflection. Myofibrils were activated and relaxed by rapid solution switching between two continuous streams of solutions. Release-restretch protocols were applied to myofibrils in relaxing solution to measure passive tension or in activating solution at the contraction plateau (Fig 1) to measure the rate of tension redevelopment (k_{tr})4.

Solutions

Ionic strength of the experimental solutions was 200mM and pH 7.0. Measurements were made in the presence of a MgATP regenerating system (10 mM creatine phosphate, 200 units.ml⁻¹ creatine kinase). To avoid the effects on myofibril maximal force and force kinetic of variable level of contaminant inorganic phosphate (P_i) in the solutions, [P_i] was reduced to less than 5µM using a P_i scavenging system1-3. All solutions contained a cocktail of protease inhibitors1-3.

Sarcomeric protein analysis

Myosin heavy chain isoforms

Polyacrylamide gel electrophoresis was used to determine MHC isoform composition (MHCα and MHCβ) after denaturation in sodium dodecyl sulphate (SDS-PAGE).

After mechanical measurements were completed the remaining myofibril suspensions were centrifuged and the pellets were re-suspended in 100µl of Laemmli buffer and boiled for 5 min at 80°C. Appropriate quantities of the protein suspension were loaded onto gels (almost 1µg of total protein). Cardiac MHC isoforms were separated on 8% Polyacrylamide slab gels after denaturation in SDS following a procedure described by Talmadge and Roy4. Slabs gel 18cm wide, 16cm high and 1mm thick were ran at 4°C for 40 h (2 h at 70V then at 170V for the time remaining). The gel thickness was increased (1mm instead of 0.75mm) in order to reduce the resistance; the lower voltage at a prolonged running time allowed us to achieve the resolution required for the separation of the two cardiac MHC isoforms. Gels were silver stained (Bio-Rad Silver stain plus) for isoform recognition or stained with Coomassie Blue for quantitative analysis.

The Coomassie Blue gels were digitized with a scanner EPSON 1650 at a resolution of 1200 dpi. Each line was characterised by a Brightness-Area Product (BAP) with a constant threshold after black/white inversion using Adobe Photoshop.

Each band (MHC-α or MHC-β) was expressed as percent of the total MHC.
Titin isoforms

Analysis of titin content in SR and cAF samples was adapted from Cazorla et al.5. Human atrial tissue was pulverized in liquid nitrogen and solubilised for 3 min at 60°C in Laemmli buffer supplemented with 8M urea. Titin content in SR and cAF samples were analysed with SDS-PAGE (2.5-7% acrylamide gradient gels) and stained with 0.1% Coomassie Blue.

Wet gel images were acquired with a Kodak Image Station 2000R and analysed using Kodak 1D image analysis software. The integrated optical density of MHC and titin peaks (both N2B and N2BA isoforms) were determined to measure both the total amount of titin relative to MHC and the ratio N2BA:N2B. For each sample a range of loadings was electrophoresed on the same gel. The optical density of titin and MHC peaks were determined and plotted against their loading volume. The linear part of this relation was fitted with a line regression and the slope determined. The slope ratio of titin:MHC were taken as relative amount of titin in the samples and used to determine the N2BA:N2B ratio. Western blotting was performed with the antibodies Z1/Z2 (kindly provided by Dr Labeit) to label the N-terminal of titin.

ProQ Phosphostaining

Atrial tissue samples from 8 SR and 8 cAF hearts were TCA (tri-chloro acetic acid)-treated as described previously to fix phosphorylation status of myofilament proteins6. Phosphorylation status of myofilament proteins was determined using Pro-Q Diamond phosphostaining (Molecular Probes)6. Samples were separated on a gradient gel (Criterion Tris-HCl 4-15% gel, BioRad) and proteins were stained for one hour with Pro-Q Diamond Phosphoprotein Stain. Fixation, washing and de-staining were performed according to the manufacturer’s guidelines. Staining was visualized using the LAS-3000 Image Reader (FUJI; 460 nm/605 nm Ex/Em; 2 min illumination) and signals were analyzed with AIDA. All protein signals were within the linear range. Subsequently gels were stained overnight with SYPRO Ruby stain (Molecular Probes) and visualized with the LAS-3000 (460 nm/605 nm Ex/Em; 2 s illumination). Since illumination of Pro-Q Diamond-stained gels for 2 seconds did not reveal any signal, the signals obtained upon SYPRO Ruby staining are not tainted by Pro-Q signals. All protein phosphorylation signals were corrected for protein content determined by SYPRO staining.

Western Immunoblotting

Gel electrophoresis and Western immunoblotting was performed as described previously7-8 to analyze content and phosphorylation of myosin binding protein C and troponin I. Shortly, for the analysis of cMyBP-C 15µg of proteins were loaded on a 10% acrylamide/bisacrylamide (29:1) gel and electro-transferred onto nitrocellulose membrane. Membranes were stained with polyclonal antibodies directed against cMyBP-C (MyBP-C motif 1:2500, pSer282-cMyBP-c 1:1000). After incubation with HRP-secondary antibody (Sigma), the signal was revealed with ECL Plus (Amersham) and acquired with the ChemiImager TM 5500 (Alpha Innotech). For troponin analysis 0.5 µg and 5 µg sample was loaded to analyse expression (antibody 8I7, 1:15.000, Spectral diagnostics) and phosphorylation (pSer23/24, 1:1000, Cell signaling), respectively. Troponin values were normalized to actin stained on the same blots.

Statistical analysis

Data are presented as means ± SE. Differences between group means were compared by unpaired Student t test. P<0.05 was considered statistically significant.
ONLINE TABLE I: Patient data

<table>
<thead>
<tr>
<th></th>
<th>cAF</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Gender, n of female</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Age, years</td>
<td>65.9±1.7</td>
<td>67.2±1.9</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>27.1±0.7</td>
<td>26.8±1.2</td>
</tr>
<tr>
<td>Reason for surgery:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CAD, n</td>
<td>6</td>
<td>11*</td>
</tr>
<tr>
<td>• MVD/AVD, n</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>• CAD+ MVD/AVD, n</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>NYHA functional class at time of surgery:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• I, n</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>• II, n</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>• III, n</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>• IV, n</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>57.7±2.7</td>
<td>59.1±3.2</td>
</tr>
<tr>
<td>Left atrial diameter (mm)</td>
<td>53.6±1.7</td>
<td>49.8±1.2</td>
</tr>
</tbody>
</table>

CAD, coronary artery disease; MVD, Mitral valve disease requiring valve replacement; AVD, Aortic valve disease requiring valve replacement; LVEF, left ventricular ejection fraction. *P<0.05, nonpaired Student t test for continuous variables and X^2 test for categorical variables.
SUPPLEMENTAL REFERENCES

