Therapeutic Targeting of Mitochondrial Superoxide in Hypertension

Anna E. Dikalova, Alfiya T. Bikineyeva, Klaudia Budzyn, Rafal R. Nazarewicz, Louise McCann, William Lewis, David G. Harrison, Sergey I. Dikalov

Rationale: Superoxide (O$_2^-$) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production.

Objective: Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit.

Methods and Results: In this study, we found that the hormone angiotensin (Ang II) increased endothelial mitochondrial superoxide production. Treatment with the mitochondria-targeted antioxidant mitoTEMPO decreased mitochondrial O$_2^-$, inhibited the total cellular O$_2^-$, reduced cellular NADPH oxidase activity, and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), whereas SOD2 depletion with small interfering RNA increased both basal and Ang II–stimulated cellular O$_2^-$.

Conclusions: These studies show that mitochondrial O$_2^-$ is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases. (Circ Res. 2010;107:106-116.)

Key Words: hypertension ■ mitochondria ■ superoxide ■ mitochondrial targeted antioxidant

During normal mitochondrial function, a small percentage of electrons from the electron transport chain reduce oxygen to form superoxide (O$_2^-$). In several common conditions, such as atherosclerosis, ischemia/reperfusion injury and aging, the mitochondria become dysfunctional and this leak of electrons is increased. The mitochondria contain a unique form of superoxide dismutase (SOD), the manganese-containing mitochondrial SOD (SOD2), which is critical in protecting against excessive production of O$_2^-$. Mice lacking this enzyme die of a cardiomyopathy within 10 days of birth and mice lacking one allele of SOD2 (SOD2$^{+/−}$ mice) develop hypertension with aging and in response to a high salt diet.

The development of hypertension in SOD2$^{+/−}$ mice is in keeping with a role of reactive oxygen species (ROS) in the pathogenesis of this and many other vascular diseases. Hypertension has been associated with increased ROS production in the vasculature, the kidney and in portions of the central nervous system that control blood pressure. The hormone angiotensin II (Ang II), commonly implicated in hypertension, increases ROS production in the sites. Moreover, ROS overproduction leads to decreased bioavailability of NO, impairs endothelium-dependent vasodilation, and promotes vasoconstriction. These alterations occur early in the development of vascular disease.

There is substantial interest in the enzymatic source of ROS in hypertension. Ang II stimulates the NADPH oxidase in many mammalian cells via pathways involving protein kinase C and the tyrosine kinase c-Src. Ang II also activates the NADPH oxidase in vivo and mice lacking components of this enzyme are resistant to both Ang II and salt-dependent hypertension. Specific inhibitors of the NADPH oxidase have antihypertensive effects.

Another potential source of ROS in hypertension is the...
mitochondria. We have previously found that Ang II increases production of mitochondrial ROS, decreases mitochondrial membrane potential, and reduces the respiratory control ratio.14 These deleterious effects of Ang II on mitochondrial function were associated with increased cellular O_2^- production and decreased endothelial NO bioavailability. These studies further indicated that Ang II activation of the NADPH oxidase led to oxidant disruption of mitochondrial function, supporting an important interplay between these 2 sources of ROS,14 and suggest that mitochondria-derived ROS could contribute to endothelial dysfunction and hypertension. In keeping with this concept, Widder et al recently showed that mice transgenic for the mitochondrial antioxidant enzyme thioredoxin 2, are resistant to Ang II–induced hypertension and endothelial dysfunction.15 Taken together, these studies suggest that mitochondrial-produced ROS could play an important role in hypertension.

We therefore performed the present study to test the hypothesis that mitochondrial-targeted antioxidant therapy would be effective in both preventing and treating hypertension. To gain further insight into the role of mitochondrial O_2^- in endothelial dysfunction and hypertension, we examined the effects of depleting or overexpressing mitochondrial superoxide dismutase (SOD2) in cultured endothelial cells and transgenic mice with Ang II–induced hypertension. Our data strongly indicate that mitochondrial O_2^- is an important, previously largely ignored, therapeutic target to treat endothelial dysfunction and high blood pressure.

Methods

An expanded Methods section is available in the Online Data Supplement at http://circres.ahajournals.org.

Reagents

MitoTEMPO, mitoTEMPO-H, 1-hydroxy-3-carboxy-pyrorridine (CPH), and nitroxide 3-carboxy-proxyl (CP) were purchased from Alexis Corporation (San Diego, Calif). Xanthine oxidase was purchased from Roche Molecular Biochemicals (Indianapolis, Ind). All other reagents were obtained from Sigma (St Louis, Mo).

Cell Culture

Bovine aortic endothelial cells (BAECs) (passage 4 to 8) were cultured on 100-mm plates in media 199 containing 10% FCS supplemented with 2 mmol/L l-glutamine and 1% vitamins. Confluent cells were used for the experiments.16 Human aortic endothelial cells (HAECS) purchased from Lonza (Chicago, Ill) and cultured in EGM-2 medium supplemented with 2% FBS but without antibiotics. On the day before the study, the FBS concentration was reduced to 1%. In preliminary experiments, we examined the effect of varying doses of Ang II on cellular O_2^- production. We found that 4 hours of Ang II increased cellular O_2^- in a dose-dependent manner with maximum stimulation at 200 mmol/L (Online Figure I). This concentration was therefore used in the remainder of the experiments. It should be noted that because degradation in culture, the steady-state concentration of Ang II is substantially lower than that initially added.17

Mitochondrial Isolation and Study

Mitochondria were isolated as previously described.18 Complex I–dependent (glutamate plus malate as substrate) or complex II–dependent (succinate as the substrate) mitochondrial respiration was studied using intact mitochondria14 and fluorescence oxygen monitoring system (Instech Laboratories Inc, Plymouth Meeting, Pa). Mitochondrial H_2O_2 was measured by mixing 20 μg of mitochondrial protein with horseradish peroxidase (2 U/mL), peroxidase substrate acetamidophenol (1 mmol/L), SOD (50 U/mL), and spin probe CAT1H (1 mmol/L).19 Production of mitochondrial O_2^- was visualized in intact cultured HAECS using the fluorescent probe MitoSOX (excitation/emission: 510/580 nm, Invitrogen).20 HAECs were incubated with 2 μmol/L MitoSOX in KHB for 20 minutes at 37°C in CO$_2$ incubator. The mitochondrial subcellular location of MitoSOX was confirmed by colabeling with 50 nmol/L MitoTracker Green FM (excitation/emission: 490/516 nm).

Measurement of Cellular O_2^-, NADPH Oxidase Activity, and NO Levels

Superoxide was measured using dihydroethidium (DHE) and an high-performance liquid chromatography (HPLC)-based assay with minor modification as described previously.21 NADPH oxidase activity was measured in membrane preparations prepared as described previously using electron spin resonance (ESR) and the spin probe CPH,22 and was quantified as NADPH dependent O_2^- production. NO levels in endothelial cells and vessels were quantified by ESR and colloid Fe(DTc)$_2$ as described previously.23

Modulation of SOD2 Expression

To manipulate mitochondrial O_2^-, we inhibited the expression of mitochondrial SOD2 using small interfering (si)RNA from Qiagen or overexpressed SOD2 using transfection-ready expression plasmid for human SOD2 (Addgene Inc). As a control we used nonsilencing siRNA (Qiagen AllStars negative control) and a green fluorescent protein (GFP) empty plasmid (Lonza). The plasmids were grown in bacteria using standard techniques and purified with a kit (Sigma).

Animal Experiments

Hypertension was induced by Ang II (490 ng/kg per minute) as described previously24 using either C57Bl/6 or mice transgenic for human SOD2 (tgSOD2 mice). In addition, mice received a separate minipump for coinfusion of either TEMPOL, mitoTEMPO or vehi-
cle as described in the figure legends. In other animals, mitoTEMPO treatment was started seven days after saline or Ang II minipump placement. Blood pressure was monitored using either the tail cuff method or telemetry as previously described.25,26 Following 14 days of Ang II infusion, the animals were euthanized by CO2 inhalation and aortas were extracted for the analysis of NO and O2 production, and endothelial functions. DOCA salt–induced hypertension was induced as described previously27 using C57Bl/6 mice. Ten days after surgery, the mice were implanted with osmotic pumps containing saline or mitoTEMPO (0.7 mg/kg per day). Seventeen days after surgery, the animals were euthanized by CO2 inhalation and segments of mouse aorta were used for analysis of vascular NO and O2 production. Endothelium-dependent vasodilatation was analyzed in isolated 3-mm aortic segments in organ chambers as we have previously described.26

Statistics
Experiments were analyzed using the Student–Neuman–Keuls post hoc test and ANOVA. P levels of <0.05 were considered significant.

Results
Mitochondrial Accumulation of mitoTEMPO
It has been previously suggested that conjugation to a lipophilic triphenylphosphonium cation allows targeting of an antioxidant to the mitochondria and can prevent mitochondrial oxidative damage and mitochondrial dysfunction.28,29 We have developed a new mitochondria-targeted superoxide dismutase mimetic mitoTEMPO (Figure 1A). To confirm mitochondrial accumulation of mitoTEMPO we used ESR to examine the relative intensities of the nitroxide signal in the cell media, mitochondria and cytoplasm following one hour incubation with mitoTEMPO. As evidenced in Figure 1A, the mitoTEMPO accumulation in the cytoplasm fraction was 3-fold greater than that present in the extracellular media, whereas analysis of the mitochondria revealed substantial accumulation of mitoTEMPO up to 15 μmol/L.

Scavenging of O2− by MitoTEMPO
In additional experiments, we examined the capacity of mitoTEMPO or its reduced form, mitoTEMPO-H, to scavenge O2−. We used the spin trap EMPO and generated O2− using xanthine and xanthine oxidase. As evident in Figure 1B, exposure of EMPO to xanthine/xanthine oxidase produced an ESR spectrum typical of the EMPO-OOH radical adduct. Addition of either mitoTEMPO or mitoTEMPO-H inhibited formation of EMPO-OOH radical adduct in dose dependent manner (Figure 1B and 1C). Control experiments showed that neither mitoTEMPO nor mitoTEMPO-H had a direct effect on xanthine oxidase activity (Online Figure II). The estimated IC50’s for
mitoTEMPO and mitoTEMPO-H were 10 μmol/L and 123 μmol/L, respectively. Based on competition with 50 mmol/L EMPO, which has a rate constant of 74 mol/L·s⁻¹ for reaction with O₂⁻, the rate constants of reactions of mitoTEMPO and mitoTEMPO-H with O₂⁻ were estimated to be \(3.7 \times 10^5\) mol/L·s⁻¹ and \(3.0 \times 10^4\) mol/L·s⁻¹, respectively. These data are similar to the previously reported rate constants for TEMPOL \(6.5 \times 10^5\) mol/L·s⁻¹) and TEMPONE-H \(1.2 \times 10^4\) mol/L·s⁻¹). These data are consistent with mitochondrial accumulation of mitoTEMPO shown in Figure 1A and demonstrate specificity of this agent for mitochondrial protection against O₂⁻.

Effect of MitoTEMPO on Production of Mitochondrial ROS and Respiration

We previously reported that Ang II increases mitochondrial ROS production and impairs mitochondrial respiration in endothelial cells. We therefore sought to determine whether mitoTEMPO would ameliorate these effects. To monitor mitochondrial O₂⁻ levels in intact cells, we used the mitochondria-specific fluorescent probe MitoSOX. As expected, stimulation of HAECs with Ang II (200 nmol/L, 4 hours) significantly increased mitochondrial O₂⁻, as reflected by MitoSOX fluorescence (Figure 2A).

Table 1. Effect of Transfection With SOD2 Plasmid or Depletion of SOD2 With siSOD2 or Treatment With MitoTEMPO on Superoxide Dismutation

<table>
<thead>
<tr>
<th>Group</th>
<th>BAECs</th>
<th>HAECs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superoxide Dismutation Rate (units/mg Protein)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitochondria</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>Control</td>
<td>0.56±0.06</td>
<td>5.7±0.3</td>
</tr>
<tr>
<td>mT</td>
<td>1.75±0.15*</td>
<td>5.4±0.4</td>
</tr>
<tr>
<td>Ang II</td>
<td>0.59±0.07</td>
<td>5.6±0.4</td>
</tr>
<tr>
<td>Ang II+mT</td>
<td>1.74±0.12*</td>
<td>5.4±0.5</td>
</tr>
<tr>
<td>GFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS siRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>siSOD2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results represent mean for 3–5 experiments per group. *P<0.05 vs control; †P<0.01 vs control transfection with GFP of NS siRNA. mT indicates MitoTEMPO.

Figure 2. Effect of mitoTEMPO on mitochondrial O₂⁻, endothelial O₂⁻, NO and NADPH oxidase activity.

A. Mitochondrial O₂⁻ was measured in control or Ang II-stimulated HAECs using fluorescent probe MitoSOX. Mitochondrial localization of MitoSOX signal was confirmed by colocalization with MitoTracker. B, Activity of NADPH oxidase measured in membrane fractions isolated from unstimulated or Ang II-stimulated BAECs (4 hours, 200 nmol/L) and supplemented for 15 minutes with saline, the mitochondria-impermeable SOD mimetic 3-carboxyproxyl (CP), or the mitochondria-targeted SOD mimetic mitoTEMPO (25 nmol/L). C, Cellular O₂⁻ was measured in intact BAECs using DHE and HPLC. D, Nitric oxide was measured in intact cells after treatment with saline, CP, or mitoTEMPO using ESR and the NO spin trap Fe(DETC)₂. Results are means±SEM (n=5 to 8 each). *P<0.05 vs control; **P<0.05 vs Ang II.
fluorescence colocalized with the mitochondria as detected using the probe mitoTracker (Figure 2A). HPLC analysis of the O₂⁻ specific product of MitoSOX (2-OH-Mito-E⁻) confirmed the specificity of O₂⁻ measurements with MitoSOX (Online Figure III). Experiments with PMA and antimycin A confirmed specific detection of cellular mitochondrial O₂⁻ by DHE and MitoSOX (Online Figure IV). Interestingly, supplementation of HAECs with mitoTEMPO for 15 minutes after Ang II stimulation abolished the MitoSOX signal indicating that mitoTEMPO decreases mitochondrial O₂⁻ in intact cells (Figure 2A and Online Figure III).

Scavenging mitochondrial O₂⁻ by mitoTEMPO could improve mitochondrial function. To determine whether this is correct, we measured respiration of isolated mitochondria in the presence of complex I substrates malate/glutamate or complex II substrate succinate. Coupling of mitochondrial respiration was estimated by measurements of State 3 and State 4 oxygen consumption in the presence or absence of ADP. In unstimulated cells, treatment with mitoTEMPO did not affect mitochondrial respiration (Table 2). Ang II increased state 4 respiration (without ADP) and reduced state 3 respiration (in the presence of ADP). These changes were reflected in marked reduction of respiratory control ratio (RCR), indicating uncoupling of mitochondrial respiration. Supplementation with mitoTEMPO markedly improved these parameters for both complex I and complex II substrates, indicating that the mitochondrial impairment caused by Ang II could be reversed by mitoTEMPO.

Table 2. Mitochondrial H₂O₂ and Respiration in Ang II–Stimulated BAECs Treated With MitoTEMPO

<table>
<thead>
<tr>
<th>H₂O₂ (pmol/mg per minute)</th>
<th>Malate + Glutamate</th>
<th>Succinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>67 ± 4</td>
<td>234 ± 20</td>
</tr>
<tr>
<td>MitoTEMPO</td>
<td>72 ± 5</td>
<td>235 ± 19</td>
</tr>
<tr>
<td>Ang II*</td>
<td>133 ± 12</td>
<td>377 ± 30</td>
</tr>
<tr>
<td>Ang II + mitoTEMPO†</td>
<td>79 ± 4</td>
<td>227 ± 24</td>
</tr>
</tbody>
</table>

Results are means ± SEM. *P < 0.05 vs control; †P < 0.05 vs Ang II.

Effect of MitoTEMPO on Endothelial O₂⁻, NO, and NADPH Oxidase Activity

The studies described above indicate that Ang II increases mitochondrial H₂O₂ and mitoTEMPO prevents this. H₂O₂ is freely diffusible and can stimulate the extramitochondrial NADPH oxidase via c-Src-mediated mechanisms. We therefore tested the hypothesis that inhibition of mitochondrial H₂O₂ by mitoTEMPO would decrease activity of the NADPH oxidase, reducing cellular O₂⁻ and improving NO production.

To perform these studies, we stimulated BAECs with Ang II (200 nmol/L for 4 hours) and then exposed the cells to mitoTEMPO (25 nmol/L) for 15 minutes. Membrane fractions were then produced by centrifugation and NADPH oxidase activity measured using ESR. It was found that Ang II significantly increased nonmitochondrial NADPH oxidase activity (Figure 2B). Treatment of cells with mitoTEMPO completely blocked the increase in NADPH oxidase activity caused by Ang II but did not affect basal NADPH oxidase activity in unstimulated cells (Figure 2B). Importantly, supplementation with a mitochondria impermeable SOD-mimetic CP did not affect NADPH oxidase activity. Direct addition of mitoTEMPO (0.5 μmol/L) to membrane fractions did not affect NADPH oxidase activity (Online Figure V).

This decrease of NADPH oxidase activity in mitoTEMPO treated cells was accompanied by reduced production of cellular O₂⁻ measured in intact cells using dihydroethidium and HPLC (Figure 2C) and an increase in endothelial NO production as detected by ESR and the spin trap Fe[DETC]⁺ (Figure 2D). Treatment of Ang II–stimulated cells with the mitochondria impermeable analog 3-carboxyproxyl had no effect on these parameters (Figure 2C and 2D). These data indicate that scavenging of mitochondrial O₂⁻ with mitoTEMPO results in decrease of cellular O₂⁻ and recovery of endothelial NO.

SOD2 Modulates Ang II–Stimulated Cellular O₂⁻ and NADPH Oxidase Activity

It is conceivable that the effects of mitoTEMPO are not mediated by O₂⁻ scavenging but are attributable to nonspecific effects. We therefore performed additional experiments to manipulate the levels of mitochondrial superoxide dismutase (SOD2) and measured NADPH oxidase activity and cellular O₂⁻ production. Transfection of HAECs with an SOD2 plasmid increased mitochondrial SOD2 activity by 2.4-fold, whereas cytoplasmic SOD1 activity was not...
changed (Table 1). Depletion of SOD2 with siRNA decreased SOD2 activity by 2.7-fold (Table 1). In cells transfected with a GFP control plasmid, Ang II stimulation doubled NADPH oxidase activity. In contrast, Ang II had no effect on NADPH oxidase activity in HAECs transfected with the SOD2 plasmid (Figure 3A). Interestingly, depletion of SOD2 using siRNA transfection increased NADPH oxidase activity in unstimulated or Ang II (200 nmol/L, 4 hours) stimulated HAECs (Figure 3B). These data confirmed that modulating SOD2 levels affects production of cellular O$_2^\bullet$ by NADPH oxidase.

Fluorescent microscopy with MitoSOX showed that SOD2 depletion increased both basal and Ang II–stimulated mitochondrial superoxide production, and that this could be inhibited by mitoTEMPO (Online Figure VI). It is important to note that mitoTEMPO treatment inhibited cellular O$_2^\bullet$ and mimicked SOD2 overexpression (Figure 3B) in SOD2-depleted cells, further validating mitoTEMPO as an SOD2 mimic.

Figure 3. SOD2 modulates Ang II stimulated O$_2^\bullet$ production. SOD2 was overexpressed or depleted by 72 hours of transfection with a SOD2-expressing plasmid or siRNA. A, Activity of NADPH oxidase was measured in the membrane fractions of unstimulated or Ang II (200 nmol/L, 4 hours) stimulated HAECs using ESR and spin probe CPH. Mitochondrial superoxide production, and that this could be inhibited by mitoTEMPO (1.5 mmol/L) (25 nmol/L) was added to HAECs after Ang II stimulation, 15 minutes before isolation of membrane fraction. Insert shows a typical Western blot of mitochondrial fractions isolated from siSOD2 or nonsilencing siRNA treated HAECs, indicating significant depletion of SOD2 in siSOD2-treated cells. B, Superoxide was measured by DHE/HPLC. Results are means±SEM (n=4 to 8 each). *P<0.01 vs no Ang II; **P<0.01 vs Ang II; §P<0.05 vs NS control; #P<0.05 vs NS+Ang II.

Antihypertensive Effect of MitoTEMPO

Increased vascular O$_2^\bullet$ production has been implicated in the pathogenesis of endothelial dysfunction and hypertension. Because mitoTEMPO diminished mitochondrial ROS, inhibited Ang II–stimulated endothelial O$_2^\bullet$ and prevented inactivation of NO caused by Ang II in cultured endothelial cells (Figures 2 and 3), we hypothesized that it could improve endothelial function and decrease hypertension in vivo. Coinfusion of mitoTEMPO (Figure 4A) significantly attenuated the Ang II–induced hypertension in a dose-dependent manner (50, 150 and 500 μg/kg per day), while not affecting blood pressure in normal mice. Telemetric measurements of blood pressure confirmed that coinfusion of mitoTEMPO (150 μg/kg per day) with Ang II markedly attenuated hypertension (Figure 4B). In addition, mitoTEMPO inhibited the increase in vascular O$_2^\bullet$ (Figure 4C) and prevented the decrease of vascular NO (Figure 4D) caused by Ang II infusion. Importantly, infusion of the same dose of the nontargeted SOD mimetic TEMPO-L (286 nmol/kg per day) did not affect Ang II–induced hypertension (Figure 4A). These data demonstrate that the mitochondrial-targeted SOD2 mimetic mitoTEMPO attenuates Ang II–induced hypertension at an extremely low dose.

The above studies showing that mitoTEMPO can prevent hypertension do not provide insight into whether it could lower blood pressure after hypertension is established. We therefore performed additional studies in which mitoTEMPO was administered after the onset of Ang II–induced hypertension. Following seven days of Ang II infusion (0.7 mg/kg per day) systolic blood pressure reached 160 mm Hg (Figure 5A). The subsequent addition of mitoTEMPO (1.5 μmol/kg per day) resulted in a significant time-dependent decrease of blood pressure. MitoTEMPO treatment of hypertensive mice not only reduced blood pressure but also improved endothelial function as evidenced by measurements of endothelium-dependent vasodilation in normotensive mice (Figure 5B) and did not alter the endothelium-independent responses to sodium nitroprusside (Online Figure VII).

Because the above findings were made in mice treated with Ang II, there was a question as to whether the effect of mitoTEMPO is limited to the Ang II model. We therefore performed additional experiments in mice with DOCA salt hypertension. This model of hypertension differs from Ang II–induced hypertension because it is largely volume dependent and is associated with suppressed plasma renin activity. In these experiments, mitoTEMPO...
was administered 10 days after the DOCA salt surgery. As in the case of Ang II–induced hypertension, mitoTEMPO reduced blood pressure in DOCA salt mice but did not affect blood pressure in sham-operated mice (Figure 5C). ESR studies demonstrated that DOCA salt hypertension decreased endothelial NO production and that mitoTEMPO treatment restored this, while not affecting vascular NO in sham mice (Figure 5D).

Overexpression of SOD2 Attenuates Ang II–Induced Endothelial Dysfunction and Hypertension

The above experiments with mitoTEMPO suggest that reducing mitochondrial O$_2^-$ improves endothelial function and hypertension. To confirm this using nonpharmacological means, we investigated production of vascular O$_2^-$ and the development of hypertension in tgsOD2 mice. These animals have a 2-fold increase in SOD2 activity and protein levels. Although basal blood pressures in tgsOD2 and C57Bl/6 mice were similar, the hypertensive response to Ang II was attenuated and delayed in tgsOD2 mice (Figure 6A). The production of vascular O$_2^-$ in Ang II–infused tgsOD2 mice was significantly lower compared with C57Bl/6 mice, whereas basal O$_2^-$ level was not different (Figure 6B). These data are in keeping with our findings with mitoTEMPO treatment and confirmed the role of mitochondrial O$_2^-$ in vivo.

Discussion

The present study provides the first evidence that scavenging of mitochondrial O$_2^-$ improves endothelial function and reduces hypertension. In this work we found that treatment with either the mitochondria-targeted SOD mimetic mitoTEMPO or overexpression of SOD2 inhibited oxidative stress and prevented the loss of endothelial NO caused by Ang II both in cultured endothelial cells and intact mice. Furthermore, treatment of hypertensive mice with mitoTEMPO after the onset of either Ang II– or DOCA salt-induced hypertension significantly reduced blood pressure and substantially improved endothelium-dependent vasodilatation. Analysis of SOD2 overexpressing transgenic mice confirmed an important role of mitochondrial O$_2^-$ in endothelial function and hypertension.

We have previously shown that Ang II stimulates production of mitochondrial O$_2^-$.

This was dependent on NADPH oxidase activity because siRNA-induced deple-
tion of the NADPH oxidase subunit p22phox or inhibition of NADPH oxidase activity by apocynin prevented mitochondrial impairment and attenuated mitochondrial O$_2^-$ production, demonstrating an upstream role of the NADPH oxidase in modulation of mitochondrial O$_2^-$ production. In the present study we have additionally found that mitochondrial O$_2^-$ stimulates extramitochondrial NADPH oxidase activity in a feed-forward fashion. Taken together, these studies indicate that the interplay between mitochondrial and NADPH oxidase–derived O$_2^-$ constitutes a vicious cycle (Figure 6C) in which the NADPH oxidase increases mitochondrial ROS, which further activates the cytoplasmic NADPH oxidase and increases cellular O$_2^-$ production, diminishing NO bioavailability and uncoupling endothelial NO synthase. The effect of mitochondrial ROS on NADPH oxidase activity is quite likely mediated by c-Src which can be stimulated by H$_2$O$_2$. Indeed, activation of NADPH oxidase has been reported to be a biphasic process in which the first phase requires direct activation by Ang II followed by a second phase of sustained activation that is H$_2$O$_2$ dependent. This could explain why inhibition of mitochondrial H$_2$O$_2$ by mito-TEMPO (Table 2) results in decrease of NADPH oxidase activity (Figure 2C). Our present findings also indicate that scavenging of mitochondrial O$_2^-$ using mitochondria-targeted antioxidants can interrupt this vicious cycle.

Our work is in keeping with prior findings that SOD2$^{-/-}$ mice are prone to age-associated and salt-induced hypertension and that treatment with the mitochondria-targeted antioxidant mQ10 attenuates hypertension in spontaneously hypertensive rats. Our findings also provide additional insight into the role of SOD2 in development of these pathological conditions. We suggest that SOD2 depletion increases mitochondrial O$_2^-$ levels which upregulates NADPH oxidase activity. Indeed, the key role of NADPH oxidase in hypertension and atherosclerosis has been well documented. The synergism between mitochondrial and cellular O$_2^-$ production reported in our work may explain these pathological effects in SOD$^{-/-}$ mice.

Previous studies have shown that the nontargeted SOD mimetic TEMPOL prevents hypertension, renal and vascular dysfunction in several models of hypertension. Importantly, we found that targeting of SOD mimetic to mitochondria provided beneficial effects at a dose 1000-fold lower than previously reported for TEMPOL. This finding is important in two respects. First, it confirms a critical role of the mitochondria in hypertension and endothelial dysfunction. Second, our data demonstrate the feasibility of using...
very low doses of mitochondrial-targeted antioxidants for therapeutic purposes.

Importantly, mitoTEMPO not only attenuated development of hypertension but was also effective in treating hypertension after it was established. This is clinically important because treatment is commonly started in humans after hypertension has developed. Our findings indicate that targeting mitochondrial ROS with agents like mitoTEMPO might therefore be effective in treating human hypertension. This is potentially important because many patients’ blood pressure remains poorly controlled despite treatment with multiple drugs. MitoTEMPO and other mitochondria-targeted agents might therefore represent a new class of antihypertensive agent that could add to the currently available therapeutic armamentarium.

MitoTEMPO had no effect on blood pressure in normotensive animals. This is in keeping with the concept that O$_2^-$ does not affect hemodynamics under normal physiological conditions but begins to play a role in pathophysiological states. Indeed, SOD2 overexpression and mitoTEMPO supplementation did not affect basal activity of NADPH oxidase, production of vascular O$_2^-$ or endothelium-dependent relaxation. This is potentially important, because unlike some currently used antihypertensive agents, mitoTEMPO would unlikely cause hypotension in normotensive subjects.

In addition to hypertension, there are many other common conditions including aging, atherosclerosis, diabetes and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. Of note, large clinical trials have failed to show a benefit of often-used antioxidants such as vitamin E and vitamin C in many of these conditions, and have paradoxically shown deleterious effects in some trials. There are many potential explanations why these antioxidants have proven ineffective in these studies, but one relates to the fact that agents such as vitamin E and vitamin C are not targeted to sites of ROS generation that are most important in pathological conditions. It is conceivable that the use of SOD mimetics such as mitoTEMPO, targeted to compartments where ROS is generated such as the mitochondria, would be more effective in these conditions. The ability to achieve these effects in relatively low doses might also limit potential untoward effects of antioxidant therapy observed with other agents.

Acknowledgments
We thank Dr Kathy K. Griendling for fruitful discussion and Bernard Lassègue, Lula L. Hilenski, Alexander V. Panov, and Vladimir I. Mayorov for technical assistance.
Sources of Funding

This work was supported by NIH grants HL094469, HL38206, HL058663, HL06072808, P0-1 HL058000, and P0-1 HL075209 and by American Heart Association Grant SDG 0430201N and Grant-in-Aid 09GRNT2220128.

Disclosures

None.

References

Novelty and Significance

What Is Known?
- Oxidative stress is strongly implicated in the pathogenesis of hypertension.
- Angiotensin II increases superoxide production by NADPH oxidases.
- Angiotensin II causes mitochondrial dysfunction.

What New Information Does This Article Contribute?
- Scavenging of mitochondrial superoxide significantly improves endothelial function.
- Inhibition of mitochondrial superoxide reduces the activity of NADPH oxidases.
- Mitochondria-targeted antioxidants can be used as antihypertensive agents.

Despite the fact that the mitochondria are an important source of superoxide in vascular cells, the role of mitochondrial superoxide in endothelial dysfunction remains unclear. We have found that stimulation of endothelial cells with angiotensin II increases the production of mitochondrial superoxide. Overexpression of SOD2 or treatment with mitochondria-targeted SOD mimetic mitoTEMPO attenuates activation of vascular NADPH oxidases, inhibits production of cellular superoxide, restores NO production, improves endothelium-dependent vasodilatation and reduces blood pressure in angiotensin II–infused mice. This work demonstrates that angiotensin II–induced superoxide production by NADPH oxidase stimulates mitochondrial superoxide that in turn provides redox-dependent feed-forward stimulation of NADPH oxidase. This vicious cycle can be interrupted at the mitochondrial site by mitochondria targeted antioxidants. For the first time we have found that angiotensin II–induced hypertension was attenuated in SOD2 overexpressing transgenic mice. Furthermore, mitoTEMPO treatment after the onset of DOCA salt or angiotensin II–induced hypertension significantly decreased blood pressure. These studies show that mitochondrial superoxide is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases.
Therapeutic Targeting of Mitochondrial Superoxide in Hypertension
Anna E. Dikalova, Alfiya T. Bikineyeva, Klaudia Budzyn, Rafał R. Nazarewicz, Louise McCann, William Lewis, David G. Harrison and Sergey I. Dikalov

Circ Res. 2010;107:106-116; originally published online May 6, 2010;
doi: 10.1161/CIRCRESAHA.109.214601

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/107/1/106

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2010/05/06/CIRCRESAHA.109.214601.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org/subscriptions/
Online Supplement for Dikalova et al.

HPLC measurement of cellular and aortic \(\text{O}_2^\cdot \): Superoxide was measured using dihydroethidium (DHE) and an HPLC-based assay. Cultured cells were washed with Krebs/HEPES buffer and incubated with 10 \(\mu \text{M} \) DHE for 20 min at 37°C. Aortic sections were incubated with 50 \(\mu \text{M} \) DHE for 30 min at 37°C. Media was removed and cells or tissue were transferred to methanol for extraction of superoxide-specific product 2-hydroxyethidium (2-OH-E\(^+\)) and kept at -80°C. Separation of ethidium, 2-OH-E\(^+\) and dihydroethidium was performed using a Beckman HPLC System Gold model with a C-18 reverse phase column (Nucleosil 250, 4.5 mm; Sigma-Aldrich).

Dose-dependent angiotensin II stimulation of endothelial \(\text{O}_2^\cdot \): Cellular \(\text{O}_2^\cdot \) production was measured in HAEC following 4 hours of treatment with 0, 40, 100 or 200 nM angiotensin II using HPLC and DHE (Online Figure I). Angiotensin II increased \(\text{O}_2^\cdot \) production in a dose-dependent manner with maximum stimulation at 200 nM concentration.

Effect of mitoTEMPO and mitoTEMPO-H on xanthine oxidase: Superoxide was generated using xanthine oxidase and xanthine to measure SOD activity and to investigate SOD-scavenging properties of mitoTEMPO and mitoTEMPO-H. Additional experiments were performed to exclude a potential effect of these agents on xanthine oxidase activity. Neither mitoTEMPO nor mitoTEMPO-H affected xanthine oxidase activity as reflected by the accumulation of urate (Online Figure II).

HPLC analysis of superoxide specific product of mitoSOX: MitoSOX can produce both superoxide specific (2-OH-Mito-E\(^+\)) and non-specific (Mito-E\(^+\)) fluorescent products \(^1\). To provide validation of \(\text{O}_2^\cdot \) detection with mitoSOX we used HPLC to quantify 2-OH-Mito-E\(^+\) and Mito-E\(^+\) as was previously described \(^1\). Incubation of mitoSOX with xanthine oxidase and xanthine resulted in the specific accumulation of 2-OH-Mito-E\(^+\) which was inhibited by superoxide dismutase (Online Figure IIIA). Control or angiotensin II stimulated HAEC were supplemented with 4 \(\mu \text{M} \) mitoSOX for 20 minutes and then washed with Krebs/HEPES buffer. The cells were then harvest in methanol for extraction of 2-OH-Mito-E\(^+\) and Mito-E\(^+\). Analysis of cellular extracts showed accumulation of both 2-OH-Mito-E\(^+\) and Mito-E\(^+\). Stimulation of cells with angiotensin II (200 nM for 4 hours) increased levels of 2-OH-Mito-E\(^+\) but did not change Mito-E\(^+\) (Online Figure IIIB). Supplementation with mitoTEMPO (25 nM for 15 minutes) before addition of mitoSOX inhibited accumulation of 2-OH-Mito-E\(^+\) (Online Figure IIIC). These data support the specificity of \(\text{O}_2^\cdot \) measurements with mitoSOX.

Site-specific detection of cellular and mitochondrial \(\text{O}_2^\cdot \) by DHE and mitoSOX: In order to validate \(\text{O}_2^\cdot \) detection by DHE and mitoSOX we have performed HPLC measurements of \(\text{O}_2^\cdot \) specific
products 2-OH-E+ and 2-OH-Mito-E+ 1 in HAEC treated with NADPH oxidase activator phorbol myristate acetate (PMA, 10 \textmu M) or mitochondrial complex III inhibitor antimycin A (AA, 1 \textmu M). HPLC analysis showed that stimulation of O\textsubscript{2}•- production in cytoplasm with PMA was reflected in accumulation of 2-OH-E+ in DHE supplemented cells but did not result in significant accumulation of 2-OH-Mito-E+ in mitoSOX supplemented cells (Online Figure IV). Antimycin A induced increase in mitochondrial O\textsubscript{2}•- was reflected in accumulation of 2-OH-Mito-E+ in mitoSOX supplemented cells but did not raise the level of 2-OH-E+ in DHE supplemented cells (Online Figure IV). These data demonstrate site-specific detection of cellular and mitochondrial O\textsubscript{2}•- by DHE and mitoSOX.

Investigation of direct effect of mitoTEMPO on NADPH oxidase activity: To perform these studies, we stimulated BAEC with angiotensin II (200 nM for 4 hours) and measured NADPH oxidase activity in membrane fractions using ESR as described in the Methods section. Angiotensin II significantly increased NADPH oxidase activity (Online Figure V). Supplementation of membrane fraction isolated from unstimulated (Control) or Ang II - stimulated BAEC with 0.5 \textmu M mitoTEMPO did not affect NADPH oxidase activity (Online Figure V).

Effect of mitoTEMPO on O\textsubscript{2}•- in intact endothelial cells: In this work we have reported that supplementation of BAEC with mitoTEMPO increases O\textsubscript{2}•- dismutation in mitochondria (Table 1) and reduces the mitoSOX fluorescence (Figure 2, Online Figure III). To further demonstrate that mitoTEMPO scavenges mitochondrial O\textsubscript{2}•- we performed additional experiments in cells in which SOD2 was downregulated by siRNA.

Analysis of HAEC transfected with non-silencing siRNA (NS siRNA) showed that angiotensin II increased the O\textsubscript{2}•- similar to non-transfected cells (Figure 2, Online Figure VI). SOD2 depletion increased both basal and angiotensin II – stimulated mitoSOX fluorescence (Online Figure VI). MitoTEMPO significantly inhibited fluorescence of mitoSOX. These data indicate that mitoTEMPO significantly reduces mitochondrial O\textsubscript{2}•-.

Investigation of endothelial-independent relaxation in aortic vessels: Endothelial-independent relaxation was measured by vessels relaxations to cumulative concentrations of sodium nitroprusside (SNP). Endothelium-independent relaxation was similar in vessels isolated from mice infused with saline (Sham), mitoTEMPO, angiotensin II (Ang II) or angiotensin II-infused mice treated with mitoTEMPO (Online Figure VII).

Investigation of heart rate of mice treated with angiotensin II and mitoTEMPO: The potential effect of mitoTEMPO on heart rate was evaluated using telemetry (Online Figure VIII). MitoTEMPO did not affect heart rate in normal mice, however, infusion of angiotensin II for one week increased heart rate by 10% and mitoTEMPO treatment prevented this change in the heart rate (Online Figure IVB).
References

Online Figure Legends

Online Figure I. Dose-dependent angiotensin II stimulation of endothelial O$_2^\cdot$.

Cellular O$_2^\cdot$ production was measured in HAEC following 4 hours of treatment with angiotensin II using HPLC and DHE as described in Materials and Methods 2. It was found that angiotensin II increased O$_2^\cdot$ production in a dose-dependent manner with maximum stimulation at 200 nM concentration. Results represent mean ± SEM. *P < 0.05 vs 0 nM, ** P < 0.05 vs 100 nM Ang II.

Online Figure II. Measurements of xanthine oxidase activity in the presence of mitoTEMPO (A) or mitoTEMPO-H (B). The activity of xanthine oxidase was monitored by accumulation of urate (295 nm, ε=11.000) in the sample containing xanthine oxidase (20 mU/ml) and xanthine (200 µM). Data represent the mean values from three separate experiments.

Online Figure III. HPLC measurements of superoxide specific (2-OH-Mito-E$^\cdot$) and non-specific (Mito-E$^\cdot$) fluorescent products of mitoSOX as was previously described 1. (A) Superoxide was generated using xanthine and xanthine oxidase and 2-OH-Mito-E$^\cdot$ and Mito-E$^\cdot$ were separated using HPLC. Experiments were performed without (upper chromatogram) and with (middle trace) SOD (100 U/ml). The lower panel shows the chromatogram of unreacted mitoSOX. (B) Typical HPLC chromatograms of cellular extracts obtained after incubation of HAEC with 2 µM mitoSOX for 20 minutes. (C) Bar graph showing levels of 2-OH-Mito-E$^\cdot$ in unstimulated HAEC or HAEC stimulated with angiotensin II (Ang II, 4 hours, 200nM) and supplemented for 15 minutes with saline or the mitochondria-targeted SOD mimetic mitoTEMPO (25 nM). Results are mean±SEM, n=4 each. *P < 0.05 vs control, ** P < 0.05 vs Ang II.

Online Figure IV. Site-specific detection of cellular and mitochondrial O$_2^\cdot$ by DHE and mitoSOX using HPLC. Superoxide production was induced by NADPH oxidase activator
phorbol myristate acetate (PMA, 10 µM) or mitochondrial complex III inhibitor antimycin A (AA, 1 µM). Cellular and mitochondrial O$_2^\cdot$ were measured by DHE (A) or mitoSOX (B) using HPLC as was previously described 1,2.

Online Figure V. NADPH oxidase activity in membrane fractions supplemented with mitoTEMPO (0.5 µM). Activity of NADPH oxidase was measured as NADPH-dependent O$_2^\cdot$ production in membrane fractions using ESR as described in Materials and Methods 2. NADPH oxidase activity was analyzed in membrane fractions of control unstimulated BAEC or BAEC stimulated with 200 nM angiotensin II for 4-hours. MitoTEMPO (0.5 µM) was applied to the membrane fractions after isolation for 30 minutes prior to measurements of NADPH oxidase activity. Direct supplementation of mitoTEMPO to membrane fractions isolated from control or angiotensin II stimulated BAEC did not affect NADPH oxidase activity. Data are average from three to six separate experiments ± SEM. *P<0.01 vs Control.

Online Figure VI. Effect of mitoTEMPO on mitochondrial O$_2^\cdot$ measured with MitoSOX. HAEC were treated with siSOD2 for 72 hours and then stimulated with 200nM angiotensin II (Ang II) for 4hours. MitoTEMPO (25 nM, mT) was added for 15 minutes prior to supplementation of mitoSOX. Mitochondrial localization of MitoSOX signal was confirmed by colocalization with MitoTracker.

Online Figure VII. Effects of mitoTEMPO treatment on endothelial-independent relaxation in aortic vessels isolated from mice infused with saline (Sham), mitoTEMPO, angiotensin II (Ang II) or angiotensin II-infused mice treated with mitoTEMPO. Results represent mean ± SEM for 6-8 animals per group.

Online Figure VIII. Heart rate in C57Blk/6 mice after one week infusion with saline (Control), mitoTEMPO, angiotensin II (Ang II) or mice treated with both angiotensin II and mitoTEMPO (Ang II + mitoTEMPO). Treatment with mitoTEMPO did not affect the heart rate in the control mice. Co-infusion of mitoTEMPO and angiotensin II (0.7 mg/kg/day) attenuated angiotensin II induced increase in heart rate which was associated with antihypertensive effect of mitoTEMPO. Results represent mean ± SEM for 5 animals per group.
Online Figure II

Graph A
- Xanthine oxidase activity, %
- mitoTEMPO concentration, µM

Graph B
- Xanthine oxidase activity, %
- mitoTEMPO-H concentration, µM

Legend:
- **mitoTEMPO**
- **mitoTEMPO-H**
Online Figure III

A

mitoSOX + XOX

mitoSOX + SOD + XOX

mitoSOX

Retention time, minutes

43 44 45 46 47 48

2.0 2.5 3.0

2-OH-Mito-E^+

Mito-E^+

45.8

47.0

Retention time, minutes

43 44 45 46 47 48

2

4

0.5

1.0

1.5

2.0

2.5

3.0

Control mitoTEMPO Ang II Ang II + mitoTEMPO

C

2-OH-Mito-E^+, nmol/mg

Retention time, minutes

43 44 45 46 47 48

**

*
Cytoplasm

PMA → PKC → NADPHox → O_2^- → DHE

AA → Complex III → O_2^- → mitoSOX

Mitochondria

A: DHE

B: mitoSOX

Cellular O_2^-, nmol/mg

Control | PMA | AA

Mitochondrial O_2^-, nmol/mg

Control | PMA | AA

* Indicates significant difference.
Online Figure VI

<table>
<thead>
<tr>
<th></th>
<th>NS siRNA</th>
<th>NS siRNA + AngII</th>
<th>siSOD2</th>
<th>siSOD2 + AngII</th>
<th>siSOD2 + AngII + mT</th>
</tr>
</thead>
<tbody>
<tr>
<td>mitoTracker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitoSOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Online Figure VII

Graph showing the relaxation (as % precontraction) in response to decreasing concentrations of SNP. Legend includes SHAM, mitoTEMPO, Ang II, and Ang II + mitoTEMPO.