Effects of Free Immunoglobulin Light Chains on Viral Myocarditis

Akira Matsumori, Miho Shimada, Xiao Jie, Hirokazu Higuchi, Tom Groot Kormelink, Frank A. Redegeld

Rationale: In recent work, we have demonstrated a crucial role of mast cells in the development of viral myocarditis. Viral infection could lead to increased synthesis of free immunoglobulin light chains (FLC) and our earlier work showed that FLC can trigger mast cell activation.

Objective: We studied the possible involvement of FLC in the pathogenesis of viral myocarditis, and therapeutic effects of FLC using an animal model of viral myocarditis.

Methods and Results: DBA/2 mice were inoculated intraperitoneally with encephalomyocarditis (EMC) virus. Serum levels and concentrations in the heart of κ FLC on day 14 in mice inoculated with EMC virus were significantly increased compared with controls. Myocardial viral concentration was significantly inhibited, the area of myocardial lesions was smaller in mice treated with κ or λ FLC, and survival of mice given FLC significantly improved. In contrast, an FLC antagonist deteriorated myocarditis. κ and λ FLC chains inhibited EMC viral replication in human amnion cells in vitro. λ FLC significantly increased the gene expression of interleukin-10 in the heart which was previously shown to improve viral myocarditis when given exogenously. FLC also tended to increase the gene expressions of interferon-α and -γ in the heart mice.

Conclusions: FLC have antiviral and antiinflammatory effects and improved viral myocarditis in mice. FLC may be promising agents for the treatment of viral myocarditis. (Circ Res. 2010;106:1533-1540.)

Key Words: free immunoglobulin light chains ■ virus ■ myocarditis ■ heart failure ■ cardiomyopathy

Free immunoglobulin light chains (FLC) are produced by plasma cells and can be found in various body fluids. Interestingly, viral infection has been shown to increase the occurrence of immunoglobulin free light chains in various body fluids.1–3 In this study, we show that FLC concentrations are greatly increased during viral myocarditis and that FLC may play a protective role in the pathogenesis of disease. Immunoglobulin is composed of 2 identical heavy chains and 2 identical light chains and provides defense against all extracellular and some intracellular pathogens.4 In mammals immunoglobulin light chain genes generally exist in 2 distinct isotypes called κ and λ. The genes for the 2 light chain isotypes are encoded at separate and unlinked loci, and the organization of κ and λ chain locus differs significantly.5,6

Previous results have suggested various roles for nuclear factor (NF)-κB during B cell development, ranging from involvement in light chain gene rearrangements7 to being dispensable for B cell development.8 Because receptor editing involves a specific subset of light chain gene rearrangements, it has been suggested that NF-κB could be involved in light chain rearrangements without being required for B cell development.9 In additions, the role NF-κB in receptor editing could be either direct or indirect, and its activation in pre-B cells might be via the canonical or noncanonical pathway.9

Recent studies have clarified the roles played by several cytokines in various cardiovascular disorders,10 and have found increased levels of circulating tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and other proinflammatory cytokines in patients with myocarditis, cardiomyopathy, heart failure and acute myocardial infarction.11,12 NF-κB regulates the expression of a wide range of genes involved in immune and inflammatory responses. In our previous study, EMCV activated NF-κB in vitro. In a murine model of EMCV-induced myocarditis, a NF-κB inhibitor lowered the mortality of the animals, as well as attenuated myocardial necrosis and cellular infiltration, and decreased the intracardiac production of IL-1β and tumor necrosis factor-α.13 Therefore, it is possible that production of immunoglobulin free light chains may be modulated in viral myocarditis.
We also studied the gene expressions of interferons and IL-10 which had beneficial effect in our model of viral myocarditis.14–16

Methods

Experimental Myocarditis Model

Stocks of the myocardiotrophic variant of encephalomyocarditis (EMC) virus were prepared as previously described17,18 and stored at −80°C. The 4-week-old male DBA/2 mice used in this study were treated in accordance with local institutional guidelines at all stages of the experiments. Mice were inoculated with 0.2 mL EMC virus (EMCV) in PBS diluted to a concentration of 10 pfu/mL.

Effects of FLC Antagonist on Experimental Myocarditis

Tamm–Horsfall protein (THP), a monomeric glycoprotein produced by cells in the ascending limb of Henle of the kidney, has a specific binding affinity to FLC. F991 is a 9-mer peptide derived from the amino-acid sequence in THP responsible for binding.19 F991, a FLC antagonist, was synthesized as previously described20 To investigate the effect of F991 on viral myocarditis, 50 μg of F991 dissolved in 0.5 mL of PBS was administered intraperitoneally immediately after EMCV inoculation and once daily until day 5. Control mice were given PBS. Mice were euthanized at day 5 for histological studies.

Analysis of FLC Levels in Serum and Heart

Before sample use, serum samples were precipitated to deplete high amounts of albumin using trichloroacetic acid/acetone as previously described.21 Heart tissue samples were crushed in liquid nitrogen using a mortar and pestle and dissolved in 300 μL of PBS containing 0.5% NP-40 (Sigma-Aldrich, Tokyo, Japan) and 1 tablet of Protein Inhibitor Cocktail (Roche, Almere, The Netherlands). Homogenates were centrifuged at 14,000 g, 4°C, for 5 minutes Supernatants were collected and used for analysis. Subsequently, serum (0.75 μL of initial volume) and tissue (25 μg of total protein) samples were separated by SDS-PAGE and blotted onto a PVDF membrane (Bio-Rad Laboratories, Veenendaal, The Netherlands). The next day, membranes were washed with PBS/0.1% Tween-20 for 5 minutes, blocked in block buffer (2% non fat dry milk in PBS/0.1% Tween-20) for 1 hour, and incubated with 0.1 μg/mL HRP-labeled goat anti-mouse κ light chain (SouthernBiotech, Birmingham, Ala) or λ light chain (Genway Biotech, San Diego, Calif) diluted in block buffer for 1 hour. After washing the membranes with PBS/0.1% Tween-20 3x10 minutes, ECL (Thermo Scientific, Ettten-Leur, The Netherlands; for serum) or ECL plus (GE Healthcare, Buckinghamshire, UK; for tissue samples) was used for detection of immobilized antibodies according to the manufacturer’s protocol, followed by film (CL-XPosure film; Thermo Scientific, Ettten-Leur, The Netherlands) exposure and development. Densitometry was performed on a GS-710 Calibrated Imaging Densitometer using software package Quantity One (Bio-Rad Laboratories, Veenendaal, The Netherlands) to analyze the density of the appropriate bands.

Effects of FLC on EMC Virus Myocarditis

Human κ FLC (10 μg/mouse), or λ FLC (10 μg/mouse) (Bethyl Laboratory Inc, Montgomery, Tex) were dissolved in 0.2 mL distilled water and given subcutaneously or intraperitoneally daily starting 1 day before the EMCV inoculation (each n=10). Control mice were given 0.2 mL of distilled water. At day 5, we observed that some mice began to die, which was expected, and could have been attributable to viremia and/or encephalitis. Sera were obtained from surviving mice, and were euthanized by cervical dislocation on day 5 for the histopathologic experiments and viral concentration assay. The hearts were dissected, immediately frozen and stored at −80°C, and the section of interest fixed in formalin.

Histopathologic Examination

We examined the histopathologic changes on day 7, the time when they began to appear. The hearts were fixed in 10% formalin and embedded in paraffin. The left ventricles (LV) were sliced horizontally to the long axis, and stained with hematoxylin, eosin and Masson’s trichrome for light microscopic examination. The extent of myocardial lesion in the complete section was evaluated by measuring the ratio (%): myocardial necrosis area/...
total LV area on a microscopic slide, using Micro Analyzer (Poladigital Co Ltd, Tokyo, Japan), which can measure areas of different colors in Masson’s trichrome staining. Two investigators determined the histological score, which were averaged. The analyses were blinded.

Survival

For the survival experiments, the 4-week-old male DBA/2 mice were inoculated intraperitoneally with 2 pfu of EMCV. Human κ FLC 10 μg/mouse (n=10) was given subcutaneously daily starting on the same day as EMCV inoculation. Control mice were given distilled water. Survival at 14 days after virus inoculation was evaluated.

Assay of Virus Concentration

Assay of virus concentration in vitro using a plaque assay was performed as described previously. EMV was inoculated into FL (human amnion cells) cell cultures. κ FLC or λ (Bethyl Laboratory Inc.), 0.1 μg or 1 μg/mL, or F991, 1 μg/mL was added to culture plates, and plaque formation was observed 24 hours after EMCV inoculation. Plaque formation in presence of FLC was calculated as percentage of control plaques. Myocardial viral concentrations were determined only in the euthanized mice, and expressed as plaque-forming units (pfu) per milligram of myocardium.

Quantitative Reverse Transcriptase–Polymerase Chain Reaction Analysis

Total RNA was isolated from the heart tissue by the acid guanidinium thiocyanate-phenol-chloroform method and the RNA concentration was measured spectrophotometrically. First-strand cDNA was synthesized using SUPERSCRIPT PremiSystem for First Strand cDNA Synthesis (Invitrogen). Real-time quantitative PCR (TaqMan PCR) using an ABI PRISM 7700 Sequence Detection System and TaqMan PCR Core Reagent Kit (Perkin-Elmer Corp, Foster City, Calif) was performed according to the manufacturer’s protocol. Interferon-α and IL-10 were performed using SYBR green Master Mix (Life Technologies). We used 2 μL of the first-strand cDNA in the following assay.

Synthesis of cDNAs was controlled and normalized by performing real-time PCR amplification of the housekeeping gene GAPDH for mouse. The following forward and reverse oligonucleotides, and probes were used for the quantification of mouse interleukin-10, interferon (mIFN)-α, mIFN-β, mIFN-γ.

- GAPDH, forward: 5′-TTACCAACATGGGAAAGGC-3′
- GAPDH, reverse: 5′-GGCAATGGAAGCTGGATGA-3′
- GAPDH, probe: 5′-GCCATGGGAAGTGTCGAT-3′
- Interleukin-10, forward: 5′-GGTGCAAACTCCTCGTGG-3′
- Interleukin-10, reverse: 5′-ACCTGACCTCTCGTTGAC-3′
- mIFN-α, forward: 5′-TTGCTATGACGAGGGTGG-3′
- mIFN-β, reverse: 5′-AACAGGAGGCTTACCTTGGG-3′
- mIFN-γ, forward: 5′-TGCGTCATGAGGGTGGG-3′
- mIFN-γ, reverse: 5′-TGCTCTGAGGAGCTTGGG-3′
- mIFN-γ, probe: 5′-AAAGGAAGGCAAGCAGGTGG-3′
- GAPDH, probe: 5′-TTACCAACCATGGGAAAGGC-3′
- GAPDH, forward: 5′-TTACCAACCATGGGAAAGGC-3′
- GAPDH, reverse: 5′-GGCAATGGAAGCTGGATGA-3′
- GAPDH, probe: 5′-GCCATGGGAAGTGTCGAT-3′
- Interleukin-10, forward: 5′-GGTGCAAACTCCTCGTGG-3′
- Interleukin-10, reverse: 5′-ACCTGACCTCTCGTTGAC-3′
- mIFN-α, forward: 5′-TTGCTATGACGAGGGTGG-3′
- mIFN-β, reverse: 5′-AACAGGAGGCTTACCTTGGG-3′
- mIFN-γ, forward: 5′-TGCGTCATGAGGGTGGG-3′
- mIFN-γ, reverse: 5′-TGCTCTGAGGAGCTTGGG-3′
- mIFN-γ, probe: 5′-AAAGGAAGGCAAGCAGGTGG-3′

Figure 3. Immunoglobulin FLC levels are increased at day 14 after viral infection. A, Representative anti-κ Ig light chain immunoblot of serum proteins separated by nonreducing SDS-PAGE. Left 4 lanes, Serum from control animals collected at day 6 and 14. Right 6 lanes, Serum from EMCV-infected animals at day 6 and 14 after inoculation. κ FLC monomers and FLC dimers appear at approximated molecular weights of 22 and 44 kDa, respectively. B, Quantification of κ FLC monomers in serum using calibrated densitometry. Serum from control animals (n=10) and from EMCV-infected heart tissue (n=12) were collected at day 6 and 14 after inoculation or mock-treatment. *P<0.01.
The conditions for the TaqMan PCR were as follows: 95°C for 10 minutes, followed by 40 cycles at 95°C for 15 s and 60°C for 1 minute.

Statistical Analysis

Comparisons were made using one-way analysis of variance with multiple comparisons by Fisher’s least significant difference. A probability value \(<0.05\) was considered significant. Results were expressed as means±SD.

The survival rate of mice was analyzed by the Kaplan–Meier method, and survival differences between groups were tested by the log-rank test.

Results

Effects of FLC Antagonist F991 on EMC Virus-Induced Myocarditis in Mice

To investigate whether FLC were involved in the pathogenesis of virus-induced myocarditis, the FLC antagonist F991 was injected daily during 5 days after inoculation. Surprisingly, inhibition of free light chains exacerbated myocarditis as evidenced by an increase in the area of myocardial lesion at day 5 in the hearts of mice treated with F991 (21.5±8.2%, \(n=10\)) as compared with controls (9.1±4.8%, \(n=10\), \(P<0.001\); Figure 1A and 1B).

FLC Levels in Heart Tissue and Serum of Mice With Viral Myocarditis

Next, we examined if FLC could be detected in the heart tissue of mice inoculated with EMCV. On day 14, monomer \(\kappa\) FLC concentrations were significantly higher in virus infected heart tissue compared to controls (211.6±18.6 OD/mm\(^2\) (\(n=12\)) versus 29.2±37.6 (\(n=10\), \(P<0.001\) (Figure 2). FLC dimers were also increased in EMCV-infected hearts, but were not detectable in control hearts. Similar results were found for \(\lambda\) FLC in heart tissue, but as expected for mice,\(^{23}\)}

Figure 4. Protective effect of FLC on histopathology changes in EMCV-induced myocarditis. A, Representative pictures of the heart of mice treated subcutaneously with \(\kappa\) and \(\lambda\) FLC and control mice. Mice were treated daily with \(\kappa\) or \(\lambda\) FLC (10 \(\mu\)g/mouse, SC). At day 7 after inoculation, heart tissue was isolated and stained with Masson trichrome. Top images, Magnification, ×20. Bottom images, Magnification, ×200. B, Effect of FLC on quantitative histopathologic changes in EMCV-induced myocarditis in mice at day 7 after inoculation. Necrotic damage was quantified in heart tissue from control (\(n=9\)), \(\kappa\) FLC–treated (\(n=10\)), and \(\lambda\) FLC–treated (\(N=10\)) mice. All mice were inoculated with EMCV at day 0. Intraperitoneal treatment with \(\lambda\) FLC improved similarly (C).
Protective Effects of FLC on Viral Myocarditis in Mice

The experiments with the free light chain antagonist F991 suggested that FLC could mediate a protection against viral myocarditis. Because FLC concentrations were only increased at later stages of viral infection, we examined if injection of FLC at the initial stages of viral infection would protect against the virus-induced heart damage. Therefore, mice were daily injected subcutaneously with 10 μg/mouse of FLC (κ or λ) starting at 1 day before virus inoculation. Control mice received solvent only. Various hallmarks of the viral myocarditis were monitored subsequently.

Myocardial Histology

The area of myocardial lesion on day 7 was significantly smaller in the hearts of mice treated with κ FLC (9.3±5%, n=10, mean±SD) or λ FLC (9±3.6%, n=10) compared with controls (16.9±8%, n=9, P<0.01) (Figure 4A and 4B). Intraperitoneal treatment with λ FLC improved myocardial damage similarly (7.9±4.1%, n=10 versus control 13.3±4.8%, n=10, P<0.05; Figure 4C).

Survival

All virus-inoculated mice died before day 14. However, 80% of mice treated with κ FLC were still alive at day 14 (n=10, P<0.001) (Figure 5). Survival

Myocardial Virus Concentration

Myocardial virus concentration at day 7 was (4±3)×10^3 pfu/mg in mice treated with κ FLC (n=10), (6±5.7)×10^3 pfu/mg in mice treated with λ FLC (n=10), and (14±9)×10^3 pfu/mg in control mice (n=9). The difference between the FLC groups and the controls was statistically significant (P<0.01 and P<0.05, respectively) (Figure 6).

FLC Reduce Viral Replication in an In Vitro Plaque Assay

The in vivo experiments indicated that FLC reduced viral load of the animals. To investigate whether FLC may have direct effects of viral replication, an in vitro plaque assay was performed. Interestingly, κ FLC 0.1 μg/mL or 1 μg/mL reduced plaques to 87±15% (61.3±10.53 plaques P<0.05) or 72±7% (51.3±6.44 plaques P<0.01) of control 71.3±8.02 plaques, respectively. λ FLC 0.1 μg/mL or 1 μg/mL reduced plaque formation to 68±8% (48.3±3.20 plaques P<0.01) and 67±4% (48.17±5.46 plaques P<0.01) of control 71.3±8.02 plaques (Figure 7).

F991 Enhances Viral Replication In Vitro Plaque Assay

F991, 1 μg/mL enhanced plaque formation to 871±97% (566.8±57.01 plaques) of control (65.40±4.93 plaques each n=5, P<0.0001).

Gene Expressions of Mouse Interleukin-10, Interferon-α, -β, and -γ mRNA

The gene expression of IL-10 in the heart of mice treated with 10 μg of λ FLC significantly increased (0.86±0.84, versus 0.36±0.10, P<0.05, Figure 8). The gene expressions of
interferon-α, and γ tended to increase in the hearts of mice treated with 10 mg of λ FLC (0.27±0.28 versus 0.14±0.23, 2.28±1.58 versus 1.51±0.9/GAPDH, respectively; Figure 8). However, these differences did not reach statistical significance. There was no significant change in the expression of interferon-β.

Discussion

In this study, we show that FLC production is greatly enhanced during infection with EMC-virus. Furthermore, FLC are shown to have protective effects in viral myocarditis, most likely through direct antiviral activity and antiinflammatory effect by increased expression of IL-10.

It seems to be paradoxical that FLC levels are elevated, but that FLCs are beneficial for viral myocarditis. However, increased circulating levels of certain molecules do not necessarily mean that they have harmful effects in the diseases. For example, circulating brain natriuretic peptide levels are increased in heart failure, but beneficial when it is given heart failure patients. Nesiritide, an human brain natriuretic peptide, has been shown to improve hemodynamics and clinical status.

Figure 7. κ and λ FLC reduce EMCV replication in vitro. Virus replication was measured in a plaque assay in presence of 0.1 and 1.0 μg/mL κ or λ FLC, respectively. Viral replication 24 hours after EMCV inoculation was calculated as number of plaques in the experimental groups vs control (no FLC added). Values represent means±SD (n=6). Significant difference vs control: *P<0.05; **P<0.01.

Figure 8. The gene expressions of IL-10 (A) and interferons α (B), β (C), and γ (D). λ FLC significantly increased the expression of IL-10 and tended to increase the expression of interferon-α and -γ.
In all classes of immunoglobulin, the light chains comprise 1 of 2 subtypes, known as κ and λ. Immunoglobulin light chains are synthesized in excess during the generation and assembly of complete immunoglobulins and can be found in the circulation under normal physiological conditions, whereas during inflammatory conditions, greatly enhanced concentrations are found in various body fluids. Immunoglobulin free light chains exert a range of biological activities including enzymatic activity (proteolysis of diverse substrates), specific binding activity for substrates and antigens and binding to different cells, although its immunologic function remains to be clarified. We found that circulating κ FLC monomers and dimers are slightly increased in mice with EMC viral myocarditis on day 6 when myocardial necrosis becomes apparent, but are significantly increased on day 14 when heart failure developed. Infection with EMCV was also associated with an increased expression of FLC in mouse heart tissue at day 14. We are the first to report increased FLC expression in an animal model of viral infection. Our data are supported by analysis of FLC in virus-infected human subjects, where increased levels of λ and κ FLC in sera and/or cerebrospinal fluid have been found in patients infected with immunodeficiency type-1 virus and hepatitis C virus and in cerebrospinal fluid from patients with viral meningitis. Recently, we found that circulating λ FLC was elevated in patients with myocarditis and heart failure (A Matsumori, T Nakano, T Shimada, T Horii, T Isomura, J Hoshino, H Suma, M Shimada, S Miyazaki, A Nagata, unpublished observation, 2009). Application of the FLC antagonist F991 during the first period of viral infection worsened pathology of viral myocarditis suggesting a protective role of FLC. The latter was further substantiated by the protective effect of supplementation of FLC at the start of the viral infection leading to reduced necrosis and greatly enhanced survival. Our data indicate that FLC may directly inhibit viral replication as shown in an in vitro plaque assay. Indeed, in FLC-treated animals viral load of the heart tissue was significantly reduced.

Enhancement of viral replication in vitro by F991 supports the concept that deterioration of myocarditis by F991 in vivo may be attributable to the effect of enhancing viral replication.

Intravenous immunoglobulin (IVIG) is produced from pooled plasma of thousands of healthy humans. During the 1940’s-50’s, it was used for its anti-inflammatory properties, to treat viral diseases and congenital immunodeficiency. Over the years there has been accumulating evidence of IVIG efficiency in various other indications. Currently, there are 6 FDA approved indications for IVIG treatment: primary immunodeficiency, pediatric HIV infections, secondary immunodeficiency in chronic lymphocytic leukemia, idiopathic thrombocytopenic purpura, Kawasaki disease, and allogenic stem cell transplantation. Nevertheless, IVIG is accepted as first line treatment in other indications such as Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, dermatomyositis, stiff-person syndrome, fetal alloimmune hemolytic disease, and various autoimmune diseases. IVIG has antiinflammatory properties and induces a change of circulating cytokines. Therefore, it was considered as treatment for heart failure patients, induced an antiinflammatory effect, with an associated significant increase of left ventricular ejection fraction regardless of the cause of the chronic heart failure. IVIG treatment also has been reported in patients with myocarditis. A wide variety of immunoglobulins are present in the IVIG preparation. Therefore extended spectrum of activities may arise including immunomodulation, antiinflammatory and anti-infectious properties.

However, IVIG treatment in patients with recent-onset cardiomyopathy did not affect improvement of the left ventricular ejection fraction and functional capacity during follow-up. In our previous study, exogenously administered IL-10, or the gene transfer therapy of IL-10, improved myocardial lesion in our model of viral myocarditis. In this study, gene expression of IL-10 in the heart was increased in mice treated with λ FLC, suggesting that a part of the effect of λ FLC might be attributable to this effect.

In addition, the gene expressions of interferon-α and -γ tended to increase in the heart of mice treated with κ and λ FLC, suggesting that these effects may also contribute to inhibition of viral replication and improvement of myocardial lesions.

Acknowledgments

We thank M. Hayashi for preparing the manuscript and M. Mosley for the critical review of the manuscript.

Sources of Funding

This work was supported in part by a research grant from the Japanese Ministry of Health, Labor, and Welfare and a grant-in-aid for general scientific research from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Disclosures

None.

References

Effects of Free Immunoglobulin Light Chains on Viral Myocarditis
Akira Matsumori, Miho Shimada, Xiao Jie, Hirokazu Higuchi, Tom Groot Kormelink and Frank A. Redegeld

Circ Res. 2010;106:1533-1540; originally published online April 1, 2010; doi: 10.1161/CIRCRESAHA.110.218438

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/106/9/1533

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at:
http://circres.ahajournals.org//subscriptions/