Polyphenols and Cholesterol Efflux
Is Coffee the Next Red Wine?

Megan F. Burke, Amit V. Khera, Daniel J. Rader

Despite strong evidence for an inverse association between high-density lipoprotein cholesterol (HDL-C) levels and cardiovascular risk,1 successful therapeutic strategies to target HDL have remained elusive. A recent Phase III clinical trial failed to show clinical benefit with the cholesterol ester transfer protein inhibitor torcetrapib despite markedly increased HDL-C levels.2,3 This outcome reinforced a growing consensus that measurement of HDL-C alone may be an incomplete surrogate for the in vivo functionality of HDL and the clinical efficacy of targeting HDL. The careful mechanistic assessment of HDL function has thus emerged as a potential way forward.4

Macrophage reverse cholesterol transport (RCT), the process by which cholesterol is transported from macrophage “foam” cells to the liver for ultimate fecal excretion, has been postulated to play a major role in HDL-mediated atheroprotection.3 Indeed, quantitative measures of macrophage RCT are more strongly associated with atherosclerosis than plasma HDL-C concentrations in mice.6 The first critical step of macrophage RCT involves efflux of cellular cholesterol to circulating HDL particles. Research in recent years has documented a specific role for the macrophage transporters ATP-binding cassette subfamilies A1 and G1 (ABCA1 and ABCG1) in cholesterol efflux (see the Figure). These findings have stimulated efforts to target the macrophage at the cellular level as a means of enhancing overall RCT. For example, pharmacological agonism of the liver X receptor (LXR) upregulates both ABCA1 and ABCG1 expression,7,8 promotes macrophage cholesterol efflux ex vivo and RCT in vivo,9 and recently entered early phases of clinical testing.10

Coffee is one of the most widely consumed beverages in the world.11 Chronic coffee consumption has been extensively studied in relation to cardiovascular disease, although the results of these studies have been inconclusive.12–15 Many of these inconsistencies likely reflect inherent limitations of observational epidemiology; residual confounding from other lifestyle variables that vary according to coffee intake, including cigarette smoking, almost surely complicates these analyses. Furthermore, the physiological effects of coffee likely vary according to precise formulation and across individuals. An interesting case-control analysis reinforced this point: caffeinated coffee consumption was associated with an increased risk of myocardial infarction only in those with slow caffeine metabolism.16 Limited data are available with regard to the impact of coffee on lipid metabolism, although one randomized controlled trial noted modest increases in both HDL-C and low-density lipoprotein cholesterol levels after daily consumption of filtered coffee for 8 weeks.17

Although the relationship between coffee and coronary disease has not been conclusively determined, it remains plausible that some individual components may be atheroprotective and worthy of further study. Specifically, coffee is a major source of polyphenols,18 a group of compounds that has received substantial interest in recent years. The term polyphenol represents a wide variety of compounds derived from plants, and polyphenols are present in many components of the human diet.19 It is widely believed that polyphenols have protective properties, and there is increasing evidence to support their beneficial relationship to various diseases. Although there are limited data on specific polyphenols, polyphenol-rich foods have previously been associated with decreased risk of cardiovascular disease in multiple studies.20 Interestingly, certain polyphenols, such as resveratrol and anthocyanins (both found in red wine among other sources), have been shown to increase macrophage cholesterol efflux ex vivo (Table).21–23

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Institute for Translational Medicine and Therapeutics and Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia.

Correspondence to Daniel J. Rader, 654 BRB II/III, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104. E-mail rader@mail.med.upenn.edu

(Circ Res. 2010;106:627–629.)

© 2010 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.109.215855
In this issue of *Circulation Research*, Uto-Kondo et al describe a careful series of experiments that tested the hypothesis that polyphenols found in coffee may promote macrophage cholesterol efflux. The authors focused their study on caffeic and ferulic acids, phenolic acids (a subclass of polyphenols) known to be present in coffee and increased in plasma by coffee consumption. Importantly, both compounds increased HDL-mediated cholesterol efflux in vitro in a dose-dependent fashion via enhanced expression of the ABCG1 (and SR-BI) transporters. Ferulic acid, but not coffee itself, was additionally shown to modestly enhance macrophage RCT in vivo in mice. Finally, the authors elegantly extended these findings to humans using a placebo-controlled crossover study design. As expected, plasma isolated 30 minutes after consumption of 1 cup of caffeinated coffee was substantially enriched in phenolic acids. Intriguingly, “post-coffee serum” displayed a 40 percent increase in its ability to promote cholesterol efflux from human monocyte-derived macrophages, together with upregulation of ABCG1 and SR-BI. This study thus provides compelling evidence that phenolic acids, with coffee as a delivery mechanism, can increase macrophage-specific cholesterol efflux via upregulation of known cholesterol transporters.

The authors are to be commended for their creative combination of in vitro, mouse in vivo, and human ex vivo approaches in answering questions regarding the complex RCT pathway. However, several limitations should be noted. Although intuitive, an association between enhanced macrophage cholesterol efflux capacity of serum and cardiovascular disease in humans has not been definitively demonstrated. Secondly, the quantitative importance of ABCG1- and SR-BI-mediated cholesterol efflux in the overall human macrophage RCT pathway remains unclear. The authors did not prove that consumption of phenolic acids in isolation, rather than via coffee, is linked to similar results. Finally, because plasma phenolic acid levels decline rapidly after a bolus of coffee, the findings of the authors may not be generalizable to a longer and more relevant time frame of coffee consumption.

Despite these limitations, this study lays the foundation for multiple avenues of additional research. Ongoing optimization of assays to assess macrophage RCT in humans may permit definitive studies to show that coffee (or polyphenols in general) promote RCT in vivo. Future efforts may systematically characterize the many polyphenols, particularly with regard to their impact on cholesterol efflux and RCT. If indeed the constituent phenolic acids, rather than coffee as a whole, enhance HDL metabolism and RCT, it may ultimately be possible to deliver them more reliably and efficiently in pill form. This approach would not be without precedent in the field of lipid biology; the beneficial effects of omega-3 fatty acids, traditionally delivered via a high-fish diet, have been recapitulated for the treatment of dyslipidemia as the prescription drug Lovaza (GlaxoSmithKline).

In summary, Uto-Kondo et al provide a useful methodologic framework for studies that explore the association between various compounds and cholesterol efflux. Their work adds to a growing body of evidence that suggests a role for polyphenols in cellular cholesterol efflux. If confirmed, this conceptual approach to enhancement of macrophage RCT flux could prove valuable in the prevention and treatment of cardiovascular disease in humans.

Sources of Funding

Supported by National Heart, Lung, and Blood Institute grant P01-HL22633 (to D.J.R.).

Disclosures

None.

References

Table. Selected Polyphenols and Their Dietary Sources

<table>
<thead>
<tr>
<th>Polyphenol</th>
<th>Dietary Source</th>
<th>Effect on Cholesterol Efflux</th>
<th>Mechanism</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resveratrol</td>
<td>Red wine, berries, peanuts</td>
<td>Positive</td>
<td>Increased expression of LXR</td>
<td>21, 22</td>
</tr>
<tr>
<td>Anthocyanins</td>
<td>Red wine, berries</td>
<td>Positive</td>
<td>Increased expression of ABCA1</td>
<td>23</td>
</tr>
<tr>
<td>Phenolic acids (caffeic and ferulic)</td>
<td>Coffee, wheat</td>
<td>Positive</td>
<td>Increased expression of ABCG1 and SR-BI</td>
<td>24</td>
</tr>
<tr>
<td>Isoflavones</td>
<td>Soy</td>
<td>Unknown</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Quercetin</td>
<td>Onions, apples</td>
<td>Unknown</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Catechins</td>
<td>Tea, red wine chocolate</td>
<td>Unknown</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Non-standard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA1</td>
<td>ATP-binding cassette subfamily A1</td>
</tr>
<tr>
<td>ABCG1</td>
<td>ATP-binding cassette subfamily G1</td>
</tr>
<tr>
<td>HDL-C</td>
<td>high-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>RCT</td>
<td>reverse cholesterol transport</td>
</tr>
<tr>
<td>SR-BI</td>
<td>scavenger receptor class B type 1</td>
</tr>
</tbody>
</table>

Polyphenols and Cholesterol Efflux: Is Coffee the Next Red Wine?
Megan F. Burke, Amit V. Khera and Daniel J. Rader

Circ Res. 2010;106:627-629
doi: 10.1161/CIRCRESAHA.109.215855

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/106/4/627

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/