Activating Transcription Factor 3 Constitutes a Negative Feedback Mechanism That Attenuates Saturated Fatty Acid/Toll-Like Receptor 4 Signaling and Macrophage Activation in Obese Adipose Tissue

Takayoshi Suganami, Xunmei Yuan, Yuri Shimoda, Kozue Uchio-Yamada, Nobutaka Nakagawa, Ibuki Shirakawa, Takako Usami, Takamitsu Tsukahara, Keizo Nakayama, Yoshihiro Miyamoto, Kazuki Yasuda, Junichiro Matsuda, Yasutomi Kamei, Shigetaka Kitajima, Yoshihiro Ogawa

Abstract—Obese adipose tissue is markedly infiltrated by macrophages, suggesting that they may participate in the inflammatory pathways that are activated in obese adipose tissue. Evidence has suggested that saturated fatty acids released via adipocyte lipolysis serve as a naturally occurring ligand that stimulates Toll-like receptor (TLR)4 signaling, thereby inducing the inflammatory responses in macrophages in obese adipose tissue. Through a combination of cDNA microarray analyses of saturated fatty acid–stimulated macrophages in vitro and obese adipose tissue in vivo, here we identified activating transcription factor (ATF)3, a member of the ATF/cAMP response element-binding protein family of basic leucine zipper-type transcription factors, as a target gene of saturated fatty acids/TLR4 signaling in macrophages in obese adipose tissue. Importantly, ATF3, when induced by saturated fatty acids, can transcriptionally repress tumor necrosis factor–α production in macrophages in vitro. Chromatin immunoprecipitation assay revealed that ATF3 is recruited to the region containing the activator protein-1 site of the endogenous tumor necrosis factor–α promoter. Furthermore, transgenic overexpression of ATF3 specifically in macrophages resulted in the marked attenuation of proinflammatory M1 macrophage activation in the adipose tissue from genetically obese KKα mice fed high-fat diet. This study provides evidence that ATF3, which is induced in obese adipose tissue, acts as a transcriptional repressor of saturated fatty acids/TLR4 signaling, thereby revealing the negative feedback mechanism that attenuates obesity-induced macrophage activation. Our data also suggest that activation of ATF3 in macrophages offers a novel therapeutic strategy to prevent or treat obesity-induced adipose tissue inflammation. (Circ Res. 2009;105:25-32.)

Key Words: adipocytes ■ ATF3 ■ fatty acids ■ inflammation ■ macrophages ■ TLR4

K
own as the metabolic syndrome, the cluster of well-established risk factors for cardiovascular disease (visceral fat obesity, impaired glucose metabolism, atherogenic dyslipidemia, and blood pressure elevation), is an increasing health problem worldwide.1–3 The pathophysiology underlying the metabolic syndrome is not fully understood and visceral fat obesity appears to be an important component.4 There is considerable evidence that obesity is a state of chronic low-grade inflammation, which may play a critical role in the pathophysiology of the metabolic syndrome.1–3

Obese adipose tissue is markedly infiltrated by macrophages, suggesting that they may participate in the inflammatory pathways that are activated in obese adipose tissue.5 Using an in vitro coculture system composed of adipocytes and macrophages, we have provided evidence that a paracrine loop involving saturated fatty acids and tumor necrosis factor (TNF)α derived from adipocytes and macrophages, respectively, establishes a vicious cycle that augments the inflammatory change in obese adipose tissue.6 Recent studies have also pointed to the heterogeneity of macrophages infiltrated into obese adipose tissue, ie, they follow 2 different polarization states: M1, or “classically activated” (proinflammatory) macrophages, which are induced by proinflammatory mediators such as lipopolysaccharide (LPS) and Th1 cytokine interferon-γ; and M2, or “alternatively activated” (antiinflammatory) macrophages, which are generated in vitro by expo-

Original received February 23, 2009; revision received May 11, 2009; accepted May 20, 2009.

From the Department of Molecular Medicine and Metabolism (T.S., X.Y., Y.S., N.N., I.S., Y.K., Y.O.), Department of Biochemical Genetics (S.K.), Global Center of Excellence Program (Y.O.); and International Research Center for Molecular Science in Tooth and Bone Diseases, Laboratory of Recombinant Animals (T.U.), Medical Research Institute, Tokyo Medical and Dental University, Tokyo; Division of Biomedical Research Resources (K.U.-Y., J.M.), National Institute of Biomedical Innovation, Osaka; Kyoto Institute of Nutrition and Pathology (T.T., K.N.); Department of Medicine (Y.M.), Division of Atherosclerosis and Diabetes, National Cardiovascular Center Hospital, Osaka; and Department of Metabolic Disorder (K.Y.), Research Institute, International Medical Center of Japan, Tokyo, Japan.

Correspondence to Yoshihiro Ogawa, Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. E-mail ogawa.mmm@mri.tmd.ac.jp

© 2009 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.109.196261
Evidence has accumulated indicating that macrophages, which are infiltrated into obese adipose tissue, exhibit the phenotypic change from M2 to M1 polarization. Recent evidence also showed that the nuclear receptor peroxisome proliferator-activated receptor-γ or δ regulates M2 polarization of adipose tissue macrophages and thus systemic insulin sensitivity. It is, therefore, conceivable that M1 macrophages induce the release of saturated fatty acids from hypertrophied adipocytes via lipolysis, which, in turn, may serve as a proinflammatory adipocytokine locally in the adipose tissue.

Free fatty acids represent an important energy source mobilized from triglycerides stored in the adipose tissue, particularly during periods of starvation, but recent evidence has suggested the pathophysiologic roles other than the supply of nutrients in times of fasting or increased energy demand. For instance, elevated levels of circulating free fatty acids, which are often associated with visceral fat obesity, increase fat accumulation in insulin target tissues such as the skeletal muscle and liver and contribute to insulin resistance. We and others have reported that saturated fatty acids, which are released from adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor (TLR)4 complex, which is essential for the recognition of LPS, to induce nuclear factor (NF)-κB activation in macrophages. Evidence has also suggested that TLR4 plays an important role in adipose tissue inflammation. Because macrophages in obese adipose tissue are exposed to saturated fatty acids released in large quantities from hypertrophied adipocytes, there might be negative regulatory mechanisms, whereby macrophages are protected against the saturated fatty acid–induced inflammatory response in obese adipose tissue.

Through a combination of cDNA microarray analyses of saturated fatty acid–stimulated macrophages in vitro and obese adipose tissue in vivo, we identified activating transcription factor (ATF3), a member of the ATF/cAMP response element-binding protein (CREB) family of basic leucine zipper-type transcription factors that is markedly induced in macrophages through TLR4 in response to saturated fatty acids in vitro and in obese adipose tissue in vivo. This study provides evidence that ATF3 acts as a transcriptional repressor of saturated fatty acids/TLR4 signaling in macrophages, thereby revealing the negative feedback mechanism that attenuates obesity-induced macrophage activation in obese adipose tissue. Our data also suggest that activation of ATF3 in macrophages offers a novel therapeutic strategy to prevent or treat obesity-induced inflammation and thus the metabolic syndrome associated with excess adiposity.

Materials and Methods
An expanded Materials and Methods section is available in the Online Data Supplement at http://circres.ahajournals.org.

Materials and Antibodies
Details are provided in the Online Data Supplement.

Animals
Six-week-old male C3H/HeJ mice, which have defective LPS signaling attributable to a missense mutation in the TLR4 gene, and control C3H/HeN mice were purchased from CLEA Japan (Tokyo, Japan). Genetically obese ob/ob, db/db, and KKAa mice were purchased from CLEA Japan and Charles River Japan (Tokyo, Japan). Details on experimental conditions are provided in the Online Data Supplement. All animal experiments were conducted in accordance to the guidelines of Tokyo Medical and Dental University Committee on Animal Research (No. 0909058).

Generation of Transgenic Mice Overexpressing ATF3 in Macrophages
Details are provided in the Online Data Supplement.

Cell Culture
RAW264 macrophage cell line (RIKEN Bioresource Center, Tsukuba, Japan), 3T3-L1 preadipocytes, and HEK293 (American Type Culture Collection, Manassas, Va) were maintained in DMEM (Nacalai Tesque, Kyoto, Japan) containing 10% FBS (BioWest, Miami, Fla). Differentiation of 3T3-L1 preadipocytes to mature adipocytes was performed as previously described and used as differentiated 3T3-L1 adipocytes at days 8 to 10 after the induction of differentiation. Murine peritoneal macrophages and bone marrow–derived macrophages were prepared as described.

Chromatin Immunoprecipitation Assay
Details are provided in the Online Data Supplement.

Retrovirus-Mediated Overexpression and Knockdown of ATF3 in Macrophages
Retrovirus-mediated overexpression of the full-length mouse ATF3 cDNA and knockdown of endogenous ATF3 were performed in RAW264 macrophages as described in the Online Data Supplement.

Quantitative Real-Time PCR
Total RNA was extracted from cultured cells using Sepazol reagent (Nacalai Tesque) and quantitative real-time PCR was performed with an ABI Prism 7000 Sequence Detection System using PCR Master Mix Reagent (Applied Biosystems, Foster City, Calif). Primers used in this study are described in Online Table I. Levels of mRNA were normalized to those of 36B4 mRNA.

Histological Analysis
Histological analysis was performed as previously described using the paraffin-embedded sections of the epididymal white adipose tissue. In brief, hematoxylin/eosin staining was used to compare the adipocyte cell size with the software Win Roof (Mitani, Chiba, Japan). The presence of F4/80-positive macrophages in the adipose tissue was detected immunohistochemically using the rat monoclonal antimouse F4/80 antibody as described previously. The number of F4/80-positive cells was counted in more than 10 mm² area of each section and expressed as the mean number/mm².

Western Blotting of ATF3
Whole cell lysates were prepared as previously described. Samples (20 μg protein per lane) were separated by 12.5% SDS-PAGE and Western blotting was performed using antibodies against ATF3 (Santa Cruz Biotechnology).

Measurement of TNFα Levels in Culture Media
The TNFα levels in culture supernatants were determined by a commercially available ELISA kit (R&D systems, Minneapolis, Minn).

Transient Transfection and Luciferase Assay
Details are provided in the Online Data Supplement.
Statistical Analysis
Data were expressed as the means±SE. Statistical analysis was performed using ANOVA, followed by Scheffe’s test unless otherwise described. *P<0.05 was considered to be statistically significant.

Results and Discussion
Identification of ATF3 As a Target Gene of Saturated Fatty Acids in Macrophages in Obese Adipose Tissue
We have provided in vitro evidence that saturated fatty acids, which are released from adipocytes via the macrophage-induced lipolysis, serves as a naturally occurring ligand that stimulates TLR4 signaling in macrophages. To search for target gene(s) of saturated fatty acids in macrophages in obese adipose tissue, we performed cDNA microarray analysis of obese adipose tissue from ob/ob mice and palmitate-stimulated RAW264 macrophages (Online Figure I, a). Upregulated genes under both conditions included chemokines, proinflammatory cytokines, acute phase reactants, and ATF3 (Online Table II), whereas 5 genes were downregulated (Online Table III). ATF3 is a member of the ATF/CREB family of transcription factors. ATF3 is rapidly induced in response to several stimuli and insults, such as chemicals, irradiation, and oxidative stress, and, in turn, negatively regulates target genes as a transcriptional repressor. Although ATF3 plays a role in apoptosis and cell cycle, the role of ATF3 in obesity is largely unknown. We, therefore, investigated the tissue distribution of ATF3 in obese and lean mice. Similar to macrophage marker F4/80, ATF3 mRNA expression was markedly increased in the adipose tissue from db/db mice relative to wild-type mice (Online Figure I, b). In this study, there was a significant increase in ATF3 mRNA expression in the liver from db/db mice relative to wild-type mice (*P<0.01).

We confirmed our cDNA microarray data by real-time PCR and immunostaining. Expression of ATF3 and F4/80 mRNAs was increased in the adipose tissue during the course of diet-induced obesity (Figure 1A). We also observed upregulation of ATF3 and F4/80 in the adipose tissue from ob/ob mice (Figure 1B). Collagenase digestion of the adipose tissue, which is validated by F4/80 and adiponectin mRNA expression, revealed that ATF3 is expressed predominantly in stromal-vascular fraction in the adipose tissue (Figure 1C). Furthermore, ATF3 mRNA expression was increased significantly in ob/ob mice fed high-fat diet relative to wild-type mice fed standard diet (*P<0.01) (Figure 1C). We also confirmed by immunostaining of ATF3 and F4/80 using serial sections of obese adipose tissue that most ATF3-positive cells are stained with F4/80 (Figure 1D). These observations indicate that ATF3 is markedly upregulated in obese adipose tissue, especially in infiltrated macrophages.

Saturated Fatty Acids Induce ATF3 via TLR4 in Macrophages In Vitro and In Vivo
We next examined the involvement of TLR4 in the saturated fatty acid–induced ATF3 mRNA and protein expression in macrophages in vitro. Saturated fatty acids, such as palmitate and stearate, and LPS increased significantly ATF3 mRNA and protein expression in RAW264 macrophages (*P<0.05 versus vehicle) (Figure 2A through 2D). Interestingly, unsaturated fatty acids, such as oleate and eicosapentaenoic acid, did not affect ATF3 mRNA expression (Figure 2C and 2D and data not shown), suggesting the structure-specific effect of free fatty acids. We found that palmitate fails to increase ATF3 mRNA expression in peritoneal macrophages from C3H/HeJ mice with defective TLR4 signaling (Figure 2E). We also observed that BAY11-7085, an NF-κB inhibitor, markedly inhibits the palmitate-induced ATF3 mRNA expression in RAW264 macrophages (Figure 2F). The data were confirmed using RAW264 macrophages overexpressing a super-repressor form of IκBα (SR-IκBα) (Figure 2G). Furthermore, selective NF-κB activation by transient overexpression of p50 and p65 subunits of NF-κB increased significantly the ATF3 promoter activity in HEK293 cells (*P<0.01) (Figure 2H). In this setting, the changes in ATF3 mRNA expression were almost parallel to those in TNFα mRNA expression (Figure 2E and 2F and data not shown). These observations indicate that TLR4/NF-κB pathway plays an important role in saturated fatty acid–induced ATF3 and TNFα expression in macrophages. On the other hand, palmitate and stearate, but not unsaturated fatty acids, are known to serve as precursors for de novo ceramide synthesis, thereby inducing inflammatory changes in certain cells. However, we observed that pharmacological inhibition of ceramide synthesis slightly inhibits the palmitate-induced ATF3
ATF3 and TNFα Production in Macrophages

To elucidate the functional role of ATF3 in macrophages, we examined the effect of ATF3 overexpression on proinflammatory cytokine production in macrophages in vitro. A full-length mouse ATF3 cDNA was stably overexpressed in RAW264 macrophages by retroviral transduction, which was confirmed by real-time PCR and Western blotting (Figure 4A). In RAW264 macrophages overexpressing ATF3 (ATF3 RAW264), the palmitate- and LPS-induced increase in TNFα mRNA expression in RAW264 macrophages by retroviral transduction, which was confirmed by real-time PCR and Western blotting (Figure 4A). In RAW264 macrophages overexpressing ATF3 (ATF3 RAW264), the palmitate- and LPS-induced increase in TNFα
mRNA expression was significantly reduced relative to control RAW264 macrophages (Mock-RAW264) (P<0.01) (Figure 4B). We confirmed that the palmitate- and LPS-induced TNFα secretion in the ATF3-RAW264 culture media is significantly reduced relative to Mock-RAW264 (P<0.01) (Figure 4C). We also observed with a luciferase reporter assay that TNFα promoter activity is markedly inhibited in ATF3-RAW264 relative to Mock-RAW264 (Figure 4D). Similarly, the palmitate-induced increase in IL-6 and inducible nitric oxide synthase was significantly reduced in ATF3-RAW264 relative to Mock-RAW264 (Online Figure III, a). These observations indicate that overexpression of ATF3 is capable of reducing the saturated fatty acid–induced proinflammatory cytokine production in macrophages.

We next examined the effect of knockdown of endogenous ATF3 gene expression in RAW264 macrophages. Stable knockdown of ATF3 using 2 independent short hairpin loop RNAs (shATF3#1 and shATF3#3) was confirmed by Western blotting (Figure 5A). The ATF3–knocked-down RAW264 macrophages (shATF3#1-RAW264 and shATF3#3-RAW264) exhibited significant enhancement of the palmitate-induced TNFα mRNA expression relative to control RAW264 macrophages (shGFP-RAW264) (P<0.01) (Figure 5B). The effect of ATF3 knockdown on TNFα mRNA expression persisted until 24 hours after stimulation with LPS (Figure 5C). Knockdown of ATF3 also significantly increased TNFα secretion in the culture media (P<0.01) (Figure 5D). Furthermore, we observed that the TNFα promoter activity is significantly increased in shATF3#3-RAW264 relative to shGFP-RAW264 (P<0.01) (Figure 5E). These observations suggest that once induced by the saturated fatty acids/TLR4 signaling, ATF3 attenuates the saturated fatty acid–induced TNFα production in macrophages, thereby constituting a negative feedback mechanism to reduce the TLR4 signaling induction of proinflammatory cytokine production. This notion is consistent with a recent report by Gilchrist et al that ATF3 acts as a negative regulator of the LPS-induced TLR4 signaling.25

In the proximal region of the IL-6 and IL-12b promoters, ATF3-binding ATF/CREB sites are located close to NF-κB binding sites.25 NF-κB and ATF3, both of which are activated by saturated fatty acids/TLR4 signaling, can positively and negatively regulate their target proinflammatory cytokines, respectively.25 However, there are no consensus sequences

Figure 4. Effect of ATF3 overexpression on saturated fatty acid–induced TNFα production in cultured macrophages. A, Retrovirus-mediated stable overexpression of a full-length mouse ATF3 cDNA in RAW264 macrophages (ATF3-RAW264) and control RAW264 macrophages (Mock-RAW264). Effect of ATF3 overexpression on the palmitate- and LPS-induced TNFα mRNA expression (B) and secretion (C). D, Effect of ATF3 overexpression on the TNFα promoter activity. Pal indicates palmitate 200 μmol/L; LPS, LPS 10 ng/mL. **P<0.01 vs the respective control; #P<0.05, ##P<0.01 (n=4).

Figure 5. Effect of ATF3 knockdown on saturated fatty acid–induced TNFα production in cultured macrophages. A, Retrovirus-mediated ATF3 knockdown in RAW264 macrophages. Two short hairpin loop RNAs (shATF3#1 and shATF3#3) designed to target different sequences within ATF3 mRNA effectively knocked down endogenous ATF3 in RAW264 macrophages. B, Effect of ATF3 knockdown on the palmitate-induced TNFα mRNA expression. C, Time course of the LPS-induced TNFα mRNA expression in RAW264 macrophages. D, Effect of ATF3 knockdown on the palmitate-induced TNFα secretion. E, Effect of ATF3 knockdown on the TNFα promoter activity. shATF3#1-RAW264 and shATF3#3-RAW264 indicate ATF3–knocked-down RAW264 macrophages; shGFP-RAW264, control RAW264 macrophages; Pal, palmitate 200 μmol/L; LPS, LPS 10 ng/mL. **P<0.01 vs the respective control; #P<0.05, ##P<0.01 (n=4). F, TNFα promoter chromatin immunoprecipitation analysis with chromatin extracts prepared from RAW264 macrophages treated with or without LPS (100 ng/mL) for 6 hours. αATF3 indicates anti-ATF3 antibody; αIgG, normal rabbit IgG; Nega, negative control without template; NS, nonspecific band.
corresponding to the ATF/CREB site close to the NF-κB–
binding site (−534 bp) in the proximal region of TNFα
promoter. In this study, we performed chromatin immuno-
precipitation analysis with RAW264 macrophages and found
that ATF3 is recruited to the region containing the activator
protein (AP)-1 site (−926 bp) of the endogenous TNFα
promoter (Figure 5F). This observation is consistent with a
previous report that ATF3 binds to the AP-1 site.26 It is,
therefore, interesting to know how ATF3 negatively regulates
TNFα and IL-6 production via its distinct binding sites; the
AP-1 and ATF/CREB sites, respectively. In addition, histone
deacetylase and heat shock transcription factor 1 are required
for the action of ATF3 on the IL-6 promoter.25 It is,
therefore, important to identify ATF3-interacting proteins on
the TNFα promoter.

Distinct Intracellular Signaling Pathways Plays a
Role in the Palmitate- and LPS-Induced
ATF3 Expression
In this study, we demonstrated that saturated fatty acids
induce ATF3 expression in macrophages through the TLR4/
NF-κB pathway, which is consistent with the previous report
on LPS.25 Besides NF-κB, mitogen-activated protein kinases
(MAPKs) are an important intracellular signaling pathway
downstream of TLR4,28 and c-Jun N-terminal kinase (JNK)
and p38 MAPK have been reported to play a role in ATF3
expression in certain cell types.29,30 We, therefore, examined
the involvement of MAPKs in the saturated fatty acid– and
LPS-induced ATF3 mRNA expression and found that
SB20358038, a p38 MAPK inhibitor, inhibits significantly
the palmitate-induced ATF3 mRNA expression (P<0.01)
(Online Figure IV). On the other hand, SP600125, a JNK
inhibitor, inhibited most effectively the LPS-induced ATF3
mRNA expression (P<0.01) (Online Figure IV). Moreover,
we found that ERK plays a major role in the palmitate-
induced TNFα mRNA expression, whereas other MAPKs
may also contribute to the LPS-induced TNFα mRNA ex-
pression (Online Figure IV). These observations, taken to-
gether, suggest that distinct intracellular signaling pathways
may mediate the saturated fatty acid– and LPS-induced ATF3
mRNA expression through TLR4. It is interesting to know
how endogenous and exogenous TLR4 ligands such as
saturated fatty acids, oxidized phospholipids, and cytosolic
and nuclear proteins, and LPS,12,28,31 exert their effects
through the unique signaling pathways, thereby leading to a
variety of cellular responses.

Transgenic Overexpression of ATF3 Attenuates
Macrophage Activation in Obese Adipose Tissue
To elucidate the role of ATF3 in macrophages infiltrated into
obese adipose tissue, we developed transgenic mice over-
expressing human ATF3 in macrophages under the control
of SR-A promoter (ATF3 Tg) (Online Figure V, a).32 Genomic
Southern blot analysis identified 9 (line 2), 13 (line 25), and
20 (line 35) transgene copies in independent founder lines
(data not shown). Western blot analysis of ATF3 revealed
3-fold and 2-fold increase in ATF3 protein levels in bone
marrow–derived macrophages from lines 25 and 35, respect-
atively, relative to wild-type mice (Online Figure V, b). In this

study, there was no significant increase in ATF3 levels in line
2 macrophages (Online Figure V, b). We observed essentially
the same data using peritoneal macrophages from 3 indepen-
dent transgenic lines (Online Figure V, b).

We crossed ATF3 Tg (line 35) with genetically obese
KKa mouse and obtained 4 genotypes as the F1 generation
(wild-type on the KK background [WT:KK], ATF3 Tg on the
KK background [ATF3 Tg:KK], wild-type on the KKa background
[WT:KKa], and ATF3 Tg on the KKa background
[ATF3 Tg:KKa]) at a Mendelian ratio (data not
shown). In this study, WT:KK and ATF3 Tg:KK were fed
standard diet and WT:KKa and ATF3 Tg:KKa were fed
high-fat diet for 4 weeks. During the course of high-fat diet
feeding, transgenic overexpression of ATF3 in macrophages
did not affect significantly body weight and epididymal fat
weight on KK and KKa backgrounds (Figure 6A and 6B).
The liver weight tended to be decreased in ATF3 Tg:KKa
relative to WT:KKa, but the difference did not reach
statistical significance (Figure 6B). Histological analysis
showed no apparent difference in adipocyte cell size between
genotypes (Figure 6C and 6D). There was no significant
difference in obesity-induced macrophage infiltration be-

There was no significant difference in obesity-induced macrophage infiltration be-

Figure 6. Adipocyte hypertrophy and macrophage infiltration in the adipose tissue from transgenic mice with macrophage-spe-
cific ATF3 overexpression. A, Time course of body weight. ○, WT:KK; ●, transgenic (Tg):KK; △, WT:KKa; ▲, Tg:KKa. B, The epididymal adipose tissue (Epi) and liver weights. Open bar, WT; closed bar, Tg; C, Hematoxylin/eosin staining of the epididymal adipose tissue. D, Histogram of diameters of adipocytes in the epididymal adipose tissue. E, F4/80 immunostaining of the epi-
didymal adipose tissue. F, Cell count of F4/80-positive cells in the epididymal adipose tissue. **P<0.01 vs the respective KK
background (n=6 to 13).
tissue (Figure 7A), TNFα is upregulated in macrophages through the saturated fatty acids/TLR4/NF-κB signaling. Once induced, ATF3 can transcriptionally reduce the saturated fatty acids/TLR4 signaling-induced proinflammatory cytokine production. Our data have identified ATF3 as a transcriptional repressor of saturated fatty acid/TLR4 signaling, thereby revealing the negative feedback mechanism that attenuates macrophage activation in obese adipose tissue. TNFR indicates TNFα receptor; AP-1 and κB, AP-1– and NF-κB–binding elements, respectively.

Figure 8. Negative feedback mechanism involving ATF3 as a transcriptional repressor of saturated fatty acid/TLR4 signaling in macrophages in obese adipose tissue. In the interaction between adipocytes and macrophages, ATF3 is upregulated in macrophages through the saturated fatty acids/TLR4/NF-κB signaling. Once induced, ATF3 can transcriptionally reduce the saturated fatty acids/TLR4 signaling–induced proinflammatory cytokine production. Our data have identified ATF3 as a transcriptional repressor of saturated fatty acid/TLR4 signaling, thereby revealing the negative feedback mechanism that attenuates macrophage activation in obese adipose tissue. TNFR indicates TNFα receptor; AP-1 and κB, AP-1– and NF-κB–binding elements, respectively.

Figure 7. Effect of ATF3 on activation and polarization of adipose tissue macrophages and peritoneal macrophages from macrophage-specific ATF3 transgenic mice. A and B, mRNA expression of M1 markers (TNFα and CD11c) (A) and M2 markers (mannose receptor and arginase 1) (B) in the epididymal adipose tissue from WT:KK, Tg:KK, WT:KK Ay, and Tg:KK Ay mice. C, mRNA expression of M1 markers (TNFα and CD11c) in peritoneal macrophages from WT and Tg on the C57BL/6J background. *P<0.05 (n=6 to 13).

We also examined the effect of ATF3 on macrophage activation and polarization in the adipose tissue from transgenic mice with macrophage-specific overexpression of ATF3. We observed a marked increase in TNFα mRNA expression in the adipose tissue from WT:KK Ay and Tg:KK Ay (Figure 6E and 6F). These observations suggest that transgenic overexpression of ATF3 in macrophages does not affect adipocyte hypertrophy and macrophage infiltration in obese adipose tissue.

We next examined TNFα and CD11c mRNA expression in peritoneal macrophages prepared from ATF3 Tg and WT on the C57BL/6J background. Similar to the data on the adipose tissue (Figure 7A), TNFα mRNA expression was significantly suppressed in peritoneal macrophages from ATF3 Tg relative to WT (P<0.05) (Figure 7C). Interestingly, CD11c mRNA expression in peritoneal macrophages was rather higher in ATF3 Tg than in WT (P<0.05) (Figure 7C). In this regard, using ATF3-RAW264 and shATF3-RAW264, we did not observe that ATF3 has impact on CD11c mRNA expression in vitro (data not shown), suggesting that CD11c may not be a transcriptional target of ATF3 in macrophages. Further studies are needed to elucidate the role of ATF3 in obesity-induced M1 polarization of adipose tissue macrophages. Global ATF3-deficient mice are viable,19,25 but the role of ATF3 in glucose/lipid metabolism has not been elucidated. Because activation and polarization of adipose tissue macrophages play an important role in the metabolic status,7–9 studies with ATF3 Tg and macrophage-specific ATF3-deficient mice would help elucidate the pathophysiologic role of ATF3 in macrophages in adipose tissue inflammation and systemic glucose/lipid metabolism.

In conclusion, ATF3 is upregulated in macrophages in the interaction between adipocytes and macrophages through the saturated fatty acids/TLR4/NF-κB signaling. Once induced, ATF3 can transcriptionally reduce the saturated fatty acids/TLR4 signaling–induced proinflammatory cytokine production. Among known negative regulators of TLR4 signaling,28 ATF3 is unique in that it represses the TLR4 target genes via a transcriptional mechanism. This study provides evidence that ATF3 acts as a transcriptional repressor of saturated fatty acids/TLR4 signaling, thereby revealing the negative feedback mechanism that attenuates macrophage activation in obese adipose tissue (Figure 8). Our data also suggest that activation of ATF3 in macrophages may offer a novel therapeutic strategy to prevent or treat obesity-induced adipose tissue inflammation.
Acknowledgments

We thank Ai Togo for secretarial assistance and Takanori Kunieda and Tae Mieda for technical assistance. We are also grateful to the members of the Ogawa laboratory for discussions.

Sources of Funding

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and Ministry of Health, Labor and Welfare of Japan and research grants from Takeda Science Foundation and Takeda Medical Research Foundation.

Disclosures

None.

References

Activating Transcription Factor 3 Constitutes a Negative Feedback Mechanism That Attenuates Saturated Fatty Acid/Toll-Like Receptor 4 Signaling and Macrophage Activation in Obese Adipose Tissue

Takayoshi Suganami, Xunmei Yuan, Yuri Shimoda, Kozue Uchio-Yamada, Nobutaka Nakagawa, Ibuki Shirakawa, Takako Usami, Takamitsu Tsukahara, Keizo Nakayama, Yoshihiro Miyamoto, Kazuki Yasuda, Junichiro Matsuda, Yasutomi Kamei, Shigetaka Kitajima and Yoshihiro Ogawa

Circ Res. 2009;105:25-32; originally published online May 28, 2009; doi: 10.1161/CIRCRESAHA.109.196261

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/105/1/25

Data Supplement (unedited) at:
http://circres.ahajournals.org/content/suppl/2009/05/29/CIRCRESAHA.109.196261.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/
Expanded Materials and Methods

Materials and Antibodies

NF-κB inhibitor BAY11-7085, p38 MAPK inhibitor SB203580, and JNK inhibitor SP600125 were purchased from Merck (San Diego, CA). MEK inhibitor U0126 was purchased from Cell Signaling Technology (Danvers, MA). The pEF-p50-NHA and pEF-p60 plasmids which express p50 and p65 subunits of NF-κB, respectively, and the pMRX-SR-IκBα plasmid which expresses a super-repressor form of IκBα (SR-IκBα; a degradation-resistant mutant of IκBα) are described elsewhere.¹,² LPS (from Escherichia. coli O111: B4) and anti-α-tubulin antibody were purchased from Sigma (San Diego, CA). Palmitate, stearate, and oleate were purchased from Sigma, solubilized in ethanol, and conjugated with fatty acids- and immunoglobulin-free bovine serum albumin (Sigma) at a molar ratio of 10:1 (fatty acid: albumin) in low serum medium as previously described.³ The concentrations of palmitate used in this study (< 200 µmol/l) are within the physiologic levels. Antibody against ATF3 was purchased from Santa Cruz (sc-188, Santa Cruz, CA). All other reagents were purchased from Sigma or Nacalai Tesque (Kyoto, Japan) unless otherwise described.

cDNA Microarray Analysis

Serum starved RAW264 macrophages were treated with palmitate (200 µmol/l) or vehicle for 5 h. The epididymal adipose tissue was prepared from 12-week-old male ob/ob and wild-type mice. DNA microarray analysis was performed as previously described.⁴ In brief, total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA) and repurified with an RNeasy purification kit (Qiagen, Hilden, Germany). Ten µg of RNA was applied for microarray analysis (Mouse Genome 430A 2.0; Affymetrix, Santa Clara, CA) and GeneChip software (Affymetrix) was utilized for analysis of microarray data.

Co-culture of Adipocytes and Macrophages

Co-culture of adipocytes and macrophages was performed as described.³,⁴ In brief, serum starved differentiated 3T3-L1 adipocytes (~0.5 x 10⁶ cells) were cultured in a 35-mm dish and
macrophages (1.0 x 10^5 cells of RAW264 macrophages or peritoneal macrophages) were plated onto 3T3-L1 adipocytes. The cells were cultured for 24 h with contact each other and harvested. As a control, adipocytes and macrophages, the numbers of which were equal to those in the co-culture, were cultured separately and mixed after harvest.

Animals

Six-week-old male C3H/HeJ mice which have defective LPS signaling due to a missense mutation in the TLR4 gene and control C3H/HeN mice were purchased from CLEA Japan (Tokyo, Japan). Genetically obese ob/ob, db/db, and KK A mice were purchased from CLEA Japan and Charles River Japan (Tokyo, Japan). The animals were housed in individual cages in a temperature-, humidity-, and light-controlled room (12-h light and 12-h dark cycle) and allowed free access to water and standard chow (Oriental MF; 362 kcal/100 g, 5.4% energy as fat) (Oriental Yeast, Tokyo, Japan), when otherwise noted. In the high-fat feeding experiments, male mice at 10 weeks of age were given free access to water and either the standard chow or high-fat diet (D12492; 556 kcal/100g, 60% energy as fat; Research Diets, New Brunswick, NJ) for 4 weeks. At the end of the experiments, mice were sacrificed after a 1-h fast under intraperitoneal pentobarbital anesthesia (30 mg/kg). All animal experiments were conducted in accordance to the guidelines of Tokyo Medical and Dental University Committee on Animal Research (No. 0090058).

Generation of Transgenic Mice Overexpressing ATF3 in Macrophages

The 4.96-kb enhancer/promoter of the human scavenger receptor-A (SR-A) gene capable of macrophage-specific expression was kindly provided by Dr. Christopher K. Glass (University of California, San Diego, CA). A full-length human ATF3 cDNA was fused with SR-A enhancer/promoter and a human growth hormone polyadenylation site. The transgene (Online Figure Va) was linearized and microinjected into the pronuclei of C57BL/6J mouse fertilized eggs. To identify founder mouse lines that carried the SR-A enhancer/promoter-ATF3 transgene, Southern blot analysis was performed using tail tissue DNA. Expression of ATF3
mRNA and protein in peritoneal and bone marrow-derived macrophages was evaluated by real-time PCR and Western blotting, respectively.

Chromatin Immunoprecipitation (ChIP) Assay

To assess ATF3 binding to the TNFα promoter, ChIP assay was performed using the ChIP assay kit (Upstate Biotechnology, CA) according to the manufacture’s instruction. After stimulation with LPS, cells were fixed in 1% formaldehyde for 15 min at 37°C to cross-link DNA and proteins, lysed, and sheared with a handy sonicator (Tomy Seiko, Tokyo, Japan) to generate DNA ranging in size from 200 to 1000 bp. The lysates were pre-cleared with protein A-agarose and immunoprecipitated by incubating overnight at 4°C with anti-ATF3 antibody (Sant Cruz) or normal rabbit IgG as a negative control. Before immunoprecipitation, “input” samples were removed from the lysates. After immunoprecipitation, protein-DNA complexes were eluted in a buffer containing 1% SDS and 0.1 M NaHCO₃, and the cross-links were reversed. The resulting DNA was purified by phenol/chloroform extraction and ethanol precipitation, and subjected to semiquantitative PCR analysis.

The primers used for PCR were designed to amplify the proximal sequence of the mouse TNFα promoter containing the AP-1 site at -926 bp relative to the transcription start site (NM_013693): forward (5’-CAGAGACATGGTGGATTCACG-3’) and reverse (5’-GCCCTGCTTCCAGGATTTC-3’).

Retrovirus-mediated Overexpression and Knockdown of ATF3 in Macrophages

A full-length mouse ATF3 cDNA, consisting of 543 bp encoding 181 amino acid residues, was amplified by PCR with a pair of primers, one with a BamHI site and the other with an EcoRI site at the terminus. The PCR product was inserted into the BamHI/EcoRI cloning sites of the pMRX retroviral vector. The retroviral expression vector (pMRX-mATF3) capable of expressing mouse ATF3 ORF was transfected into Plat-E packaging cells and the retrovirus was harvested 48 h to 72 h after transfection. RAW264 cells were infected with the viral supernatant for 4 h and then cultured in medium supplemented with 10% fetal bovine
serum before selection. Puromycin (5 µg/ml) was added to the medium 2 days after the initial infection and the selection was continued for 2 weeks. Stable ATF3-RAW264 cell line was obtained after evaluating the expression levels of ATF3 protein by Western blotting.

pSINsi-hU6 DNA (Code 3661, Takara Bio, Otsu, Japan) for the synthesis of siRNA under the control of the human U6 promoter was used to generate pshATF3 plasmids expressing hairpin RNAs of ATF3 target sequences. The resulting pshATF3#1 and pshATF3#3, synthesizing sequences corresponding to nt 745-763 (5’-GGAACCTCTTTATCCAACA-3’) and nt 989-1007 (5’-GCATCCTTTGTCTCACCAA-3’), respectively, of mouse ATF3 mRNA (NM_007498) were used for knockdown of endogenous ATF3. As a control, pshGFP was constructed in the same way and the sequence used to target the GFP gene was as described elsewhere.12 Retrovirus preparation and RAW264 cell infection are the same as described above except that the selection is under G418 (400 µg/ml, Invitrogen, Carlsbad, CA). Stable shATF3-Raw264 cell line was verified for the knockdown efficiency by Western blotting.

Transient Transfection and Luciferase Assay

A luciferase reporter assay was performed as previously described4 using the luciferase reporter constructs for ATF3 and TNFα promoters.13 The luciferase reporter construct with no cis-acting DNA elements was used as a negative control. In brief, RAW264 macrophages or HEK293 cells were transiently transfected by electroporation (Nucleofector system; Amaxa, Gaithersburg, MD) or lipofectamine 2000 (Invitrogen), with a luciferase reporter vector and pRL-TK vector (Promega, Madison, WI) as an internal control for transfection efficiency. The luciferase activity was determined using the Dual-Luciferase Reporter Assay System (Promega).
References

Online Figure Legends

Online Figure I. Identification of ATF3 as a Target Gene of Saturated Fatty Acid in Obese Adipose Tissue. (a) cDNA microarray analysis screening for a target of saturated fatty acid/TLR4 signaling in obese adipose tissue. RAW264 macrophages were treated with either palmitate (200 µmol/l) or vehicle for 5 h. The epididymal adipose tissue was prepared from 12-week-old male ob/ob or wild-type mice. (b) Tissue distribution of ATF3 and F4/80 mRNAs in mice. WAT, white adipose tissue. Open and closed bars indicate wild-type mice fed standard diet and db/db mice fed high-fat diet, respectively. *P < 0.01 vs. wild-type mice fed standard diet. n = 4-6.

Online Figure II. Role of the TLR4/NF-κB Signaling in ATF3 mRNA Expression in the Interaction between Adipocytes and Macrophages. (a) ATF3 and TNFα mRNA expression in the co-culture between 3T3-L1 adipocytes and peritoneal macrophages obtained from C3H/HeN mice (HeN) or C3H/HeJ mice (HeJ). ct, control culture; co, co-culture. *P < 0.05, **P < 0.01 vs. the respective ct; #P < 0.05. n = 4. (b) Role of NF-κB in the co-culture-induced ATF3 and TNFα mRNA expression. Co-culture was performed using 3T3-L1 adipocytes and RAW264 macrophages. BAY, BAY11-7085 10 µmol/l. *P < 0.05, **P < 0.01 vs. Veh/ct; #P < 0.05, ##P < 0.01. n = 4.

Online Figure III. Effect of ATF3 Overexpression on IL-6 and iNOS mRNA Expression in vitro and in vivo. (a) Effect of ATF3 on the palmitate-induced IL-6 and iNOS mRNA expression in RAW264 macrophages overexpressing ATF3 (ATF3) and control RAW264 macrophages (Mock). (b) IL-6 and iNOS mRNA expression in the adipose tissue from WT:KK, Tg:KK, WT:KKΔ, and Tg:KKΔ mice. Veh, vehicle; Pal, palmitate 200 µmol/l; WT, wild-type; Tg, ATF3 transgenic mice. **P < 0.01 vs. Veh/Mock; ##P < 0.01. n = 4.

Online Figure IV. Effect of MAPK Inhibitors on Palmitate- and LPS-induced ATF3 and TNFα mRNA Expression in RAW264 Macrophages. Veh, vehicle; Pal, palmitate
100 μmol/l; LPS, LPS 10 ng/ml; U, U0126 5 μmol/l; SP, SP600125 10 μmol/l; SB, SB203580 10 μmol/l. **P < 0.01 vs. Veh/Veh, ##P < 0.01. n = 4.

Online Figure V. Generation of Transgenic Mice Overexpressing ATF3 in Macrophages. (a) Schematic representation of the mouse SR-A promoter/human ATF3 fusion gene. (b) Western blot analysis of ATF3 protein expression in peritoneal macrophages and bone marrow-derived macrophages obtained from three independent transgenic lines (#2, #25, #35) and wild-type mice.
Online Table I. Primers used in this study.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiponectin</td>
<td>Fw: 5'-ATGGCAGAGATGGCACTCCT-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-CCTTCAGTCCTGTCATTCCA-3’</td>
</tr>
<tr>
<td>Arginase 1</td>
<td>Fw: 5'-CTCCAAGCCAAAGTCCTTAGAG-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-AGGAGCTGTCATTAGGGACATC-3’</td>
</tr>
<tr>
<td>ATF3</td>
<td>Fw: 5'-TG CCTGCAGAAAGAGTCAGAGA-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-AGCTCCTCGATCTGGGCC-3’</td>
</tr>
<tr>
<td>CD11c</td>
<td>Fw: 5'-CTGGATAGCCTTTCTTCTGCT-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-GCACACTGTGTCGGAACATC-3’</td>
</tr>
<tr>
<td>F4/80</td>
<td>Fw: 5'-CTTTGGCTATGGGCTTCCAGTC-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-GCAAGGAGAGCACAGTTTATCGTG-3’</td>
</tr>
<tr>
<td>IL-6</td>
<td>Fw: 5'-ACAACCACGGCCTTCCTACTT-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-CAGATTTCCCCAGAGAACTGTG-3’</td>
</tr>
<tr>
<td>iNOS</td>
<td>Fw: 5'-CCAAGCCCTCACCTACTTCC-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-CTCTGAGGGCTGACACAAGG-3’</td>
</tr>
<tr>
<td>Mannose receptor</td>
<td>Fw: 5'-CGGTAACAAATAATTACCAAAAT-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-GTGGAGGAGGGGCTG-3’</td>
</tr>
<tr>
<td>TNFα</td>
<td>Fw: 5'-ACCCTCAGACTCAGATCATCTTC-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-TGGTGTTGCTACGACGT-3’</td>
</tr>
<tr>
<td>36B4</td>
<td>Fw: 5'-GGGCCTGCACTCTGCTTTC-3’</td>
</tr>
<tr>
<td></td>
<td>Rv: 5'-TGCCAGGACGCGCTTG-3’</td>
</tr>
</tbody>
</table>
Online Table II. Up-regulated genes both in obese adipose tissue and saturated fatty acid-stimulated macrophages.

<table>
<thead>
<tr>
<th>Accession ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Adipose tissue (ob/ob vs. WT)</th>
<th>RAW264 (Pal vs. Veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_031167</td>
<td>Il1rn</td>
<td>interleukin 1 receptor antagonist</td>
<td>15.0</td>
<td>2.6</td>
</tr>
<tr>
<td>NM_015811</td>
<td>Rgs1</td>
<td>regulator of G-protein signaling 1</td>
<td>14.8</td>
<td>2.8</td>
</tr>
<tr>
<td>NM_010442</td>
<td>Hmox1</td>
<td>heme oxygenase (decycling) 1</td>
<td>8.6</td>
<td>3.5</td>
</tr>
<tr>
<td>M57525</td>
<td>Il1rn</td>
<td>interleukin 1 receptor antagonist</td>
<td>8.6</td>
<td>2.1</td>
</tr>
<tr>
<td>NM_023044</td>
<td>Slc15a3</td>
<td>solute carrier family 15, member 3</td>
<td>8.6</td>
<td>3.7</td>
</tr>
<tr>
<td>BC022752</td>
<td>Slc37a2</td>
<td>solute carrier family 37 (glycerol-3-phosphate transporter), member 2</td>
<td>8.6</td>
<td>2.3</td>
</tr>
<tr>
<td>AF065933</td>
<td>Ccl2</td>
<td>chemokine (C-C motif) ligand 2</td>
<td>7.8</td>
<td>3.2</td>
</tr>
<tr>
<td>BC019946</td>
<td>Atf3</td>
<td>activating transcription factor 3</td>
<td>5.2</td>
<td>4.3</td>
</tr>
<tr>
<td>BV026617</td>
<td>Fos</td>
<td>FBJ osteosarcoma oncogene</td>
<td>5.2</td>
<td>4.3</td>
</tr>
<tr>
<td>NM_011315</td>
<td>Saa3</td>
<td>serum amyloid A 3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td>NM_008871</td>
<td>Serpine1</td>
<td>serine (or cysteine) proteinase inhibitor, clade E, member 1</td>
<td>4.7</td>
<td>17.1</td>
</tr>
<tr>
<td>BM210600</td>
<td>Npn3</td>
<td>neoplastic progression 3</td>
<td>4.4</td>
<td>2.3</td>
</tr>
<tr>
<td>AK011545</td>
<td>Basp1</td>
<td>brain abundant, membrane attached signal protein 1</td>
<td>4.4</td>
<td>2.6</td>
</tr>
<tr>
<td>NM_138648</td>
<td>unknown</td>
<td>unknown</td>
<td>4.3</td>
<td>2.1</td>
</tr>
<tr>
<td>NM_013612</td>
<td>Slc11a1</td>
<td>solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1</td>
<td>4.1</td>
<td>2.0</td>
</tr>
<tr>
<td>BC011325</td>
<td>Npn3</td>
<td>neoplastic progression 3</td>
<td>3.7</td>
<td>2.6</td>
</tr>
<tr>
<td>AF128193</td>
<td>Ccl7</td>
<td>chemokine (C-C motif) ligand 7</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>NM_008129</td>
<td>Gclm</td>
<td>glutamate-cysteine ligase , modifier subunit</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>NM_016903</td>
<td>Esd</td>
<td>esterase D/formylglutathione hydrolase</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>M57525</td>
<td>Il1rn</td>
<td>interleukin 1 receptor antagonist</td>
<td>2.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

ob/ob and WT, 12-week-old male ob/ob and wild-type mice, respectively. Pal, palmitate 200 µmol/l; Veh, vehicle.
Online Table III. Down-regulated genes both in obese adipose tissue and saturated fatty acid-stimulated macrophages.

<table>
<thead>
<tr>
<th>Accession ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>Adipose tissue (ob/ob vs. WT)</th>
<th>RAW264 (Pal vs. Veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_026713</td>
<td>Mogat1</td>
<td>monoacylglycerol O-acyltransferase 1</td>
<td>-5.9</td>
<td>-2.0</td>
</tr>
<tr>
<td>BB560574</td>
<td>Cd24a</td>
<td>CD24a antigen</td>
<td>-3.9</td>
<td>-3.2</td>
</tr>
<tr>
<td>NM_007446</td>
<td>Amy1</td>
<td>amylase 1, salivary</td>
<td>-3.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>BI686700</td>
<td>LOC216024</td>
<td>Similar to heterogeneous nuclear ribonucleoprotein H3, isoform a</td>
<td>-2.5</td>
<td>-2.3</td>
</tr>
<tr>
<td>BG074158</td>
<td>2610001E17Rik</td>
<td>RIKEN cDNA 2610001E17 gene</td>
<td>-2.4</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

ob/ob and WT, 12-week-old male ob/ob and wild-type mice, respectively. Pal, palmitate 200 µmol/l; Veh, vehicle.
Online Table IV. Body weight and adipose tissue weight of C3H/HeJ and C3H/HeN mice on a standard or high-fat diet for 16 weeks.

<table>
<thead>
<tr>
<th></th>
<th>body weight (g)</th>
<th>epididymal WAT weight (g)</th>
<th>mesenteric WAT weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-fed HeN</td>
<td>27.1 ± 0.8</td>
<td>0.21 ± 0.03</td>
<td>0.17 ± 0.03</td>
</tr>
<tr>
<td>HD-fed HeN</td>
<td>39.3 ± 0.8*</td>
<td>0.54 ± 0.04**</td>
<td>0.47 ± 0.02**</td>
</tr>
<tr>
<td>SD-fed HeJ</td>
<td>31.2 ± 1.0</td>
<td>0.31 ± 0.07</td>
<td>0.18 ± 0.05</td>
</tr>
<tr>
<td>HD-fed HeJ</td>
<td>41.0 ± 0.8##</td>
<td>0.61 ± 0.03##</td>
<td>0.43 ± 0.03##</td>
</tr>
</tbody>
</table>

SD, standard diet; HD, high-fat diet; HeN, C3H/HeN; HeJ, C3H/HeJ; WAT, white adipose tissue. *P < 0.05, **P < 0.01 vs. SD-fed HeN, ##P < 0.01 vs. SD-fed HeJ, n = 6-10.
Online Figure I

a

RAW264 macrophages

- Up-regulated (>2-fold): 214
- Down-regulated (<2-fold): 188

Adipose tissue

- Up-regulated (>2-fold): 20
- Down-regulated (<2-fold): 5

Note:

- Palmitate vs. vehicle comparison
- Ob/ob vs. wild-type comparison

b

ATF3 mRNA

- mRNA levels (arbitrary unit)

F4/80 mRNA

- mRNA levels (arbitrary unit)
Online Figure II
Online Figure III

a) IL-6 mRNA

mRNA levels (% of Veh/Mock)

<table>
<thead>
<tr>
<th>Group</th>
<th>Veh Pal Mock</th>
<th>Veh Pal ATF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* N.S.
* * *

b) IL-6 mRNA

mRNA levels (% of WT/KK)

<table>
<thead>
<tr>
<th>Group</th>
<th>WT Tg KK KKA (^\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td></td>
</tr>
</tbody>
</table>

* N.S.
* * *

iNOS mRNA

mRNA levels (% of Veh/Mock)

<table>
<thead>
<tr>
<th>Group</th>
<th>Veh Pal Mock</th>
<th>Veh Pal ATF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* N.S.
* * *

iNOS mRNA

mRNA levels (% of WT/KK)

<table>
<thead>
<tr>
<th>Group</th>
<th>WT Tg KK KKA (^\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNOS</td>
<td></td>
</tr>
<tr>
<td>mRNA</td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td></td>
</tr>
</tbody>
</table>

* N.S.
Online Figure IV
a

hSR-A/hATF3/hGH polyA

HindIII BamHI

hSR-A enhancer/promoter...hATF3 cDNA...hGH polyA

4.96 kb 543 bp 969 bp

b

Peritoneal macrophages

WT #2 #25 #35

ATF3 α-tubulin

Bone marrow-derived macrophages

ATF3 α-tubulin

Online Figure V