A vexing problem for clinicians in the management of children and adults with congenital heart disease is the management of the accompanying arrhythmias. In the recent decade, the

causal proportion of mutated genes encode transcription factors. Autosomal dominant mutations in NKX2.5 associate with primarily atrial septal defects, but importantly these defects are distinguished by the presence of atrioventricular nodal defects including heart block. The Holt–Oram syndrome, or heart–hand syndrome, arises from dominant mutations in Tbx5, a member of the branchyury family of transcription factors and is also associated with the development of atrioventricular nodal disease. Further investigation of these genes using mouse genetic models has begun to refine the detailed program required for development of specific components of the cardiac conduction system.

The mammalian cardiac conduction system is composed of the sinoatrial (SA) node, the atrioventricular node, the His bundle, the left and right bundle branches, and the ventricular Purkinje fibers. For many of these components, transcriptional regulators have been identified that are critical for their proper development or maintenance (see Figure). Nkx2.5 is required for the development and maintenance of the atrioventricular node. In addition, the development of the atrioventricular node is also dependent on Tbx5 and Id2, whereas the distal ventricular conduction system requires Id2 and HOP. The precise delineation and maintenance of the conduction system likely requires more than just these factors.

In mammals, the SA node serves as the dominant pacemaker from its position in the right atrium near the junction with the superior vena cava. The SA node is nonuniform in cell content and function. Early morphological studies described 3 cell types: nodal, intermediate, and elongated cells where nodal cells were thought to drive the pacemaker. Nodal cells were defined by their small shape and ovoid morphology. The mammalian SA node is also unique in having a head region and a tail or cauda yielding a comet-shaped structure. The cauda was observed to have nearly all nodal cells with fewer intermediate and elongated cells. Previous work by Blaschke et al suggested the importance of the homeodomain transcription factor Shox2 in the development of the SA node. The recent work of Christoffels and colleagues has advanced our understanding of the SA node by clarifying the essential role of the transcription factor Tbx3 in specifying atrial versus SA node cells. Tbx3 is thought to function as a transcriptional repressor to suppress atrial myocyte phenotype. Mice lacking Tbx3 die during embryogenesis between embryonic day (E)11.5 and E14. Tbx3-null mice develop multiple abnormalities including limb malformation and failure to develop mammary glands. Therefore, Tbx activity is not unique to the developing heart and conduction system. However, within the heart Tbx3 expression is required for normal size and function of the SA node. Critically, ectopic Tbx3 expression within the atria is sufficient to induce ectopic pacemaker sites associated with suppression of normal atrial gene expression and induction of Hcn4. The mechanism by which suppression of atrial myocyte gene expression couples to promote the unique gene expression profile within the SA node is not clear. In this issue of Circulation Research, Wiese et al further define the complexity of SA node development by demonstrating that Tbx18 also contributes significantly by driving specification of the head and tail components of the SA node.

The largest portion of the SA node is the head region, and Wiese et al demonstrate that the loss of Tbx18 is required for normal formation of the SA node head region. The authors first demonstrated that the large SA node head differs in its gene expression profile compared to the SA node tail. Specifically, the head expressed Tbx18 and Hcn4 and lacked expression of NKX2.5. In contrast, the tail lacked Tbx18 expression and demonstrated higher levels of Hcn4 and low levels of NKX2.5 expression. Normally in the mouse, the SA node head quadruples in size between E12.5 and E14.5. In Tbx18-deficient embryos, the tail portion of the SA node developed at E12.5, but the head region was absent at this point. Two days later, the SA node head region remained largely unformed. This absence was not associated with a reduction in cell proliferation or an increase in apoptosis. In addition, the expression of Shox2 was unaffected in Tbx18-deficient embryos, suggesting that Shox2 is upstream of Tbx18 or in a parallel pathway in the transcriptional regulation of SA node specification. It will be of interest to determine the pattern of expression of Tbx3 and Tbx18 in Shox2-deficient embryos.

The origin of the cardiac conduction system, especially the SA node, has been uncertain. Conduction system cells may develop directly from mesodermal precursors that migrate into the heart and then differentiate into conduction system.
Atrial genes are expressed.10,11 Because fate-mapping experiments indicate that Tbx18 expression program.7 Consistent with these previous observations, Wiese et al generated animals expressing cre recombinase in the Tbx18 locus combined with the Rosa26 indicator allele to mark cells that during their developmental history transiently expressed Tbx18. In these experiments, it was shown that SA nodal head cells uniquely expressed Tbx18, whereas the neighboring atrial myocytes showed no evidence of having ever had Tbx18 expression. These data are consistent with a program in which mesenchymal cells migrate into the atria and develop into SA nodal cells without first expressing atrial genes or adopting an atrial myocyte fate. Interestingly, in these fate-mapping experiments, SA node cauda was found to show evidence of having transiently expressed Tbx18. Therefore, both Tbx18 and Tbx3 are required for differentiation and continued specification of the normal SA node.

The role of Tbx3 in the conduction system extends beyond the SA node because Tbx3 has also been shown to be required for the normal formation of the atrioventricular node. Loss of Tbx3 leads to ectopic expression of connexin 43, atrial natriuretic protein, Tbx18, and Tbx20 within the bundles. Misexpression of these genes supports the idea that Tbx3 acts as a transcriptional repressor that when absent, these target genes are also essential in specifying and maintaining the conduction system. The genes that are regulated by Tbx3 include not only atrial and ventricular myocytes but also fibroblasts and smooth muscle cells.12 Thus, Tbx18 acting in concert with other factors, including Tbx3, forms regulatory units that specify the cell types within the heart.

The ablation of Tbox genes in these mouse models renders loss of function but does allow for genetic compensation by other gene products. Human mutations differ from those in mice because they typically are point mutations associated with either partial loss or gain of function and are compatible with survival. In the human cases, more subtle changes in levels of protein expression or in protein function, such as interaction with binding partners, may affect heart development or produce disease of the mature heart. Pacemaker function within the heart varies with age; newborn humans have very high heart rates. Heart rate, including both resting- and exercise-induced, declines with age in a predictable fashion. The incidence of sinus node dysfunction and atrial fibrillation dramatically increases with age. The lifetime risk of developing atrial fibrillation is as high as 1 in 4, and sinus node dysfunction is responsible for nearly half of all pacemaker insertions.13,14 The Tbox genes may point to genetic markers useful for predicting risk of cardiac conduction system disease and guiding placement of devices to treat these disorders. Of note, Tbx18 harbors 3 nonsynonymous single-nucleotide polymorphisms including one with high frequency in the population (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=9096).

Transcription factors, including Tbox factors, drive expression or repression of a constellation of critical regulatory genes, most of which have not yet been identified. These target genes are also essential in specifying and maintaining the conduction system. The genes that are regulated by Tbx3 and Tbx18 are largely unknown but are clearly essential in determining the sharp delineation between a functioning SA node and the neighboring atrial myocytes. The Tbox factors are front and center in setting the pace of conduction system function.

Sources of Funding

Supported by NIH grant HL71063 (to E.C.S.) and Doris Duke Charitable Foundation (to E.M.M.)

Disclosures

None.

References

KEY WORDS: Tbox genes ■ Tbx3 ■ Tbx18 ■ cardiac conduction ■ pacemaker
Setting the Pace: Tbx3 and Tbx18 in Cardiac Conduction System Development
Elizabeth M. McNally and Eric C. Svensson

Circ Res. 2009;104:285-287
doi: 10.1161/CIRCRESAHA.109.193680

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/104/3/285

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/