Soluble vasoactive factors derived from vascular endothelium modulate the tone of underlying smooth muscle cells. Stimulation of intact, ie, endothelialized, vessels with acetylcholine causes vasodilation by release of endothelium-derived relaxing factors (EDRFs), mostly NO and hyperpolarizing factor(s) (EDHF). The endothelium also produces contractile factors (EDCF) of different origin.1 Thus, any reduced endothelium-dependent relaxation or even vasoconstriction could result from either loss of EDRFs, (enhanced) generation of EDCFs, or a combination of both. EDCF-mediated vasoconstriction might prevail with increasing age, as well as disturbed endothelial function, for example, in hypertension1–2 or type 2 diabetes.3 In addition to reduced generation of vasodilator prostanoids (PGs), such as PGI₂, enhanced production of vasoconstrictor prostanooids has been described.4,5 Oxygen-derived free radicals and isoprostanes, generated by exaggerated oxidative stress, are further members of the EDCF family. Thus, EDCFs represent an inhomogeneous group of compounds with different chemical identity.

In the few last years, vasocontractile prostanoids, generated by endothelial cyclooxygenase(s) (COX[s]), have come into focus as significant EDCFs.1 One reason for this is the upregulation of endothelial COXs and enzymes of PG-endoperoxide catabolism during the aging process and hypertension with enhanced generation of these compounds6–7; another reason is the low selectivity of prostanooids for their membrane receptors. Vasoconstrictor prostanooids act on vascular smooth muscle cells via the thromboxane–prostanoid (TP) receptor.8 However, reactive oxygen species and other primary PGs, including PGI₂, at higher concentrations,9 may also activate this receptor and cause vasoconstriction.

In this issue of Circulation Research, Wong and colleagues10 demonstrate generation of a prostanoid-type EDCF in the hamster aorta in vitro. Treatment of the vessels with nonselective inhibitors of COX-1/2 or selective COX-2 inhibitors prevented these contractions, whereas selective COX-1 inhibitors were ineffective. This suggests a constitutively expressed COX-2 as source of EDCF formation. Although earlier studies had already considered COX-2–derived prostanooids as EDCFs,3,6,11 the present study identifies a less well-known product, PGF₂α, as the only EDCF in this particular model. The acetylcholine-induced generation of PGF₂α (and PGI₂) in intact hamster aortae disappeared after endothelial denudation. Any vasomotor action of other prostanooids and PGI₂ could be excluded, as well as the involvement of the prostacyclin receptor for signal transduction.

Endothelial COXs, rather than those of vascular smooth muscle cells, are the main source of PG-endoperoxide generation in the vessel wall,12 the immediate precursors of terminal PGs. In SHR rats, enhanced COX-1 expression was found to be associated with generation of EDCFs,13 possibly PG endoperoxides and PGI₁. However, in other species including humans, PGI₂ is generated by both endothelial COX-1 and COX-2,14 and it is the COX-2, rather than COX-1 (ie, the regulated form of the enzyme) that synthesizes the majority of vascular PGs. Thus, the demonstration of an entirely COX-2–dependent EDCF formation could have some impact.

All prostanooids signal via G protein–coupled membrane receptors. Stimulation of TP receptors increases Ca²⁺ entry by opening of both voltage- and receptor-operated channels, with subsequent increase in cytosolic Ca²⁺ and smooth muscle contraction. TP receptors are not selective for thromboxane but may also bind other prostanooids.15 In the study of Wong et al,10 acetylcholine-induced aortic contractions were attenuated or abolished by 3 structurally different thromboxane receptor antagonists but not by an antagonist to the F-series–prostanoid (FP) receptor, ie, the specific binding site for PGF₂α. Other potential candidates for TP-mediated contractions of smooth muscle cells, such as 8-isoprostanes, PGI₂, PGE₂, and oxygen-derived free radicals,8,9,16,17 could be excluded. Thus, the EDCF, stimulated by acetylcholine and acting via the TP receptor, was most likely PGF₂α.

Endothelium-dependent contractions are augmented with aging, involve both COX-1 and COX-2, and are potentiated by oxidative stress.8 In the study of Wong et al,10 there were larger contractions in aortae from aged as compared to young hamsters. This was explained by an age-related reduced generation of EDRF. The expression of TP receptors remained unchanged, similar to another study from the same group in aged rats.7 In this study on normotensive and hypertensive hamsters, no change was observed in COX-2 expression with aging, whereas COX-1 was elevated.8

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Germany. Correspondence to Karsten Schrör, Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Moorenstr. 5, D-40225 Düsseldorf, Germany. E-mail karsten.schroer@uni-duesseldorf.de

(Circ Res. 2009;104:141-143.)

© 2009 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.108.192526
hypertensive rats, genomic expression of endothelial COX-1 was increased, suggesting a greater potency to generate and release EDCFs in aging and hypertension. A significant contribution of COX-1–derived EDCFs in the study of Wong et al. in hamsters is unlikely. Thus, there might be species differences not only regarding the chemical identity of EDCF(s) but also the biosynthetic pathways and site(s) of action. Hirao et al. have shown that the EDCF, generated by reendothelialized femoral artery of rats 4 weeks after photocoagulation, was mainly PGF2α and PGH2 but not thromboxane A2. This would confirm PGF2α as EDCF, contributing to the reduced vasodilation of reendothelialized femoral arteries.

What is the significance of these data for humans? First, it should be noted that COX-2 was the main enzyme involved in EDCF, i.e. PGF2α release in the hamster aorta. In humans, COX-2 rather than COX-1 produces the majority of vascular PGs in healthy and atherosclerotic areas. However, PGF2α is certainly not a major product, but rather PGI2 and PGE2 are both potent vasodilators in most vascular beds of humans. In contrast to this, COX-1 is the main regulated enzyme in the rat aorta, in which many studies on the identity of EDCF were performed. Thus, the prostanooid synthetic pathways in humans appear to be closer to the hamster than the rat, as also suggested by the authors. Regarding TP receptors, the authors present some preliminary data suggesting an EDCF/PGF2α-mediated contraction of renal arteries in hypertensive diabetics. These contractions were mimicked by exogenous PGF2α and antagonized by antagonists of TP but not FP receptors. Thus, PGF2α might also act as EDCF via the TP receptor in humans. Further studies have to establish this. The VIGOR study demonstrated an increase rather than a decrease of blood pressure with the selective COX-2 inhibitor rofecoxib in patients with elevated cardiovascular risk. This raises the question for a (patho)physiological role of COX-2–derived PGF2α acting as EDCF via TP receptors in humans. Because of its relatively low endothelial production rate as opposed to PGI2 and/or PGE2, both being vasodilators, and the short half-life of circulating PGF2α (<1 minute), this appears to be less likely. In a recent review by the same group, the contribution of PGF2α to endothelium-dependent contraction has been considered marginal. On the other hand, there might be situations, such as senescence, in which metabolic enzymes may become insufficient to degrade efficiently released PGs in conditions of elevated biosynthesis, including PGH2, thromboxane A2, and PGF2α. Because of the rapid hydrolysis of thromboxane A2 into the inactive thromboxane B2 and the (spontaneous) conversion of PGH2 into PGF2α, PGF2α may locally accumulate and cause vasoconstriction. For example, high levels of PGF2α were found in the cerebrospinal fluid of patients with cerebral transient ischemic attacks or stroke, even in the absence of subarachnoid hemorrhage.

Overall, Wong et al. have demonstrated convincing evidence for COX-2–derived PGF2α as an EDCF acting via TP receptor in the hamster aorta. This provides pharmacological evidence for TP receptor antagonists as useful tools to correct imbalances between EDRF/EDCF. This could be an argument for the revival of the concept of thromboxane receptor blockade to prevent regional ischemia. This concept must not necessarily be realized by thromboxane receptor antagonists, the development of which, unfortunately, has been stopped after the first larger clinical trials with these compounds failed. Natural vasodilator epoxyeicosatrienoic acids offer an alternative and were recently reported to cause vasodilation via competitive, direct inhibition of TP receptors.

Sources of Funding
None.

Disclosures

References

KEY WORDS: EDCF ★ hamster aorta ★ PGF$_{2\alpha}$ ★ thromboxane receptors
Cyclooxygenase-2-Derived Prostaglandin F\(_2\alpha\): An Endothelium-Derived Contractile Factor Acting Independently of Other Endothelium-Derived Contractile Factors via Vascular Thromboxane Receptors
Karsten Schrör

Circ Res. 2009;104:141-143
doi: 10.1161/CIRCRESAHA.108.192526

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circres.ahajournals.org/content/104/2/141

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:

http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:

http://circres.ahajournals.org//subscriptions/