Do Mesenchymal Stromal Cells Transdifferentiate Into Functional Cardiomyocytes?

To the Editor:

We would like to comment on the recent and interesting report by Pijnappels et al showing that mesenchymal stem (stromal) cells (MSCs) can transdifferentiate into cardiomyocytes in culture. The ability of MSCs to transdifferentiate into cardiomyocytes is highly controversial, with numerous studies suggesting that the phenomenon occurs, whereas many others conclude that it does not. Pijnappels et al have provided data showing that under their cell culture conditions, some MSCs in coculture with neonatal cardiomyocytes undergo cardiac differentiation, as indicated by the expression of sarcomeric α-actinin, cardiac troponin I, and connexin-43. Furthermore, Pijnappels et al recorded action potentials in approximately 16% of the cells studied by Pijnappels et al.

Secondly, and we believe more importantly, greater than 10% of adult MSCs may be the more relevant cell type for cell therapy. Mouse MSCs. It is possible that the multipotent potential of MSCs, as well as HSCs, will become apparent only after rigorous studies are completed, we anticipate that the cardiac differentiated cells in the Pijnappels et al study might have arisen from HSCs.

What could cause this different pattern of results? Two key experimental differences exist between our studies. First, Pijnappels et al studied neonatal rat MSCs, whereas we used adult mouse MSCs. It is possible that the multipotent potential of neonatal MSCs is greater than those of the adult cell, although adult MSCs may be the more relevant cell type for cell therapy. Secondly, and we believe more importantly, greater than 10% of the cells studied by Pijnappels et al were positive for CD45 (CD45$^+$) by flow cytometric analysis, whereas we were careful to ensure that <1% of our cells were CD45$^+$. The guidelines for definition of MSCs clearly state that MSCs must be negative for CD45, which is a leukocyte marker. The presence of these CD45$^+$ cells may indicate significant hematopoietic stem cell (HSC) contamination in the study by Pijnappels et al. HSCs have been shown in some studies to undergo true electric and functional transdifferentiation into cardiomyocytes, suggesting that the cardiac differentiated cells in the Pijnappels et al study might have arisen from HSCs.

In conclusion, we acknowledge Pijnappels et al for their important work in this controversial field. As more high quality and rigorous studies are completed, we anticipate that the multipotent potential of MSCs, as well as HSCs, will become clearer and that the role each cell type could play in the treatment of heart disease will be better understood.

Robert A. Rose
Armand Keating
Peter H. Backx
Departments of Physiology and Medicine
Heart and Stroke/Richard Lewar Centre
Cell Therapy Program
Princess Margaret Hospital/Ontario Cancer Institute
University Health Network and University of Toronto
Toronto, Ontario, Canada
E-mail rob.rose@utoronto.ca

Sources of Funding

A. Keating holds the Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation at the University of Toronto and University Health Network. This work was supported by funding from the Canadian Institutes for Health Research (MOP 79460) to P. Backx who is a Career Investigator with the Heart and Stroke Foundation of Ontario. R. Rose is the recipient of Fellowships from the Heart and Stroke Foundation of Canada, the Alberta Heritage Foundation for Medical Research, and the Canadian Institutes of Health Research—Tailored Advanced Collaborative Training in Cardiovascular Sciences (TACTICS) program.

Disclosures

None.

References

Do Mesenchymal Stromal Cells Transdifferentiate Into Functional Cardiomyocytes?
Robert A. Rose, Armand Keating and Peter H. Backx

Circ Res. 2008;103:e120
doi: 10.1161/CIRCRESAHA.108.186908
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/103/9/e120

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/