The congenital cardiac anomaly known as tetralogy of Fallot (TOF) is characterized by right ventricular outflow tract obstruction caused by subpulmonary stenosis, dextroposition (overriding) of the aorta, a ventricular septal defect, and right ventricular hypertrophy. The right ventricular hypertrophy is secondary to the presence of right ventricular outflow obstruction (pulmonic valvar or subvalvar stenosis or in the most severe case, atresia). Cyanosis in these patients is attributable to the passage of systemic venous blood into the aorta, bypassing the lungs, with the degree of cyanosis dependent on the severity of the outflow tract obstruction. The malformations that are classified as persistent truncus arteriosus (PTA) are characterized by a single multicuspid semilunar valve with a single vessel, the truncus, arising from the ventricles and giving rise to systemic, pulmonary, and coronary circulations. Thus, both PTA and TOF with pulmonary atresia are characterized by a single vessel emanating from the heart. In PTA, the septation that would divide the common arterial trunk into an aorta and pulmonary trunk is missing, whereas in TOF with pulmonary atresia, it is unclear whether this septation is missing or misplaced. Diagnosis of TOF with pulmonary atresia relies on the presence of a pulmonary valve remnant by clinical imaging. This criterion permits differentiation of TOF with pulmonary atresia and PTA. However, if the pulmonary atresia develops embryonically before a valve is formed, then this criterion would not distinguish PTA from TOF with pulmonary atresia. New findings in experimental mouse models by Théveniau-Ruissy et al reported recently in Circulation Research shed unexpected light on the embryogenesis of these defects and may allow differentiation of the 2 defects in ways that have not been used previously.1

The myocardium and smooth muscle at the arterial pole, that is, the subaortic and subpulmonary myocardium and the smooth muscle at the base of the aortic and pulmonary arterial trunks, is added from a specific region of the ventral pharyngeal mesoderm caudal to the attachment point of the outflow tract with the pharynx that has been called secondary heart field.2,3 The secondary heart field contains the progenitors of both the myocardium and smooth muscle of the arterial pole and ablation of this region has been shown to result in pulmonary stenosis/atresia with overriding aorta.4 This implicates secondary heart field as the defining cell population associated with pulmonary stenosis/atresia. Other experimental causes of pulmonary stenosis/atresia are associated with decreased proliferation in this field of progenitors. Decreased proliferation is experimentally associated with decreased fibroblast growth factor signaling.5 Tbx1-null mice also have decreased proliferation in the secondary heart field, and this is associated with TOF.5,6

Reports from Margaret Buckingham and colleagues in the last 3 years have shown that myocardium originating from this region has unique aortic and pulmonary identity well before septation of the outflow tract. This group has identified 2 separate loci that specifically express a lacZ reporter in outflow myocardium in what will become the subaortic and subpulmonary myocardium. The first report used the y96-Myf5-nlacZ-16 (96-16) transgene that marks the pulmonary outflow myocardium. The study confirmed rotation of the outflow tract using DiI injection. The authors were also able to show that the outflow failed to rotate in Splotch, Pitx2c mutants with persistent truncus or double-outlet right ventricle or transposition of the great arteries.7 A second study from this group showed another transgene, A17-Myf5-nlacZ-T55 (T55), which is expressed in the outflow myocardium in a pattern complementary to 96-16 and continues development as the subaortic myocardium. The 2 myocardial populations represented by the 96-16 (subpulmonary) and T55 (subaortic) appear from a clonal analysis to arise from distinct precursor populations.8

The article by Théveniau-Ruissy et al identifies the gene that is represented by the 96-16 transgenic as Semaphorin3C (Sema3C).1 Sema3C, a secreted growth factor associated with axonal path-finding and angiogenesis, has been reported previously to be expressed in the outflow myocardium, although not specifically identified as subpulmonary myocardium. Sema3C mutant mice have cardiovascular defects that include conotruncal malformations, although these are, unfortunately, not well described.9 Plexins are the receptors for semaphorins, and PlexinA2 is expressed by neural crest cells. In Sema3C-null embryos, distribution of the plexinA2-expressing neural crest cells in the outflow tract is altered but the cells are present in the outflow tract.9 Furthermore, cardiac neural crest form the outflow septation complex

---

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association. From the Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, NC. Correspondence to Margaret L. Kirby, Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Bell Building, Rm 157, Box 3179, Duke University Medical Center, Durham, NC 27712. E-mail mlkirby@duke.edu


Circulation Research is available at http://circres.ahajournals.org
DOI: 10.1161/CIRCRESAHA.108.174862

---

Pulmonary Atresia or Persistent Truncus Arteriosus
Is It Important to Make the Distinction and How Do We Do It?
Margaret L. Kirby
abnormally, although this is also not well described. Data from the 2 published articles suggest that semaphorin or the semaphorin-expressing myocardium in the outflow tract are important for neural crest to set up a normal outflow septation complex. The mutant embryos for the most part have double-outlet right ventricle. Although some had a single outflow that was described as PTA, the hearts were not analyzed thoroughly enough to distinguish PTA from pulmonary atresia.

Microdeletion of chromosome 22q11.2 is associated with DiGeorge and velocardiofacial syndromes, which include conotruncal malformations. The most commonly associated conotruncal phenotype is TOF. TBX1, a T-box transcription factor, is located in this interval and is thought to be a primary cause of the phenotype. However, to date, only 4 different point mutations in TBX1 have been reported in association with the DiGeorge/velocardiofacial features. In the 3 original patients described, two-thirds had TOF, whereas one-third had ventricular septal defect and interrupted arch. The mutations described in the 4 patients produce either loss- or gain-of-function, suggesting that the same or similar phenotype is produced by either condition. This is supported by the fact that there is little phenotypic variability in a knockout mouse model of tbx1, whereas reducing mRNA level to 20% of normal recapitulates the human phenotype more accurately. Even so, it appears that tbx1 is an excellent gene to study in pathogenesis of the DiGeorge/velocardiofacial phenotype.

To this end, by using the T55 transgene (subaortic myocardial identity), Theveniau-Ruissy et al showed that the ventricular outlet in the tbx1-null mouse has a predominantly subaortic identity, suggesting a severe reduction of the 96-16 (subpulmonary myocardium) or a conversion of this myocardium to a subaortic identity. Although the authors describe the phenotype as PTA, this may be debatable. Because tbx1-null mice have dramatically reduced proliferation of the myocardial outflow progenitors in the secondary heart field, this suggests that there is a reduction in subpulmonary myocardium rather than conversion of subaortic to subpulmonary myocardium. Two other features support this conclusion. The first is the presence of a single outflow valve with 3 leaflets, and the second is that the outflow channel is closer to the size of a normal aorta than an undivided arterial trunk.

As mentioned above, PTA is characterized by a single vessel that leaves the base of the heart. In 69% of patients diagnosed with PTA, the truncal valve is tricuspid, whereas it is described as quadricuspid in only 22%. This is interesting because, embryologically, it would be difficult to get a tricuspid valve without division of the outflow cushions that are normally four in number. The diagnosis of PTA is made because no second atretic semilunar valve is present. In the article by Théveniau-Ruissy et al, however, no atretic valve is present, but because of the missing subpulmonary myocardium, this situation may represent pulmonary atresia rather than PTA. Furthermore, the single arterial trunk in PTA has biventricular origin in 68% to 83% of patients, whereas in 11% to 29% of patients, the common trunk arises entirely from the right ventricle. The correlation of tricuspid truncal valves with biventricular origin of the arterial trunk is intriguing. In virtually all the animal models of PTA, the arterial trunk arises from the right ventricle.

To summarize these comments, the diagnosis of PTA and pulmonary atresia in patients has used criteria that may not have recognized variants of pulmonary atresia beyond an atretic pulmonary valve. If the subpulmonary myocardium never grows into the heart, as in the case shown by Theveniau-Ruissy et al, the outflow tract and right ventricle would lack this tissue from very early and not have a chance to form a pulmonary outlet. Because septation of the arterial pole requires an entirely different developmental process involving neural crest cells which appear to be guided by the junction of the subpulmonary and subaortic myocardium, it is possible that septation is present, albeit in the wrong place because of the reduction in the subpulmonary myocardium. This implies an altogether different embryogenesis of PTA (a septation problem) and pulmonary atresia (a problem with development of the subpulmonary myocardium). Even though the clinical treatment of the 2 types of patients is the same, to ultimately understand the genetic and epigenetic causes of the 2 defects requires that the criteria for diagnosis be reevaluated.

Acknowledgments
I am grateful to Drs Norman Talner, Mary Hutson, and Ramiah Subhramanian and the Duke Pediatric Cardiology fellows for helpful discussions on this topic and editorial assistance with the manuscript.

Sources of Funding
Supported by NIH grants HL70140, HL83240, HL834413, and the Cincinnati Heart Foundation.

Disclosures
None.

References


Key Words: arterial pole development ∞ conotruncal malformations ∞ pulmonary atresia ∞ persistent truncus arteriosus
Pulmonary Atresia or Persistent Truncus Arteriosus: Is It Important to Make the Distinction and How Do We Do It?
Margaret L. Kirby

Circ Res. 2008;103:337-339
doi: 10.1161/CIRCRESAHA.108.174862

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571