In response to various hypertrophic stimuli, the heart undergoes alterations in structure and function. One mechanism by which the heart adapts to physiological and pathological stimuli is an increase in size of individual cardiac myocytes, and when those stimuli are removed, the size of the myocytes can decrease. Modulation of cardiac size thus requires a very careful balance between protein synthesis and protein degradation, and any imbalance in these systems could be of potential damage to the heart. Increased protein synthesis in hypertrophied hearts is accompanied by “protein quality control” to eliminate aggregated unfolded proteins, but a failure of this monitoring system eventually leads to cardiac dysfunction. Heat shock proteins (HSPs) have chaperone-like properties that can bind to unfolded proteins and prevent their denaturation and aggregation. In recent genome surveys of mice, rats, and humans, small-molecular-weight heat shock proteins (sHSPs) have been identified. αB crystalline (CryAB) is a member of the sHSPs that is expressed at high levels in cardiomyocytes. CryAB has chaperone-like properties and also binds to both desmin and cytoplasmic actin which helps to maintain cytoskeletal integrity. Previous studies have shown that a mutation in CryAB mimics a form of desmin-related cardiomyopathy. Overexpressing CryAB in cultured cardiomyocytes and in transgenic mouse hearts protects against ischemia/reperfusion–induced cell death; on the other hand, double knockout of the small heat shock proteins CryAB/SHSP2 induces abnormal cardiac growth and defective myocardial relaxation.

In this issue of Circulation Research, Kumarapeli et al address and confirm the roles of CryAB in response to a different type of cardiac insult: pressure overload. Additionally, they used neonatal rat cardiac myocytes (NRCMs) overexpressing CryAB to determine its effects on agonist stimulation. After 2 weeks of thoracic aortic constriction (TAC) in nontransgenic (NTG) mice, there were significantly increased levels of CryAB protein with concomitant increases (5 fold) of CryAB (transgenic [TG]) displayed 15% less ventricular hypertrophy and attenuated fetal gene expression compared to NTG mice after 2 weeks of TAC. In addition, echocardiography and cardiac catheterization assessments demonstrated that cardiac function indicated by fractional shortening and dP/dt max were preserved in TG mice after 2 weeks of TAC. Consistent with the intact heart data, CryAB overexpression in cultured NRCMs attenuated norepinephrine-, phenylephrine-, or isoproterenol-mediated cellular hypertrophy. On the other hand, mice with germ-line ablation of the CryAB/HSBP2 genes (knockout [KO]) displayed concentric cardiac hypertrophy after 2 weeks of TAC, with greater increases in fetal gene expression. Although left ventricular systolic function and contractile function did not differ among NTG, TG, and KO mice at 10 weeks, left ventricular diastolic function was compromised in the KO mice, which was hypothesized to be attributable to a decrease in phospholamban expression. Compared to NTG mice, KO mice displayed both systolic and diastolic dysfunction, with greater increase in fetal genes at 18 weeks of age under basal conditions. Thus, CryAB and HSPB2 are required to maintain normal cardiac function in both basal conditions, as well as in response to a general stress.

Another issue addressed by this article is the connection between CryAB and the calcineurin/NFAT pathway, long implicated in pathological cardiac hypertrophy. Genetic manipulation of signaling pathways in mice and biochemical analyses have shown that calcium/calmodulin (Ca2+/CaM)-dependent signaling plays a pivotal role in pathological cardiac hypertrophy. An increase in cytoplasmic Ca2+ binds to calmodulin and activates calcineurin, which can dephosphorylate NFATs (nuclear factors of activated T-cells). Dephosphorylated NFATs migrate into the nucleus and promotes gene expression. Recent work delineates several negative regulators of calcineurin pathway. The z-disc protein calcsarcin (CS1) prevents cardiomyocyte hypertrophy in response to several Gq-coupled agonists such as angiotensin II, phenylephrine, and endothelin-1. Overexpression of CS1 results in suppression of cardiac hypertrophy in response to Gq agonist stimulation without impairment of contractile function. Deficiency of CS1 sensitizes mouse hearts for calcineurin signaling and thereby exacerbates pathological cardiac hypertrophy. However, calcsarcin-deficient mice subjected to exercise exhibited no differential hypertrophic growth. Similar results were reported in hearts from forkhead box transcription factors, O subfamily (Foxo)-null mice that exhibit increased modulatory calcineurin interacting protein (MCIP)1.4, a direct downstream target of the calcineurin/NFAT pathway, and a hypertrophic phenotype with normal systolic function at baseline. These results suggest that inhibition of the hypertrophic response is not necessarily associated with a decrease in cardiac function.
Both in vivo and in vitro models were used by Kumarapeli et al.7 to define the role of CryAB in the calcineurin/NFAT pathway. The MCIPI.4 isofrom has been shown to be tightly controlled by an alternative promoter containing 15 NFAT binding sites in the intron located upstream of MCIPI exon 43 and has been used as a direct downstream target of the calcineurin/NFAT pathway or a calcineurin-sensitive gene in cultured NRCMs. In KO mice, molecular analyses revealed that MCIPI.4 mRNA expression was significantly increased, and Western blotting showed that the NFAT nuclear to cytoplasmic ratio was increased compared to wild-type mice. These results demonstrate that the absence of CryAB sensitizes the heart to calcineurin signaling. Moreover, the combination of CryAB overexpression and cyclosporine A treatment in NRCMs did not have additive effects. Thus, the cardiac hypertrophic suppression by CryAB is likely through the same pathway as cyclosporine A. In contrast, the expression of MCIPI.4 was significantly reduced in TG mice. These results suggest that CryAB attenuates cardiac hypertrophy by inhibiting the calcineurin/NFAT signaling pathways.

This study addresses the critical role of CryAB in the early phase of the cardiac hypertrophic response to pressure overload. A schematic representation of the role of Hsps in cardiac hypertrophy is illustrated in the Figure. Given that TAC mice retain hypertrophy, fetal gene expression, and maintain cardiac function, it is tempting to speculate that CryAB is a critical molecule to distinguish early hypertrophic responses from later, more pathological hypertrophic responses. Supporting this view, the heat shock transcription factor (HSF)1 and HSP genes, such as Hsp70 and Hsp27, were elevated after 8 weeks of exercise training14 and in the early phase of pressure overload15 but not after 5 weeks of pressure overload.14 In addition, recent work suggests that the insulin-like growth factor-1/photobodyinositol 3-kinase pathway, the well-established physiological cardiac hypertrophic pathway,16 is involved in HSF1 activation.17 For example, a member of this pathway, glycogen synthase kinase (GSK)3β, is a negative regulator of HSF1 and phosphorylation of GSK3β by Akt activates HSF1 and Hsp70.17 Moreover, a recent study showed that increased levels of Hsp27 by lipopolysaccharide treatment in the myocardium was attenuated by the phosphatidylinositol 3-kinase inhibitor LY294002, and an increased phosphorylation of GSK3β was correlated with reduced cardiac infarct size.18 In the Kumarapeli et al.7 study, NTG mice had not yet shown significant decreases in the parameters of major left ventricular function, and the levels of CryAB protein were elevated at 2 weeks after TAC. These results imply that the heart is still in an adaptive phase of cardiac hypertrophy rather than maladaptive hypertrophy. Thus, it would be interesting to see whether CryAB levels change after long-term pressure overload, or in a maladaptive phase. Furthermore, it would be of interest to determine the exercise responsiveness of the hearts from the animals described in the study by Kumarapeli et al.7

Sources of Funding

This work was supported by NIH grant HL050560-14 (to L.A.L.).

Disclosures

None.

References

Key Words: pressure overload ● heat shock proteins ● cardiac hypertrophy ● calcineurin/NFAT signaling
Rescuing Cardiac Malfunction: The Roles of the Chaperone-Like Small Heat Shock Proteins
Eunhee Chung and Leslie A. Leinwand

Circ Res. 2008;103:1351-1353
doi: 10.1161/CIRCRESAHA.108.189720
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/103/12/1351

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/