“B₂ or not B₂?”

Kinetic Receptors and Endothelial Progenitor Cell Dysfunction

Michael R. Ward, Jessie Lavoie, Duncan J. Stewart

The field of progenitor cell therapy appears to be poised to transform the management of many cardiovascular diseases. In particular, the use of bone marrow-derived mononuclear cells (BM-MNCs) and endothelial progenitor cells (EPCs) have shown indications of improved cardiac function post–myocardial infarction (MI), with a recent metaanalysis showing a highly significant mean improvement in global ejection fraction of 3% compared to control.¹ The overall positive results from these early trials raise 2 important questions. The first is whether cell therapy really works, in other words, whether the results of these smaller trials, which generally enrolled less than 100 patients, will be reproducible in larger pivotal studies. A study currently being planned by Zeiher and colleagues (A.M. Zeiher, personal communication) will help answer this question. The second question is whether we can do better, either by selecting a more active subset of highly regenerative progenitor cells, or by enhancing progenitor cell activity before delivery. Several clinical studies exploring these strategies are already planned or underway, including our own ENACT-AMI (eNOS and Cell Therapy D Acute MI) trial. To inform further clinical studies, it is also critical to better understand progenitor cell biology, including the mechanisms by which they exert their function in vivo, as well as the genomic and proteomic interactions that underlie their survival, homing, and differentiation.

In this issue of Circulation Research, Kränel et al² demonstrate a novel pathway that may contribute importantly to EPC function and provide a potential marker of regenerative activity. They report that the kinin B₂ receptor (B₂R) was highly expressed by CD34⁺ and CD133⁺ MNCs, as well as in culture-selected “early growth” EPCs. Bradykinin (BK), a natural agonist for B₂R, was shown to be a potent chemoattractant for the EPCs, and BK-responsive cells exhibited a more pronounced angiogenic phenotype. These effects of B₂R activation involved signaling via the PI3K/Akt/eNOS pathway, because B₂R blockade led to a similar reduction in migration as with inhibition of either PI3K or eNOS. Kränel et al also showed a reduction in the number of B₂R-positive EPCs from patients with stable angina and acute MI, with an associated reduction in their migration toward BK. Finally, they showed that EPCs from B₂R-deficient mice had a reduced ability to stimulate neovascularization in a mouse hindlimb ischemia model.

The finding that B₂R expression and BK-responsiveness predicted progenitor cell function has potentially important experimental and clinical relevance. Kränel et al² showed that cells selected by their ability to migrate to BK had higher expression of endothelial markers, greater in vitro angiogenesis and greater secretion of paracrine factors compared to those not responding to BK. However, they did not test whether BK-migrating cells indeed exhibited greater efficacy in the in vivo hindlimb ischemia model and, although they demonstrated that BM-MNCs from transgenic mice deficient in B₂R had impaired neovascularization capacity, the authors were unable to show a sustained increase in perfusion past 1 week in response to the wild-type cells.

If differences in the regenerative capacity between the BK-responsive and -nonresponsive EPCs are confirmed in further preclinical studies, B₂R might represent a useful selection marker for a more highly regenerative cell. With a recent study demonstrating the critical influence of cell processing procedures on the clinical benefit of cell therapy post-MI,³ investigators are acutely aware of the importance of verifying viability and functionality of administered cells in the design of clinical trials of autologous cell therapy. Currently, the relatively high prevalence of CD34⁺/KDR- or CD133⁺/KDR-positive EPCs in the administered BM-MNC population is being proposed as a potential explanation for the apparent clinical benefit. Similarly, selection of cells based on migration to BK and/or B₂R expression might improve our ability to identify highly effective cell populations. However, this might be confounded by the presence of cardiac disease or risk factors, because EPCs from patients with acute MI or stable angina showed reduced expression of B₂R compared to those of healthy controls in the present study. Thus, it remains to be confirmed to what degree these factors impact on BK-responsiveness or neovascularization capacity.

One of the caveats of autologous cell therapy is that the EPCs are derived from the very same patients with cardiovascular disease who need to be treated, and there is an inverse relationship between the number and function of the EPCs and the cardiac risks of the patients (based on age, cholesterol, diabetes, etc.).⁴,⁵ Oxidative stress has been suggested to be at least partially responsible for progenitor cell dysfunction, likely through disruption of the PI3K/Akt/eNOS signaling pathway.⁶⁻⁷ Strategies aimed at enhancing this pathway have shown some promising results. Culturing cells in the presence of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins)⁶ or a PPAR-γ agonist (pioglitazone),⁷ agents that activate Akt through different mechanisms, have been shown to improve EPC function.

© 2008 American Heart Association, Inc.

Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.108.189084

1202
addition, increasing the bioavailability of NO, either exog-
enuously10 or by eNOS overexpression11 has led to improved
migration, neovascularization, or endothelial repair. No doubt
there are other unknown pathways that may be critical to the
regenerative function of these cells and that may be uncovered
only by using unbiased genomic or proteomic approaches, for
example, by assessment of differential phosphoproteomic signa-
tures in cells from patients with vascular disease. Nonetheless, a
better understanding of the underlying mechanisms responsible
for EPC dysfunction will provide the basis to develop better
strategies to improve the efficacy of autologous cell therapy.

The study of EPC function as a surrogate for cardiovascular
risk has generated much interest,5,12 although the com-
plexity of EPC definitions and isolation techniques have
impaired the evaluation of this as a diagnostic test. Because
progenitor cell B\textsubscript{2}R expression can easily be measured by
flow cytometry, this could potentially be evaluated as a
marker of cardiovascular risk, either for the management of
modifiable cardiac risk factors or for toxicity screening
following therapeutic or experimental pharmacological ad-
ministration. Although it might be possible to improve the
therapeutic potential of these cells by the upregulation of B\textsubscript{2}R
expression or signaling, the mechanisms responsible for
reduced B\textsubscript{2}R expression and BK responsiveness in cardio-
vascular disease are still unknown, and their elucidation will
be important to better understand how this might be overcome.

In addition to showing a novel role for the kinin–kinogen
pathway, the results of Kränkel et al2 further highlight the impor-
tance of NO production for EPC activity. Although P3K or eNOS
inhibitors were not used in their in vivo studies, both agents reduced
the EPC migratory response to BK in vitro to a similar degree as did
B\textsubscript{2}R blockade, suggesting that this response was primarily mediated
through eNOS activation. This is reminiscent of the results of earlier
studies showing a degree of NO dependency for the actions of
VEGF,13 statins,14 and PPAR-\gamma agonists15; and thus, eNOS may be
a common signaling pathway through which all of these various
mediators converge. In this regard, it would also be of interest to
study whether pretreatment with VEGF or statins would enhance
EPC migration in response to BK or whether selection by migration
to another agent (i.e., VEGF or SDF-1) would result in similar (or
greater) enrichment for angiogenic activity.

The findings of Kränkel et al2 are exciting additions to our
emerging understanding of the biology and therapeutic potential of
EPCs. The ability to identify and select a more regenerative
progenitor population could improve the efficacy of cell therapy for
cardiovascular disease. Moreover, an improved surface marker of
progenitor cell function could advance our understanding of cardiac
risk factors and provide a better diagnostic tool for clinical risk
stratification for our patients. Although the importance of the
kinin–kinogen pathway for EPC activity needs to be confirmed in
clinically relevant models of cardiovascular disease, the work of
Kränkel et al highlights the importance of host factors and cell
selection in the optimization of therapeutic strategies, which may be
critical for enhancing the potential benefit of cell therapy in future
trials.

Sources of Funding
This work was supported by Canadian Institutes of Health Research
and the Krembil Foundation. MRW is supported by a Canadian
Institutes of Health Research Jessie Boyd and Charles Scrivener
MD/PhD Student Award.

Disclosures
None.

References
1. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung
CA, Zuba-Surma EK, Al-Mallah M, Dawn B. Adult bone marrow-
derived cells for cardiac repair: a systematic review and meta-analysis.
2. Kränkel N, Katare RG, Siragusa M, Barcelos LS, Campagnolo P,
Mangialardi G, Fortunato O, Spinetti G, Tran N, Zachareowski K, Wojakowski
W, Mroz I, Herman A, Manning Fox JE, MacDonald PE, Schanstra JP,
Bascands JL, Ascione R, Angelini G, Emanuelli C, Mageddu P. Role of
Kinin B2 receptor signaling in the recruitment of circulating progenitor
3. Seeger FH, Tonn T, Krzossok N, Zeiher AM, Dimmeler S. Cell isolation
procedures matter: a comparison of different isolation protocols of bone
marrow mononuclear cells used for cell therapy in patients with acute
AM, Dimmeler S. Number and migratory activity of circulating endotho-
elial progenitor cells inversely correlate with risk factors for coronary
5. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi
AA, Finkel T. Circulating endothelial progenitor cells, vascular function,
6. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD,
Tsikas D, Ertl G, Bauersachs J. Endothelial nitric oxide synthase
uncoupling impairs endothelial progenitor cell mobilization and function
7. Urbich C, Dimmeler S. Risk factors for coronary artery disease, circu-
lating endothelial progenitor cells, and the role of HMG-CoA reductase
Spyridopoulos I, Zeiher AM, Dimmeler S. HMG-CoA reductase inhibitors
reduce senescence and increase proliferation of endothelial progenitor cells
proliferator-activated receptor-gamma agonist pioglitazone increases number
and function of endothelial progenitor cells in patients with coronary artery
10. Li Calzi S, Parisch DL, Cheng KH, Afzal A, Nakagawa T, Busk JV,
Agarwal A, Segal MS, Grant MB. Carbon monoxide and nitric oxide
mediate cytoskeletal reorganization in microvascular cells via
vasodilator-stimulated phosphoprotein phosphorylation: evidence for
U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S.
Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO
synthase enhancer AVE9488 enhances their functional activity for cell therapy.
Kreutzenberg SV. Peripheral blood CD34+ endothelial progenitor
cells are determinants of subclinical atherosclerosis in a middle-aged
13. Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial
nitric oxide synthase at ser-1177 is required for VEGF-induced endothe-
lial cell migration. FEMS Lett. 2000;1477:258–262.
Ruten H, Fichtlscherer S, Martin H, Zeiher AM. HMG-CoA reductase
inhibitors (statins) increase endothelial progenitor cells via the PI 3-ki-
15. Gensch C, Clever YP, Werner C, Hanhoun M, Bohn M, Laufs U. The
PPAR-gamma agonist pioglitazone increases neangiogenesis and prevents
apop-

Key Words: endothelial progenitor cells \textbullet myocardial infarction \textbullet cell therapy \textbullet bradykinin \textbullet risk factors
"B2 or not B2?": Kinin Receptors and Endothelial Progenitor Cell Dysfunction
Michael R. Ward, Jessie Lavoie and Duncan J. Stewart

Circ Res. 2008;103:1202-1203
doi: 10.1161/CIRCRESAHA.108.189084

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/103/11/1202

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further information
about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/